51
|
Olson Reichhardt CJ, Groopman E, Nussinov Z, Reichhardt C. Jamming in systems with quenched disorder. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061301. [PMID: 23367926 DOI: 10.1103/physreve.86.061301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Indexed: 06/01/2023]
Abstract
We numerically study the effect of adding quenched disorder in the form of randomly placed pinning sites on jamming transitions in a disk packing that jams at a well-defined point J in the clean limit. Quenched disorder decreases the jamming density and introduces a depinning threshold. The onset of a finite threshold coincides with point J at the lowest pinning densities, but for higher pinning densities there is always a finite depinning threshold even well below jamming. We find that proximity to point J strongly affects the transport curves and noise fluctuations, and we observe a change from plastic behavior below jamming, where the system is highly heterogeneous, to elastic depinning above jamming. Many of the general features we find are related to other systems containing quenched disorder, including the peak effect observed in vortex systems.
Collapse
Affiliation(s)
- C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | |
Collapse
|
52
|
Andreotti B, Barrat JL, Heussinger C. Shear flow of non-Brownian suspensions close to jamming. PHYSICAL REVIEW LETTERS 2012; 109:105901. [PMID: 23005302 DOI: 10.1103/physrevlett.109.105901] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Indexed: 06/01/2023]
Abstract
The dynamical mechanisms controlling the rheology of dense suspensions close to jamming are investigated numerically, using simplified models for the relevant dissipative forces. We show that the velocity fluctuations control the dissipation rate and therefore the effective viscosity of the suspension. These fluctuations are similar in quasi-static simulations and for finite strain rate calculations with various damping schemes. We conclude that the statistical properties of grain trajectories-in particular the critical exponent of velocity fluctuations with respect to volume fraction φ-only weakly depend on the dissipation mechanism. Rather they are determined by steric effects, which are the main driving forces in the quasistatic simulations. The critical exponent of the suspension viscosity with respect to φ can then be deduced, and is consistent with experimental data.
Collapse
Affiliation(s)
- Bruno Andreotti
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI -CNRS, Univ. Paris-Diderot, 10 rue Vauquelin, 75005, Paris
| | | | | |
Collapse
|
53
|
Olsson P, Teitel S. Herschel-Bulkley shearing rheology near the athermal jamming transition. PHYSICAL REVIEW LETTERS 2012; 109:108001. [PMID: 23005330 DOI: 10.1103/physrevlett.109.108001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 02/09/2012] [Indexed: 06/01/2023]
Abstract
We consider the rheology of soft-core frictionless disks in two dimensions in the neighborhood of the athermal jamming transition. From numerical simulations of bidisperse, overdamped particles, we argue that the divergence of the viscosity below jamming is characteristic of the hard-core limit, independent of the particular soft-core interaction. We develop a mapping from soft-core to hard-core particles that recovers all the critical behavior found in earlier scaling analyses. Using this mapping we derive a relation that gives the exponent of the nonlinear Herschel-Bulkley rheology above jamming in terms of the exponent of the diverging viscosity below jamming.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, Umeå, Sweden
| | | |
Collapse
|
54
|
Otsuki M, Hayakawa H. Critical scaling of a jammed system after a quench of temperature. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031505. [PMID: 23030921 DOI: 10.1103/physreve.86.031505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 07/21/2012] [Indexed: 06/01/2023]
Abstract
Critical behavior of soft repulsive particles after quench of temperature near the jamming transition is numerically investigated. It is found that the plateau of the mean-square displacement of tracer particles and the pressure satisfy critical scaling laws. The critical density for the jamming transition depends on the protocol to prepare the system, while the values of the critical exponents which are consistent with the prediction of a phenomenology are independent of the protocol.
Collapse
Affiliation(s)
- Michio Otsuki
- Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558, Japan
| | | |
Collapse
|
55
|
Hunter GL, Weeks ER. The physics of the colloidal glass transition. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:066501. [PMID: 22790649 DOI: 10.1088/0034-4885/75/6/066501] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.
Collapse
Affiliation(s)
- Gary L Hunter
- Department of Physics, Emory University, Math and Science Center 400 Dowman Dr., N201 Atlanta, GA 30322, USA
| | | |
Collapse
|
56
|
A unified framework for non-brownian suspension flows and soft amorphous solids. Proc Natl Acad Sci U S A 2012; 109:4798-803. [PMID: 22392976 DOI: 10.1073/pnas.1120215109] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the rheology of non-brownian suspensions in the dilute regime is well understood, their behavior in the dense limit remains mystifying. As the packing fraction of particles increases, particle motion becomes more collective, leading to a growing length scale and scaling properties in the rheology as the material approaches the jamming transition. There is no accepted microscopic description of this phenomenon. However, in recent years it has been understood that the elasticity of simple amorphous solids is governed by a critical point, the unjamming transition where the pressure vanishes, and where elastic properties display scaling and a diverging length scale. The correspondence between these two transitions is at present unclear. Here we show that for a simple model of dense flow, which we argue captures the essential physics near the jamming threshold, a formal analogy can be made between the rheology of the flow and the elasticity of simple networks. This analogy leads to a new conceptual framework to relate microscopic structure to rheology. It enables us to define and compute numerically normal modes and a density of states. We find striking similarities between the density of states in flow, and that of amorphous solids near unjamming: both display a plateau above some frequency scale ω(∗) ∼ |z(c) - z|, where z is the coordination of the network of particle in contact, z(c) = 2D where D is the spatial dimension. However, a spectacular difference appears: the density of states in flow displays a single mode at another frequency scale ω(min) ≪ ω(∗) governing the divergence of the viscosity.
Collapse
|
57
|
Bi D, Zhang J, Chakraborty B, Behringer RP. Jamming by shear. Nature 2011; 480:355-8. [PMID: 22170683 DOI: 10.1038/nature10667] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 10/25/2011] [Indexed: 11/09/2022]
Abstract
A broad class of disordered materials including foams, glassy molecular systems, colloids and granular materials can form jammed states. A jammed system can resist small stresses without deforming irreversibly, whereas unjammed systems flow under any applied stresses. The broad applicability of the Liu-Nagel jamming concept has attracted intensive theoretical and modelling interest but has prompted less experimental effort. In the Liu-Nagel framework, jammed states of athermal systems exist only above a certain critical density. Although numerical simulations for particles that do not experience friction broadly support this idea, the nature of the jamming transition for frictional grains is less clear. Here we show that jamming of frictional, disk-shaped grains can be induced by the application of shear stress at densities lower than the critical value, at which isotropic (shear-free) jamming occurs. These jammed states have a much richer phenomenology than the isotropic jammed states: for small applied shear stresses, the states are fragile, with a strong force network that percolates only in one direction. A minimum shear stress is needed to create robust, shear-jammed states with a strong force network percolating in all directions. The transitions from unjammed to fragile states and from fragile to shear-jammed states are controlled by the fraction of force-bearing grains. The fractions at which these transitions occur are statistically independent of the density. Jammed states with densities lower than the critical value have an anisotropic fabric (contact network). The minimum anisotropy of shear-jammed states vanishes as the density approaches the critical value from below, in a manner reminiscent of an order-disorder transition.
Collapse
Affiliation(s)
- Dapeng Bi
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
58
|
|
59
|
Voigtmann T. Yield stresses and flow curves in metallic glass formers and granular systems. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:106. [PMID: 21959546 DOI: 10.1140/epje/i2011-11106-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Indexed: 05/31/2023]
Abstract
We discuss the concept of a glass transition line in the temperature-shear-stress plane in the context of recent simulation data for a metallic melt and dense-packed granular systems. Analyzing these data within a schematic model of the mode-coupling theory for dense glass formers under shear, values for the critical dynamic yield stress (the stress resulting in the limit of arbitrarily slow shear, at the glass transition) are estimated. We discuss two possible scenarios, that of a continuous rise in the dynamic yield stress at the transition, and that of a discontinuous transition, and discuss the data range that needs to be covered to decide between the two cases. A connection is made to the two commonly drawn versions of the jamming diagram, one convex and one concave regarding to the shape of the solid region.
Collapse
Affiliation(s)
- Th Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany.
| |
Collapse
|
60
|
Lopatina LM, Olson Reichhardt CJ, Reichhardt C. Jamming in granular polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011303. [PMID: 21867160 DOI: 10.1103/physreve.84.011303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/08/2011] [Indexed: 05/31/2023]
Abstract
We examine the jamming transition in a two-dimensional granular polymer system using compressional simulations. The jamming density Φ(c) decreases with increasing length of the granular chain due to the formation of loop structures, in excellent agreement with recent experiments. The jamming density can be further reduced in mixtures of granular chains and granular rings, also as observed in experiment. We show that the nature of the jamming in granular polymer systems has pronounced differences from the jamming behavior observed for polydisperse two-dimensional disk systems at point J. This result provides further evidence that there is more than one type of jamming transition.
Collapse
Affiliation(s)
- L M Lopatina
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|
61
|
Otsuki M, Hayakawa H. Critical scaling near jamming transition for frictional granular particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051301. [PMID: 21728519 DOI: 10.1103/physreve.83.051301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 03/30/2011] [Indexed: 05/31/2023]
Abstract
The critical rheology of sheared frictional granular materials near jamming transition is numerically investigated. It is confirmed that there exists a true critical density which characterizes the onset of the yield stress and two fictitious critical densities which characterize the scaling laws of rheological properties. We find the existence of a hysteresis loop between two of the critical densities for each friction coefficient. It is noteworthy that the critical scaling law for frictionless jamming transition seems to be still valid even for frictional jamming despite using fictitious critical density values.
Collapse
Affiliation(s)
- Michio Otsuki
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan
| | | |
Collapse
|
62
|
Vågberg D, Valdez-Balderas D, Moore MA, Olsson P, Teitel S. Finite-size scaling at the jamming transition: corrections to scaling and the correlation-length critical exponent. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:030303. [PMID: 21517442 DOI: 10.1103/physreve.83.030303] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/03/2011] [Indexed: 05/30/2023]
Abstract
We carry out a finite-size scaling analysis of the jamming transition in frictionless bidisperse soft core disks in two dimensions. We consider two different jamming protocols: (i) quench from random initial positions and (ii) quasistatic shearing. By considering the fraction of jammed states as a function of packing fraction for systems with different numbers of particles, we determine the spatial correlation length critical exponent ν ≈ 1 and show that corrections to scaling are crucial for analyzing the data. We show that earlier numerical results yielding ν < 1 are due to the improper neglect of these corrections.
Collapse
Affiliation(s)
- Daniel Vågberg
- Department of Physics, Umeå University, SE-90187 Umeå, Sweden
| | | | | | | | | |
Collapse
|
63
|
Vågberg D, Olsson P, Teitel S. Glassiness, rigidity, and jamming of frictionless soft core disks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:031307. [PMID: 21517494 DOI: 10.1103/physreve.83.031307] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 01/19/2011] [Indexed: 05/30/2023]
Abstract
The jamming of bidisperse soft core disks is considered, using a variety of different protocols to produce the jammed state. In agreement with other works, we find that cooling and compression can lead to a broad range of jamming packing fractions ϕ{J}, depending on cooling rate and initial configuration; the larger the degree of big particle clustering in the initial configuration, the larger will be the value of ϕ{J}. In contrast, we find that shearing disrupts particle clustering, leading to a much narrower range of ϕ{J} as the shear strain rate varies. In the limit of vanishingly small shear strain rate, we find a unique nontrivial value for the jamming density that is independent of the initial system configuration. We conclude that shear driven jamming is a unique and well-defined critical point in the space of shear driven steady states. We clarify the relation between glassy behavior, rigidity, and jamming in such systems and relate our results to recent experiments.
Collapse
Affiliation(s)
- Daniel Vågberg
- Department of Physics, Umeå University, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|