51
|
Zhen YZ, Egloff D, Modi K, Dahlsten O. Universal Bound on Energy Cost of Bit Reset in Finite Time. PHYSICAL REVIEW LETTERS 2021; 127:190602. [PMID: 34797137 DOI: 10.1103/physrevlett.127.190602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
We consider how the energy cost of bit reset scales with the time duration of the protocol. Bit reset necessarily takes place in finite time, where there is an extra penalty on top of the quasistatic work cost derived by Landauer. This extra energy is dissipated as heat in the computer, inducing a fundamental limit on the speed of irreversible computers. We formulate a hardware-independent expression for this limit in the framework of stochastic processes. We derive a closed-form lower bound on the work penalty as a function of the time taken for the protocol and bit reset error. It holds for discrete as well as continuous systems, assuming only that the master equation respects detailed balance.
Collapse
Affiliation(s)
- Yi-Zheng Zhen
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Dario Egloff
- Institute of Theoretical Physics, Technische Universität Dresden, D-01062 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Kavan Modi
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Oscar Dahlsten
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
52
|
Sanz Perl Y, Bocaccio H, Pallavicini C, Pérez-Ipiña I, Laureys S, Laufs H, Kringelbach M, Deco G, Tagliazucchi E. Nonequilibrium brain dynamics as a signature of consciousness. Phys Rev E 2021; 104:014411. [PMID: 34412335 DOI: 10.1103/physreve.104.014411] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
The cognitive functions of human and nonhuman primates rely on the dynamic interplay of distributed neural assemblies. As such, it seems unlikely that cognition can be supported by macroscopic brain dynamics at the proximity of equilibrium. We confirmed this hypothesis by investigating electrocorticography data from nonhuman primates undergoing different states of unconsciousness (sleep, and anesthesia with propofol, ketamine, and ketamine plus medetomidine), and functional magnetic resonance imaging data from humans, both during deep sleep and under propofol anesthesia. Systematically, all states of reduced consciousness unfolded at higher proximity to equilibrium compared to conscious wakefulness, as demonstrated by the computation of entropy production and the curl of probability flux in phase space. Our results establish nonequilibrium macroscopic brain dynamics as a robust signature of consciousness, opening the way for the characterization of cognition and awareness using tools from statistical mechanics.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Universidad de San Andrés, Buenos Aires, B1644BID, Argentina.,Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.,Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Hernán Bocaccio
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Carla Pallavicini
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Ignacio Pérez-Ipiña
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, 4000 Liège, Belgium
| | - Helmut Laufs
- Department of Neurology, Christian Albrechts University Kiel, 24118 Kiel, Germany
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Oxford OX12JD, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Enzo Tagliazucchi
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago 7910000, Chile
| |
Collapse
|
53
|
Bilotto P, Caprini L, Vulpiani A. Excess and loss of entropy production for different levels of coarse graining. Phys Rev E 2021; 104:024140. [PMID: 34525579 DOI: 10.1103/physreve.104.024140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
We investigate the effect of coarse graining on the thermodynamic properties of a system, focusing on entropy production. As a case of study, we consider a one-dimensional colloidal particle in contact with a thermal bath, moving in a sinusoidal potential and driven out of equilibrium by a small constant force. Different levels of coarse graining are evaluated: At first, we compare the results in the underdamped dynamics with those in the overdamped one (first coarse graining). For large values of the friction coefficient, the two dynamics have the same thermodynamics properties, while, for smaller friction values, the overdamped approximation produces an excess of entropy production with respect to that of the underdamped dynamics. Moreover, for further smaller values of the drag coefficient, the excess of entropy production turns into a loss. These regimes are explained by evaluating the jump statistics, observing that the inertia is able to induce multiple jumps and affect the average jump rate. The periodic shape of the potential allows us to approximate the continuous dynamics via a Markov chain after the introduction of a suitable time and space discretization (second level of coarse graining). This discretization procedure is implemented starting both from the underdamped and the overdamped evolution and is analyzed for different values of the friction coefficient.
Collapse
Affiliation(s)
- Pierpaolo Bilotto
- Dipartimento di Fisica, Universitá di Roma Sapienza, 00185 Rome, Italy
| | - Lorenzo Caprini
- Scuola di Scienze e Tecnologie, Universitá di Camerino, 62032 Camerino, Italy
| | - Angelo Vulpiani
- Dipartimento di Fisica, Universitá di Roma Sapienza, 00185 Rome, Italy
| |
Collapse
|
54
|
Falasco G, Esposito M. Local detailed balance across scales: From diffusions to jump processes and beyond. Phys Rev E 2021; 103:042114. [PMID: 34005954 DOI: 10.1103/physreve.103.042114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 11/07/2022]
Abstract
Diffusive dynamics in presence of deep energy minima and weak nongradient forces can be coarse grained into a mesoscopic jump process over the various basins of attraction. Combining standard weak-noise results with a path integral expansion around equilibrium, we show that the emerging transition rates satisfy local detailed balance (LDB). Namely, the log ratio of the transition rates between nearby basins of attractions equals the free-energy variation appearing at equilibrium, supplemented by the work done by the nonconservative forces along the typical transition path. When the mesoscopic dynamics possesses a large-size deterministic limit, it can be further reduced to a jump process over macroscopic states satisfying LDB. The persistence of LDB under coarse graining of weakly nonequilibrium states is a generic consequence of the fact that only dissipative effects matter close to equilibrium.
Collapse
Affiliation(s)
- Gianmaria Falasco
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg
| |
Collapse
|
55
|
Abstract
Living systems maintain or increase local order by working against the second law of thermodynamics. Thermodynamic consistency is restored as they consume free energy, thereby increasing the net entropy of their environment. Recently introduced estimators for the entropy production rate have provided major insights into the efficiency of important cellular processes. In experiments, however, many degrees of freedom typically remain hidden to the observer, and, in these cases, existing methods are not optimal. Here, by reformulating the problem within an optimization framework, we are able to infer improved bounds on the rate of entropy production from partial measurements of biological systems. Our approach yields provably optimal estimates given certain measurable transition statistics. In contrast to prevailing methods, the improved estimator reveals nonzero entropy production rates even when nonequilibrium processes appear time symmetric and therefore may pretend to obey detailed balance. We demonstrate the broad applicability of this framework by providing improved bounds on the energy consumption rates in a diverse range of biological systems including bacterial flagella motors, growing microtubules, and calcium oscillations within human embryonic kidney cells.
Collapse
Affiliation(s)
- Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
56
|
Holsten T, Krüger M. Thermodynamic nonlinear response relation. Phys Rev E 2021; 103:032116. [PMID: 33862688 DOI: 10.1103/physreve.103.032116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 11/07/2022]
Abstract
The fluctuation-dissipation theorem connects equilibrium to mildly (linearly) perturbed situations in a thermodynamic manner: It involves the observable of interest and the entropy production caused by the perturbation. We derive a relation which connects responses of arbitrary order in perturbation strength to correlations of entropy production of lower order, thereby extending the fluctuation-dissipation theorem to cases far from equilibrium in a thermodynamic way. The relation is validated and studied for a four-state model which is coarse-grained to a non-Markovian two-state model.
Collapse
Affiliation(s)
- Tristan Holsten
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Matthias Krüger
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
57
|
Large SJ, Ehrich J, Sivak DA. Free-energy transduction within autonomous systems. Phys Rev E 2021; 103:022140. [PMID: 33735999 DOI: 10.1103/physreve.103.022140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/04/2021] [Indexed: 11/07/2022]
Abstract
The excess work required to drive a stochastic system out of thermodynamic equilibrium through a time-dependent external perturbation is directly related to the amount of entropy produced during the driving process, allowing excess work and entropy production to be used interchangeably to quantify dissipation. Given the common intuition of biological molecular machines as internally communicating work between components, it is tempting to extend this correspondence to the driving of one component of an autonomous system by another; however, no such relation between the internal excess work and entropy production exists. Here we introduce the "transduced additional free-energy rate" between strongly coupled subsystems of an autonomous system, which is analogous to the excess power in systems driven by an external control parameter that receives no feedback from the system. We prove that this is a relevant measure of dissipation-in that it equals the steady-state entropy production rate due to the downstream subsystem-and demonstrate its advantages with a simple model system.
Collapse
Affiliation(s)
- Steven J Large
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
| | - Jannik Ehrich
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
| |
Collapse
|
58
|
Yu Q, Zhang D, Tu Y. Inverse Power Law Scaling of Energy Dissipation Rate in Nonequilibrium Reaction Networks. PHYSICAL REVIEW LETTERS 2021; 126:080601. [PMID: 33709722 PMCID: PMC8286115 DOI: 10.1103/physrevlett.126.080601] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/11/2021] [Indexed: 05/09/2023]
Abstract
The energy dissipation rate in a nonequilibrium reaction system can be determined by the reaction rates in the underlying reaction network. By developing a coarse-graining process in state space and a corresponding renormalization procedure for reaction rates, we find that energy dissipation rate has an inverse power-law dependence on the number of microscopic states in a coarse-grained state. The dissipation scaling law requires self-similarity of the underlying network, and the scaling exponent depends on the network structure and the probability flux correlation. Existence of the inverse dissipation scaling law is shown in realistic biochemical systems such as biochemical oscillators and microtubule-kinesin active flow systems.
Collapse
Affiliation(s)
- Qiwei Yu
- School of Physics, Peking University, Beijing 100871, China
| | | | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
59
|
Seara DS, Machta BB, Murrell MP. Irreversibility in dynamical phases and transitions. Nat Commun 2021; 12:392. [PMID: 33452238 PMCID: PMC7810704 DOI: 10.1038/s41467-020-20281-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/12/2020] [Indexed: 11/11/2022] Open
Abstract
Living and non-living active matter consumes energy at the microscopic scale to drive emergent, macroscopic behavior including traveling waves and coherent oscillations. Recent work has characterized non-equilibrium systems by their total energy dissipation, but little has been said about how dissipation manifests in distinct spatiotemporal patterns. We introduce a measure of irreversibility we term the entropy production factor to quantify how time reversal symmetry is broken in field theories across scales. We use this scalar, dimensionless function to characterize a dynamical phase transition in simulations of the Brusselator, a prototypical biochemically motivated non-linear oscillator. We measure the total energetic cost of establishing synchronized biochemical oscillations while simultaneously quantifying the distribution of irreversibility across spatiotemporal frequencies.
Collapse
Affiliation(s)
- Daniel S Seara
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
| | - Benjamin B Machta
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
| | - Michael P Murrell
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
60
|
Vishen AS. Optimizing energetic cost of uncertainty in a driven system with and without feedback. Phys Rev E 2020; 102:052405. [PMID: 33327083 DOI: 10.1103/physreve.102.052405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Abstract
Many biological functions require dynamics to be necessarily driven out of equilibrium. In contrast, in various contexts, a nonequilibrium dynamics at fast timescales can be described by an effective equilibrium dynamics at a slower timescale. In this work, we study two different aspects: (i) the energy-efficiency tradeoff for a specific nonequilibrium linear dynamics of two variables with feedback and (ii) the cost of effective parameters in a coarse-grained theory as given by the "hidden" dissipation and entropy production rate in the effective equilibrium limit of the dynamics. To meaningfully discuss the tradeoff between energy consumption and the efficiency of the desired function, a one-to-one mapping between function(s) and energy input is required. The function considered in this work is the variance of one of the variables. We get a one-to-one mapping by considering the minimum variance obtained for a fixed entropy production rate and vice versa. We find that this minimum achievable variance is a monotonically decreasing function of the given entropy production rate. When there is a timescale separation, in the effective equilibrium limit, the cost of the effective potential and temperature is the associated "hidden" entropy production rate.
Collapse
Affiliation(s)
- Amit Singh Vishen
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| |
Collapse
|
61
|
Gaspard P. Stochastic approach to entropy production in chemical chaos. CHAOS (WOODBURY, N.Y.) 2020; 30:113103. [PMID: 33261359 DOI: 10.1063/5.0025350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Methods are presented to evaluate the entropy production rate in stochastic reactive systems. These methods are shown to be consistent with known results from nonequilibrium chemical thermodynamics. Moreover, it is proved that the time average of the entropy production rate can be decomposed into the contributions of the cycles obtained from the stoichiometric matrix in both stochastic processes and deterministic systems. These methods are applied to a complex reaction network constructed on the basis of Rössler's reinjection principle and featuring chemical chaos.
Collapse
Affiliation(s)
- Pierre Gaspard
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (U.L.B.), Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| |
Collapse
|
62
|
Kim DK, Bae Y, Lee S, Jeong H. Learning Entropy Production via Neural Networks. PHYSICAL REVIEW LETTERS 2020; 125:140604. [PMID: 33064547 DOI: 10.1103/physrevlett.125.140604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/12/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
This Letter presents a neural estimator for entropy production (NEEP), that estimates entropy production (EP) from trajectories of relevant variables without detailed information on the system dynamics. For steady state, we rigorously prove that the estimator, which can be built up from different choices of deep neural networks, provides stochastic EP by optimizing the objective function proposed here. We verify the NEEP with the stochastic processes of the bead spring and discrete flashing ratchet models and also demonstrate that our method is applicable to high-dimensional data and can provide coarse-grained EP for Markov systems with unobservable states.
Collapse
Affiliation(s)
- Dong-Kyum Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Youngkyoung Bae
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sangyun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hawoong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Complex Systems, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
63
|
Teza G, Stella AL. Exact Coarse Graining Preserves Entropy Production out of Equilibrium. PHYSICAL REVIEW LETTERS 2020; 125:110601. [PMID: 32975992 DOI: 10.1103/physrevlett.125.110601] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The entropy production rate associated with broken time-reversal symmetry provides an essential characterization of nanosystems out of equilibrium, from driven colloidal particles to molecular motors. Limited access to the dynamical states is generally expected to hinder the correct estimation of this observable. Here we show how memoryless jump processes can be coarse grained, exactly preserving its average and fluctuations at stationarity. This supports univocal applicability of fluctuation theorems for entropy and allows inference of the genuine thermodynamics together with inaccessible process details.
Collapse
Affiliation(s)
- Gianluca Teza
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel and Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Attilio L Stella
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
64
|
de Oliveira MJ. Stochastic thermodynamics of systems with a continuous space of states. Phys Rev E 2020; 102:032114. [PMID: 33076017 DOI: 10.1103/physreve.102.032114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/24/2020] [Indexed: 11/07/2022]
Abstract
We analyze the stochastic thermodynamics of systems with a continuous space of states. The evolution equation, the rate of entropy production, and other results are obtained by a continuous time limit of a discrete time formulation. We point out the role of time reversal and of the dissipation part of the probability current on the production of entropy. We show that the rate of entropy production is a bilinear form in the components of the dissipation probability current with coefficients being the components of the precision matrix related to the Gaussian noise. We have also analyzed a type of noise that makes the energy function to be strictly constant along the stochastic trajectory, being appropriate to describe an isolated system. This type of noise leads to nonzero entropy production and thus to an increase of entropy in the system. This result contrasts with the invariance of the entropy predicted by the Liouville equation, which also describes an isolated system.
Collapse
Affiliation(s)
- Mário J de Oliveira
- Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
65
|
Strasberg P, Esposito M. Measurability of nonequilibrium thermodynamics in terms of the Hamiltonian of mean force. Phys Rev E 2020; 101:050101. [PMID: 32575212 DOI: 10.1103/physreve.101.050101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/22/2020] [Indexed: 11/07/2022]
Abstract
The nonequilibrium thermodynamics of an open (classical or quantum) system in strong contact with a single heat bath can be conveniently described in terms of the Hamiltonian of mean force. However, the conventional formulation is limited by the necessity to measure differences in equilibrium properties of the system-bath composite. We make use of the freedom involved in defining thermodynamic quantities, which leaves the thermodynamics unchanged, to show that the Hamiltonian of mean force can be inferred from measurements on the system alone, up to that irrelevant freedom. In doing so, we refute a key criticism expressed in the works by P. Talkner and P. Hänggi [Phys. Rev. E 94, 022143 (2016)10.1103/PhysRevE.94.022143 and arXiv:1911.11660]. We also discuss the remaining part of the criticism.
Collapse
Affiliation(s)
- Philipp Strasberg
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
66
|
Herpich T, Shayanfard K, Esposito M. Effective thermodynamics of two interacting underdamped Brownian particles. Phys Rev E 2020; 101:022116. [PMID: 32168555 DOI: 10.1103/physreve.101.022116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Starting from the stochastic thermodynamics description of two coupled underdamped Brownian particles, we showcase and compare three different coarse-graining schemes leading to an effective thermodynamic description for the first of the two particles: marginalization over one particle, bipartite structure with information flows, and the Hamiltonian of mean force formalism. In the limit of time-scale separation where the second particle with a fast relaxation time scale locally equilibrates with respect to the coordinates of the first slowly relaxing particle, the effective thermodynamics resulting from the first and third approach are shown to capture the full thermodynamics and to coincide with each other. In the bipartite approach, the slow part does not, in general, allow for an exact thermodynamic description as the entropic exchange between the particles is ignored. Physically, the second particle effectively becomes part of the heat reservoir. In the limit where the second particle becomes heavy and thus deterministic, the effective thermodynamics of the first two coarse-graining methods coincide with the full one. The Hamiltonian of mean force formalism, however, is shown to be incompatible with that limit. Physically, the second particle becomes a work source. These theoretical results are illustrated using an exactly solvable harmonic model.
Collapse
Affiliation(s)
- Tim Herpich
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Kamran Shayanfard
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
67
|
Effective Equilibrium in Out-of-Equilibrium Interacting Coupled Nanoconductors. ENTROPY 2019; 22:e22010008. [PMID: 33285784 PMCID: PMC7516514 DOI: 10.3390/e22010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 11/25/2022]
Abstract
In the present work, we study a mesoscopic system consisting of a double quantum dot in which both quantum dots or artificial atoms are electrostatically coupled. Each dot is additionally tunnel coupled to two electronic reservoirs and driven far from equilibrium by external voltage differences. Our objective is to find configurations of these biases such that the current through one of the dots vanishes. In this situation, the validity of the fluctuation–dissipation theorem and Onsager’s reciprocity relations has been established. In our analysis, we employ a master equation formalism for a minimum model of four charge states, and limit ourselves to the sequential tunneling regime. We numerically study those configurations far from equilibrium for which we obtain a stalling current. In this scenario, we explicitly verify the fluctuation–dissipation theorem, as well as Onsager’s reciprocity relations, which are originally formulated for systems in which quantum transport takes place in the linear regime.
Collapse
|
68
|
Crosato E, Prokopenko M, Spinney RE. Irreversibility and emergent structure in active matter. Phys Rev E 2019; 100:042613. [PMID: 31770893 DOI: 10.1103/physreve.100.042613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 06/10/2023]
Abstract
Active matter is rapidly becoming a key paradigm of out-of-equilibrium soft matter exhibiting complex collective phenomena, yet the thermodynamics of such systems remain poorly understood. In this article we study the dynamical irreversibility of large-scale active systems capable of motility-induced phase separation and polar alignment. We use a model with momenta in both translational and rotational degrees of freedom, revealing a hidden component not previously reported in the literature. Steady-state irreversibility is quantified at each point in the phase diagram which exhibits sharp discontinuities at phase transitions. Identification of the irreversibility in individual particles lays the groundwork for discussion of the thermodynamics of microfeatures, such as defects in the emergent structure. The interpretation of the time reversal symmetry in the dynamics of the particles is found to be crucial.
Collapse
Affiliation(s)
- Emanuele Crosato
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney NSW 2006, Australia
- CSIRO Data61, P.O. Box 76, Epping NSW 1710, Australia
| | - Mikhail Prokopenko
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney NSW 2006, Australia
| | - Richard E Spinney
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
69
|
Ehrmann A, Nguyen B, Seifert U. Interlinked GTPase cascades provide a motif for both robust switches and oscillators. J R Soc Interface 2019; 16:20190198. [PMID: 31387482 DOI: 10.1098/rsif.2019.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
GTPases regulate a wide range of cellular processes, such as intracellular vesicular transport, signal transduction and protein translation. These hydrolase enzymes operate as biochemical switches by toggling between an active guanosine triphosphate (GTP)-bound state and an inactive guanosine diphosphate (GDP)-bound state. We compare two network motifs, a single-species switch and an interlinked cascade that consists of two species coupled through positive and negative feedback loops. We find that interlinked cascades are closer to the ideal all-or-none switch and are more robust against fluctuating signals. While the single-species switch can only achieve bistability, interlinked cascades can be converted into oscillators by tuning the cofactor concentrations, which catalyse the activity of the cascade. These regimes can only be achieved with sufficient chemical driving provided by GTP hydrolysis. In this study, we present a thermodynamically consistent model that can achieve bistability and oscillations with the same feedback motif.
Collapse
Affiliation(s)
- Andreas Ehrmann
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Basile Nguyen
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
70
|
Strasberg P, Winter A. Stochastic thermodynamics with arbitrary interventions. Phys Rev E 2019; 100:022135. [PMID: 31574732 DOI: 10.1103/physreve.100.022135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 06/10/2023]
Abstract
We extend the theory of stochastic thermodynamics in three directions: (i) instead of a continuously monitored system we consider measurements only at an arbitrary set of discrete times, (ii) we allow for imperfect measurements and incomplete information in the description, and (iii) we treat arbitrary manipulations (e.g., feedback control operations) which are allowed to depend on the entire measurement record. For this purpose we define for a driven system in contact with a single heat bath the four key thermodynamic quantities-internal energy, heat, work, and entropy-along a single "trajectory" for a causal model. The first law at the trajectory level and the second law on average is verified. We highlight the special case of Bayesian or "bare" measurements (incomplete information, but no average disturbance) which allows us to compare our theory with the literature and to derive a general inequality for the estimated free energy difference in Jarzynski-type experiments. An analysis of a recent Maxwell demon experiment using real-time feedback control is also given. As a mathematical tool, we prove a classical version of Stinespring's dilation theorem, which might be of independent interest.
Collapse
Affiliation(s)
- Philipp Strasberg
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Andreas Winter
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
71
|
Gradziuk G, Mura F, Broedersz CP. Scaling behavior of nonequilibrium measures in internally driven elastic assemblies. Phys Rev E 2019; 99:052406. [PMID: 31212437 DOI: 10.1103/physreve.99.052406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 11/07/2022]
Abstract
Detecting and quantifying nonequilibrium activity is essential for studying internally driven assemblies, including synthetic active matter and complex living systems such as cells or tissue. We discuss a noninvasive approach of measuring nonequilibrium behavior based on the breaking of detailed balance. We focus on "cycling frequencies"-the average frequency with which the trajectories of pairs of degrees of freedom revolve in phase space-and explain their connection with other nonequilibrium measures, including the area enclosing rate and the entropy production rate. We test our approach on simple toy models composed of elastic networks immersed in a viscous fluid with site-dependent internal driving. We prove both numerically and analytically that the cycling frequencies obey a power law as a function of distance between the tracked degrees of freedom. Importantly, the behavior of the cycling frequencies contains information about the dimensionality of the system and the amplitude of active noise. The mapping we use in our analytical approach thus offers a convenient framework for predicting the behavior of two-point nonequilibrium measures for a given activity distribution in the network.
Collapse
Affiliation(s)
- Grzegorz Gradziuk
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Federica Mura
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| |
Collapse
|
72
|
Abstract
The Boltzmann kinetic equation is obtained from an integrodifferential master equation that describes a stochastic dynamics in phase space of an isolated thermodynamic system. The stochastic evolution yields a generation of entropy, leading to an increase of Gibbs entropy, in contrast to a Hamiltonian dynamics, described by the Liouville equation, for which the entropy is constant in time. By considering transition rates corresponding to collisions of two particles, the Boltzmann equation is attained. When the angle of the scattering produced by collisions is small, the master equation is shown to be reduced to a differential equation of the Fokker-Planck type. When the dynamics is of the Hamiltonian type, the master equation reduces to the Liouville equation. The present approach is understood as a stochastic interpretation of the reasonings employed by Maxwell and Boltzmann in the kinetic theory of gases regarding the microscopic time evolution.
Collapse
Affiliation(s)
- Mário J de Oliveira
- Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brasil
| |
Collapse
|
73
|
Manzano G, Fazio R, Roldán É. Quantum Martingale Theory and Entropy Production. PHYSICAL REVIEW LETTERS 2019; 122:220602. [PMID: 31283254 DOI: 10.1103/physrevlett.122.220602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 06/09/2023]
Abstract
We employ martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponential martingale and a purely quantum term, both obeying integral fluctuation theorems. An important consequence of this approach is the derivation of a set of genuine universal results for stopping-time and infimum statistics of stochastic entropy production. Finally, we complement the general formalism with numerical simulations of a qubit system.
Collapse
Affiliation(s)
- Gonzalo Manzano
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Rosario Fazio
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Édgar Roldán
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
| |
Collapse
|
74
|
Wolpert DH, Kolchinsky A, Owen JA. A space-time tradeoff for implementing a function with master equation dynamics. Nat Commun 2019; 10:1727. [PMID: 30988296 PMCID: PMC6465315 DOI: 10.1038/s41467-019-09542-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/15/2019] [Indexed: 11/09/2022] Open
Abstract
Master equations are commonly used to model the dynamics of physical systems, including systems that implement single-valued functions like a computer’s update step. However, many such functions cannot be implemented by any master equation, even approximately, which raises the question of how they can occur in the real world. Here we show how any function over some “visible” states can be implemented with master equation dynamics—if the dynamics exploits additional, “hidden” states at intermediate times. We also show that any master equation implementing a function can be decomposed into a sequence of “hidden” timesteps, demarcated by changes in what state-to-state transitions have nonzero probability. In many real-world situations there is a cost both for more hidden states and for more hidden timesteps. Accordingly, we derive a “space–time” tradeoff between the number of hidden states and the number of hidden timesteps needed to implement any given function. Deterministic maps from initial to final states can always be modelled using the master equation formalism, provided additional “hidden” states are available. Here, the authors demonstrate a tradeoff between the required number of such states and the number of required, suitably defined “hidden time steps”.
Collapse
Affiliation(s)
- David H Wolpert
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA. .,Arizona State University, Tempe, 85281, AZ, USA.
| | | | - Jeremy A Owen
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Tech Square, Cambridge, MA, 02139, USA
| |
Collapse
|
75
|
Abstract
We study the stochastic dynamics of infinitely many globally interacting units made of q states distributed uniformly along a ring that is externally driven. While repulsive interactions always lead to uniform occupations, attractive interactions give rise to much richer phenomena: We analytically characterize a Hopf bifurcation which separates a high-temperature regime of uniform occupations from a low-temperature one where all units coalesce into a single state. For odd q, below the critical temperature starts a synchronization regime which ends via a second phase transition at lower temperatures, while for even q this intermediate phase disappears. We find that interactions have no effects except below critical temperature for attractive interactions. A thermodynamic analysis reveals that the dissipated work is reduced in this regime, whose temperature range is shown to decrease as q increases. The q dependence of the power-efficiency trade-off is also analyzed.
Collapse
Affiliation(s)
- Tim Herpich
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
76
|
Thermodynamics of Majority-Logic Decoding in Information Erasure. ENTROPY 2019; 21:e21030284. [PMID: 33266999 PMCID: PMC7514764 DOI: 10.3390/e21030284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 01/31/2023]
Abstract
We investigate the performance of majority-logic decoding in both reversible and finite-time information erasure processes performed on macroscopic bits that contain N microscopic binary units. While we show that for reversible erasure protocols single-unit transformations are more efficient than majority-logic decoding, the latter is found to offer several benefits for finite-time erasure processes: Both the minimal erasure duration for a given erasure and the minimal erasure error for a given erasure duration are reduced, if compared to a single unit. Remarkably, the majority-logic decoding is also more efficient in both the small-erasure error and fast-erasure region. These benefits are also preserved under the optimal erasure protocol that minimizes the dissipated heat. Our work therefore shows that majority-logic decoding can lift the precision-speed-efficiency trade-off in information erasure processes.
Collapse
|
77
|
Strasberg P, Esposito M. Non-Markovianity and negative entropy production rates. Phys Rev E 2019; 99:012120. [PMID: 30780330 DOI: 10.1103/physreve.99.012120] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Indexed: 11/07/2022]
Abstract
Entropy production plays a fundamental role in nonequilibrium thermodynamics to quantify the irreversibility of open systems. Its positivity can be ensured for a wide class of setups, but the entropy production rate can become negative sometimes. This is often taken as an indicator of non-Markovianity. We make this link precise by showing under which conditions a negative entropy production rate implies non-Markovianity and when it does not. For a system coupled to a single heat bath, this can be established within a unified language for two setups: (i) the dynamics resulting from a coarse-grained description of a Markovian master equation and (ii) the classical Hamiltonian dynamics of a system coupled to a bath. The quantum version of the latter result is shown not to hold despite the fact that the integrated thermodynamic description is formally equivalent to the classical case. The instantaneous fixed point of a non-Markovian dynamics plays an important role in our study. Our key contribution is to provide a consistent theoretical framework to study the finite-time thermodynamics of a large class of dynamics with a precise link to its non-Markovianity.
Collapse
Affiliation(s)
- Philipp Strasberg
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
78
|
Abstract
Many stochastic systems in biology, physics and technology involve discrete time delays in the underlying equations of motion, stemming, e. g., from finite signal transmission times, or a time lag between signal detection and adaption of an apparatus. From a mathematical perspective, delayed systems represent a special class of non-Markovian processes with delta-peaked memory kernels. It is well established that delays can induce intriguing behaviour, such as spontaneous oscillations, or resonance phenomena resulting from the interplay between delay and noise. However, the thermodynamics of delayed stochastic systems is still widely unexplored. This is especially true for continuous systems governed by nonlinear forces, which are omnipresent in realistic situations. We here present an analytical approach for the net steady-state heat rate in classical overdamped systems subject to time-delayed feedback. We show that the feedback inevitably leads to a finite heat flow even for vanishingly small delay times, and detect the nontrivial interplay of noise and delay as the underlying reason. To illustrate this point, and to provide an understanding of the heat flow at small delay times below the velocity-relaxation timescale, we compare with the case of underdamped motion where the phenomenon of "entropy pumping" has already been established. Application to an exemplary (overdamped) bistable system reveals that the feedback induces heating as well as cooling regimes and leads to a maximum of the medium entropy production at coherence resonance conditions. These observations are, in principle, measurable in experiments involving colloidal suspensions.
Collapse
|
79
|
Salazar DSP, Macêdo AMS, Vasconcelos GL. Quantum heat distribution in thermal relaxation processes. Phys Rev E 2019; 99:022133. [PMID: 30934239 DOI: 10.1103/physreve.99.022133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 06/09/2023]
Abstract
We analyze the heat exchange distribution of open quantum systems undergoing a thermal relaxation process with a time-dependent effective temperature. We show that such processes arise, for example, if the dynamics maximizes the entropy production. Using a two-point measurement scheme, we find an expression for the heat moment generating function that depends solely on the system's partition function and on the thermalization function (i.e., the law of cooling) describing the effective temperature. Applications include the relaxation of free bosonic and fermionic modes, for which closed-form expressions for the time-dependent heat distribution function are derived. Multiple free modes with arbitrary dispersion relations are also briefly discussed. In the semiclassical limit our formula agrees with previous results of the literature for the heat distribution of an optically trapped nanoscopic particle far from equilibrium.
Collapse
Affiliation(s)
- D S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| | - A M S Macêdo
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - G L Vasconcelos
- Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba, Paraná, Brazil
| |
Collapse
|
80
|
Ehrich J, Kahlen M. Approximating microswimmer dynamics by active Brownian motion: Energetics and efficiency. Phys Rev E 2019; 99:012118. [PMID: 30780203 DOI: 10.1103/physreve.99.012118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 06/09/2023]
Abstract
We consider the dynamics of a microswimmer and show that they can be approximated by active Brownian motion. The swimmer is modeled by coupled overdamped Langevin equations with periodic driving. We compare the energy dissipation of the real swimmer to that of the active Brownian motion model, finding that the latter can massively underestimate the complete dissipation. This discrepancy is related to the inability to infer the full dissipation from partial observation of the complete system. We introduce an efficiency that measures how much of the dissipated energy is spent on forward propulsion.
Collapse
Affiliation(s)
- Jannik Ehrich
- Universität Oldenburg, Institut für Physik, 26111 Oldenburg, Germany
| | - Marcel Kahlen
- Universität Oldenburg, Institut für Physik, 26111 Oldenburg, Germany
| |
Collapse
|
81
|
Shankar S, Marchetti MC. Hidden entropy production and work fluctuations in an ideal active gas. Phys Rev E 2018; 98:020604. [PMID: 30253539 DOI: 10.1103/physreve.98.020604] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Indexed: 11/07/2022]
Abstract
Collections of self-propelled particles that move persistently by continuously consuming free energy are a paradigmatic example of active matter. In these systems, unlike Brownian "hot colloids," the breakdown of detailed balance yields a continuous production of entropy at steady state, even for an ideal active gas. We quantify the irreversibility for a noninteracting active particle in two dimensions by treating both conjugated and time-reversed dynamics. By starting with underdamped dynamics, we identify a hidden rate of entropy production required to maintain persistence and prevent the rapidly relaxing momenta from thermalizing, even in the limit of very large friction. Additionally, comparing two popular models of self-propulsion with identical dissipation on average, we find that the fluctuations and large deviations in work done are markedly different, providing thermodynamic insight into the varying extents to which macroscopically similar active matter systems may depart from equilibrium.
Collapse
Affiliation(s)
- Suraj Shankar
- Physics Department and Syracuse Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA.,and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - M Cristina Marchetti
- Physics Department and Syracuse Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA.,and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
82
|
Nakayama Y, Kawaguchi K, Nakagawa N. Unattainability of Carnot efficiency in thermal motors: Coarse graining and entropy production of Feynman-Smoluchowski ratchets. Phys Rev E 2018; 98:022102. [PMID: 30253614 DOI: 10.1103/physreve.98.022102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Indexed: 11/07/2022]
Abstract
We revisit and analyze the thermodynamic efficiency of the Feynman-Smoluchowski (FS) ratchet, a classical thought experiment describing an autonomous heat-work converter. Starting from the full kinetics of the FS ratchet and deriving the exact forms of the hidden dissipations resulting from coarse graining, we restate the historical controversy over its thermodynamic efficiency. The existence of hidden entropy productions implies that the standard framework of stochastic thermodynamics applied to the coarse-grained descriptions fails in capturing the dissipative feature of the system. In response to this problem, we explore an extended framework of stochastic thermodynamics to reconstruct the hidden entropy production from the coarse-grained dynamics. The approach serves as a key example of how we can systematically address the problem of thermodynamic efficiency in a multivariable fluctuating nonequilibrium system.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
| | - Kyogo Kawaguchi
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoko Nakagawa
- Department of Physics, Ibaraki University, Mito 310-8512, Japan
| |
Collapse
|
83
|
Detailed Fluctuation Theorems: A Unifying Perspective. ENTROPY 2018; 20:e20090635. [PMID: 33265724 PMCID: PMC7845773 DOI: 10.3390/e20090635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 11/18/2022]
Abstract
We present a general method to identify an arbitrary number of fluctuating quantities which satisfy a detailed fluctuation theorem for all times within the framework of time-inhomogeneous Markovian jump processes. In doing so, we provide a unified perspective on many fluctuation theorems derived in the literature. By complementing the stochastic dynamics with a thermodynamic structure (i.e., using stochastic thermodynamics), we also express these fluctuating quantities in terms of physical observables.
Collapse
|
84
|
Yang SX, Ge H. Decomposition of the entropy production rate and nonequilibrium thermodynamics of switching diffusion processes. Phys Rev E 2018; 98:012418. [PMID: 30110804 DOI: 10.1103/physreve.98.012418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 12/15/2022]
Abstract
A switching diffusion process (SDP) is a widely used stochastic model in physics and biology, especially for molecular motors that exhibit a discrete internal chemical kinetics as well as a continuous external mechanical motion. The nonequilibrium thermodynamics of switching diffusion processes has not been extensively studied yet. In the present paper, we propose the decomposition of the entropy production rate in one-dimensional SDPs, based on the flux decomposition. However, similar decompositions of the housekeeping heat dissipation rate and free energy dissipation rate cannot guarantee the non-negativity of each decomposed component. Hence, we modify this decomposition with the flow of exponential relative information under steady-state fluxes, resulting in another decomposition with all non-negative components. Furthermore, we also provide the nonequilibrium thermodynamics of one-dimensional SDPs under the perspectives of coarse -graining and exchange of information between the chemical kinetics and mechanical motion, resulting in several other decompositions of entropy production rate. Finally, we generalize all the results to high-dimensional SDPs with a more general mathematical treatment.
Collapse
Affiliation(s)
- Shi-Xian Yang
- School of Mathematics and Statistics, Chongqing University, Chongqing 400044, China
| | - Hao Ge
- Beijing International Center for Mathematical Research (BICMR) and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
85
|
Nguyen B, Seifert U, Barato AC. Phase transition in thermodynamically consistent biochemical oscillators. J Chem Phys 2018; 149:045101. [PMID: 30068193 DOI: 10.1063/1.5032104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Biochemical oscillations are ubiquitous in living organisms. In an autonomous system, not influenced by an external signal, they can only occur out of equilibrium. We show that they emerge through a generic nonequilibrium phase transition, with a characteristic qualitative behavior at criticality. The control parameter is the thermodynamic force which must be above a certain threshold for the onset of biochemical oscillations. This critical behavior is characterized by the thermodynamic flux associated with the thermodynamic force, its diffusion coefficient, and the stationary distribution of the oscillating chemical species. We discuss metrics for the precision of biochemical oscillations by comparing two observables, the Fano factor associated with the thermodynamic flux and the number of coherent oscillations. Since the Fano factor can be small even when there are no biochemical oscillations, we argue that the number of coherent oscillations is more appropriate to quantify the precision of biochemical oscillations. Our results are obtained with three thermodynamically consistent versions of known models: the Brusselator, the activator-inhibitor model, and a model for KaiC oscillations.
Collapse
Affiliation(s)
- Basile Nguyen
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Andre C Barato
- Max Planck Institute for the Physics of Complex Systems, Nöthnizer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
86
|
Tomé T, de Oliveira MJ. Stochastic thermodynamics and entropy production of chemical reaction systems. J Chem Phys 2018; 148:224104. [PMID: 29907050 DOI: 10.1063/1.5037045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.
Collapse
Affiliation(s)
- Tânia Tomé
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| | - Mário J de Oliveira
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
87
|
Gnesotto FS, Mura F, Gladrow J, Broedersz CP. Broken detailed balance and non-equilibrium dynamics in living systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:066601. [PMID: 29504517 DOI: 10.1088/1361-6633/aab3ed] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.
Collapse
Affiliation(s)
- F S Gnesotto
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | | | | | | |
Collapse
|
88
|
Lee J. Derivation of Markov processes that violate detailed balance. Phys Rev E 2018; 97:032110. [PMID: 29776034 DOI: 10.1103/physreve.97.032110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 11/07/2022]
Abstract
Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a stochastic process must obey the condition of detailed balance. However, cyclic Markov processes that do not admit equilibrium distributions with detailed balance are often used to model systems driven out of equilibrium by external agents. I show that for a Markov model without detailed balance, an extended Markov model can be constructed, which explicitly includes the degrees of freedom for the driving agent and satisfies the detailed balance condition. The original cyclic Markov model for the driven system is then recovered as an approximation at early times by summing over the degrees of freedom for the driving agent. I also show that the widely accepted expression for the entropy production in a cyclic Markov model is actually a time derivative of an entropy component in the extended model. Further, I present an analytic expression for the entropy component that is hidden in the cyclic Markov model.
Collapse
Affiliation(s)
- Julian Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
89
|
Borlenghi S, Iubini S, Lepri S, Fransson J. Entropy production for complex Langevin equations. Phys Rev E 2018; 96:012150. [PMID: 29347077 DOI: 10.1103/physreve.96.012150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 11/07/2022]
Abstract
We study irreversible processes for nonlinear oscillators networks described by complex-valued Langevin equations that account for coupling to different thermochemical baths. Dissipation is introduced via non-Hermitian terms in the Hamiltonian of the model. We apply the stochastic thermodynamics formalism to compute explicit expressions for the entropy production rates. We discuss in particular the nonequilibrium steady states of the network characterized by a constant production rate of entropy and flows of energy and particle currents. For two specific examples, a one-dimensional chain and a dimer, numerical calculations are presented. The role of asymmetric coupling among the oscillators on the entropy production is illustrated.
Collapse
Affiliation(s)
- Simone Borlenghi
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Stefano Iubini
- Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1 I-50019, Sesto Fiorentino, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1 I-50019, Sesto Fiorentino, Italy
| | - Stefano Lepri
- Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1 I-50019, Sesto Fiorentino, Italy.,Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10 I-50019 Sesto Fiorentino, Italy
| | - Jonas Fransson
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| |
Collapse
|
90
|
Introduction to Quantum Thermodynamics: History and Prospects. FUNDAMENTAL THEORIES OF PHYSICS 2018. [DOI: 10.1007/978-3-319-99046-0_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
91
|
Polettini M, Esposito M. Effective Thermodynamics for a Marginal Observer. PHYSICAL REVIEW LETTERS 2017; 119:240601. [PMID: 29286715 DOI: 10.1103/physrevlett.119.240601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Thermodynamics is usually formulated on the presumption that the observer has complete information about the system he or she deals with: no parasitic current, exact evaluation of the forces that drive the system. For example, the acclaimed fluctuation relation (FR), relating the probability of time-forward and time-reversed trajectories, assumes that the measurable transitions suffice to characterize the process as Markovian (in our case, a continuous-time jump process). However, most often the observer only measures a marginal current. We show that he or she will nonetheless produce an effective description that does not dispense with the fundamentals of thermodynamics, including the FR and the 2nd law. Our results stand on the mathematical construction of a hidden time reversal of the dynamics, and on the physical requirement that the observed current only accounts for a single transition in the configuration space of the system. We employ a simple abstract example to illustrate our results and to discuss the feasibility of generalizations.
Collapse
Affiliation(s)
- Matteo Polettini
- Physics and Materials Science Research Unit, University of Luxembourg, Campus Limpertsberg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Physics and Materials Science Research Unit, University of Luxembourg, Campus Limpertsberg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
92
|
Endres RG. Entropy production selects nonequilibrium states in multistable systems. Sci Rep 2017; 7:14437. [PMID: 29089531 PMCID: PMC5663838 DOI: 10.1038/s41598-017-14485-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/06/2017] [Indexed: 11/17/2022] Open
Abstract
Far-from-equilibrium thermodynamics underpins the emergence of life, but how has been a long-outstanding puzzle. Best candidate theories based on the maximum entropy production principle could not be unequivocally proven, in part due to complicated physics, unintuitive stochastic thermodynamics, and the existence of alternative theories such as the minimum entropy production principle. Here, we use a simple, analytically solvable, one-dimensional bistable chemical system to demonstrate the validity of the maximum entropy production principle. To generalize to multistable stochastic system, we use the stochastic least-action principle to derive the entropy production and its role in the stability of nonequilibrium steady states. This shows that in a multistable system, all else being equal, the steady state with the highest entropy production is favored, with a number of implications for the evolution of biological, physical, and geological systems.
Collapse
Affiliation(s)
- Robert G Endres
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom.
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
93
|
Spontaneous fine-tuning to environment in many-species chemical reaction networks. Proc Natl Acad Sci U S A 2017; 114:7565-7570. [PMID: 28674005 DOI: 10.1073/pnas.1700617114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A chemical mixture that continually absorbs work from its environment may exhibit steady-state chemical concentrations that deviate from their equilibrium values. Such behavior is particularly interesting in a scenario where the environmental work sources are relatively difficult to access, so that only the proper orchestration of many distinct catalytic actors can power the dissipative flux required to maintain a stable, far-from-equilibrium steady state. In this article, we study the dynamics of an in silico chemical network with random connectivity in an environment that makes strong thermodynamic forcing available only to rare combinations of chemical concentrations. We find that the long-time dynamics of such systems are biased toward states that exhibit a fine-tuned extremization of environmental forcing.
Collapse
|
94
|
Strasberg P, Esposito M. Stochastic thermodynamics in the strong coupling regime: An unambiguous approach based on coarse graining. Phys Rev E 2017; 95:062101. [PMID: 28709214 DOI: 10.1103/physreve.95.062101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Indexed: 05/10/2023]
Abstract
We consider a classical and possibly driven composite system X⊗Y weakly coupled to a Markovian thermal reservoir R so that an unambiguous stochastic thermodynamics ensues for X⊗Y. This setup can be equivalently seen as a system X strongly coupled to a non-Markovian reservoir Y⊗R. We demonstrate that only in the limit where the dynamics of Y is much faster than X, our unambiguous expressions for thermodynamic quantities, such as heat, entropy, or internal energy, are equivalent to the strong coupling expressions recently obtained in the literature using the Hamiltonian of mean force. By doing so, we also significantly extend these results by formulating them at the level of instantaneous rates and by allowing for time-dependent couplings between X and its environment. Away from the limit where Y evolves much faster than X, previous approaches fail to reproduce the correct results from the original unambiguous formulation, as we illustrate numerically for an underdamped Brownian particle coupled strongly to a non-Markovian reservoir.
Collapse
Affiliation(s)
- Philipp Strasberg
- Complex Systems and Statistical Mechanics, Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
95
|
Heat, temperature and Clausius inequality in a model for active Brownian particles. Sci Rep 2017; 7:46496. [PMID: 28429787 PMCID: PMC5399351 DOI: 10.1038/srep46496] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/17/2015] [Indexed: 11/20/2022] Open
Abstract
Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system’s Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production.
Collapse
|
96
|
|
97
|
Polettini M, Bulnes-Cuetara G, Esposito M. Conservation laws and symmetries in stochastic thermodynamics. Phys Rev E 2016; 94:052117. [PMID: 27967081 DOI: 10.1103/physreve.94.052117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Indexed: 06/06/2023]
Abstract
Phenomenological nonequilibrium thermodynamics describes how fluxes of conserved quantities, such as matter, energy, and charge, flow from outer reservoirs across a system and how they irreversibly degrade from one form to another. Stochastic thermodynamics is formulated in terms of probability fluxes circulating in the system's configuration space. The consistency of the two frameworks is granted by the condition of local detailed balance, which specifies the amount of physical quantities exchanged with the reservoirs during single transitions between configurations. We demonstrate that the topology of the configuration space crucially determines the number of independent thermodynamic affinities (forces) that the reservoirs generate across the system and provides a general algorithm that produces the fundamental affinities and their conjugate currents contributing to the total dissipation, based on the interplay between macroscopic conservations laws for the currents and microscopic symmetries of the affinities.
Collapse
Affiliation(s)
- Matteo Polettini
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, Campus Limpertsberg, 162a avenue de la Faïencerie, L-1511 Luxembourg (G. D. Luxembourg)
| | - Gregory Bulnes-Cuetara
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, Campus Limpertsberg, 162a avenue de la Faïencerie, L-1511 Luxembourg (G. D. Luxembourg)
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, Campus Limpertsberg, 162a avenue de la Faïencerie, L-1511 Luxembourg (G. D. Luxembourg)
| |
Collapse
|
98
|
Altaner B, Polettini M, Esposito M. Fluctuation-Dissipation Relations Far from Equilibrium. PHYSICAL REVIEW LETTERS 2016; 117:180601. [PMID: 27835007 DOI: 10.1103/physrevlett.117.180601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 06/06/2023]
Abstract
Near equilibrium, where all currents of a system vanish on average, the fluctuation-dissipation relation (FDR) connects a current's spontaneous fluctuations with its response to perturbations of the conjugate thermodynamic force. Out of equilibrium, fluctuation-response relations generally involve additional nondissipative contributions. Here, in the framework of stochastic thermodynamics, we show that an equilibriumlike FDR holds for internally equilibrated currents, if the perturbing conjugate force only affects the microscopic transitions that contribute to the current. We discuss the physical requirements for the validity of our result and apply it to nanosized electronic devices.
Collapse
Affiliation(s)
- Bernhard Altaner
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg 1511, Luxembourg
| | - Matteo Polettini
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg 1511, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg 1511, Luxembourg
| |
Collapse
|
99
|
Schaller G, Giusteri GG, Celardo GL. Collective couplings: Rectification and supertransmittance. Phys Rev E 2016; 94:032135. [PMID: 27739729 DOI: 10.1103/physreve.94.032135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 06/06/2023]
Abstract
We investigate heat transport between two thermal reservoirs that are coupled via a large spin composed of N identical two-level systems. One coupling implements the dissipative Dicke superradiance. The other coupling is locally of the pure-dephasing type and requires to go beyond the standard weak-coupling limit by employing a Bogoliubov mapping in the corresponding reservoir. After the mapping, the large spin is coupled to a collective mode with the original pure-dephasing interaction, but the collective mode is dissipatively coupled to the residual oscillators. Treating the large spin and the collective mode as the system, a standard master equation approach is now able to capture the energy transfer between the two reservoirs. Assuming fast relaxation of the collective mode, we derive a coarse-grained rate equation for the large spin only and discuss how the original Dicke superradiance is affected by the presence of the additional reservoir. Our main finding is a cooperatively enhanced rectification effect due to the interplay of supertransmittant heat currents (scaling quadratically with N) and the asymmetric coupling to both reservoirs. For large N, the system can thus significantly amplify current asymmetries under bias reversal, functioning as a heat diode. We also briefly discuss the case when the couplings of the collective spin are locally dissipative, showing that the heat-diode effect is still present.
Collapse
Affiliation(s)
- Gernot Schaller
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - Giulio Giuseppe Giusteri
- Mathematical Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
- Dipartimento di Matematica e Fisica and ILAMP, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - Giuseppe Luca Celardo
- Dipartimento di Matematica e Fisica and ILAMP, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| |
Collapse
|
100
|
Spinney RE, Lizier JT, Prokopenko M. Transfer entropy in physical systems and the arrow of time. Phys Rev E 2016; 94:022135. [PMID: 27627274 DOI: 10.1103/physreve.94.022135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 11/07/2022]
Abstract
Recent developments have cemented the realization that many concepts and quantities in thermodynamics and information theory are shared. In this paper, we consider a highly relevant quantity in information theory and complex systems, the transfer entropy, and explore its thermodynamic role by considering the implications of time reversal upon it. By doing so we highlight the role of information dynamics on the nuanced question of observer perspective within thermodynamics by relating the temporal irreversibility in the information dynamics to the configurational (or spatial) resolution of the thermodynamics. We then highlight its role in perhaps the most enduring paradox in modern physics, the manifestation of a (thermodynamic) arrow of time. We find that for systems that process information such as those undergoing feedback, a robust arrow of time can be formulated by considering both the apparent physical behavior which leads to conventional entropy production and the information dynamics which leads to a quantity we call the information theoretic arrow of time. We also offer an interpretation in terms of optimal encoding of observed physical behavior.
Collapse
Affiliation(s)
- Richard E Spinney
- Centre for Complex Systems, The University of Sydney, Sydney, New South Wales, Australia, 2006
| | - Joseph T Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, New South Wales, Australia, 2006
| | - Mikhail Prokopenko
- Centre for Complex Systems, The University of Sydney, Sydney, New South Wales, Australia, 2006
| |
Collapse
|