51
|
Wang X, Wu J, Shu G, Li Y. Punishment based on public benefit fund significantly promotes cooperation. PLoS One 2014; 9:e105126. [PMID: 25137051 PMCID: PMC4138163 DOI: 10.1371/journal.pone.0105126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
In prisoner's dilemma game (shortly, PD game), punishment is most frequently used to promote cooperation. However, outcome varies when different punishment approaches are applied. Here the PD game is studied on a square lattice when different punishment patterns are adopted. As is known to all, tax system, a common tool to adjust the temperature of the economy, is widely used in human society. Inspired by this philosophy, players in this study would pay corresponding taxes in accordance with their payoff level. In this way, public benefit fund is established consequently and it would be utilized to punish defectors. There are two main methods for punishing: slight intensity of punishment (shortly, SLP) and severe intensity of punishment (shortly, SEP). When the totaling of public benefit fund keeps relatively fixed, SLP extends further, which means more defectors would be punished; by contrast, SEP has a smaller coverage. It is of interest to verify whether these two measures can promote cooperation and which one is more efficient. Simulate results reveal that both of them can promote cooperation remarkably. Specifically speaking, SLP shows constant advantage from the point of view either of fractions of cooperation or average payoff.
Collapse
Affiliation(s)
- Xiuling Wang
- School of Computer and Information Science, Southwest University, Chongqing, China
| | - Jie Wu
- School of Computer and Information Science, Southwest University, Chongqing, China
| | - Gang Shu
- School of Physical Science and Technology, Southwest University, Chongqing, China
| | - Ya Li
- School of Computer and Information Science, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
52
|
Abstract
The quality of data plays an important role in business analysis and decision making, and data accuracy is an important aspect in data quality. Thus one necessary task for data quality management is to evaluate the accuracy of the data. And in order to solve the problem that the accuracy of the whole data set is low while a useful part may be high, it is also necessary to evaluate the accuracy of the query results, called relative accuracy. However, as far as we know, neither measure nor effective methods for the accuracy evaluation methods are proposed. Motivated by this, for relative accuracy evaluation, we propose a systematic method. We design a relative accuracy evaluation framework for relational databases based on a new metric to measure the accuracy using statistics. We apply the methods to evaluate the precision and recall of basic queries, which show the result's relative accuracy. We also propose the method to handle data update and to improve accuracy evaluation using functional dependencies. Extensive experimental results show the effectiveness and efficiency of our proposed framework and algorithms.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hongzhi Wang
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- * E-mail:
| | - Zhongsheng Yang
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jianzhong Li
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
53
|
Tanimoto J. Impact of deterministic and stochastic updates on network reciprocity in the prisoner's dilemma game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022105. [PMID: 25215687 DOI: 10.1103/physreve.90.022105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Indexed: 06/03/2023]
Abstract
In 2 × 2 prisoner's dilemma games, network reciprocity is one mechanism for adding social viscosity, which leads to cooperative equilibrium. This study introduced an intriguing framework for the strategy update rule that allows any combination of a purely deterministic method, imitation max (IM), and a purely probabilistic one, pairwise Fermi (Fermi-PW). A series of simulations covering the whole range from IM to Fermi-PW reveals that, as a general tendency, the larger fractions of stochastic updating reduce network reciprocity, so long as the underlying lattice contains no noise in the degree of distribution. However, a small amount of stochastic flavor added to an otherwise perfectly deterministic update rule was actually found to enhance network reciprocity. This occurs because a subtle stochastic effect in the update rule improves the evolutionary trail in games having more stag-hunt-type dilemmas, although the same stochastic effect degenerates evolutionary trails in games having more chicken-type dilemmas. We explain these effects by dividing evolutionary trails into the enduring and expanding periods defined by Shigaki et al. [Phys. Rev. E 86, 031141 (2012)].
Collapse
Affiliation(s)
- Jun Tanimoto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
54
|
Zhang HF, Wu ZX, Tang M, Lai YC. Effects of behavioral response and vaccination policy on epidemic spreading--an approach based on evolutionary-game dynamics. Sci Rep 2014; 4:5666. [PMID: 25011424 PMCID: PMC4092348 DOI: 10.1038/srep05666] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/23/2014] [Indexed: 12/04/2022] Open
Abstract
How effective are governmental incentives to achieve widespread vaccination coverage so as to prevent epidemic outbreak? The answer largely depends on the complex interplay among the type of incentive, individual behavioral responses, and the intrinsic epidemic dynamics. By incorporating evolutionary games into epidemic dynamics, we investigate the effects of two types of incentives strategies: partial-subsidy policy in which certain fraction of the cost of vaccination is offset, and free-subsidy policy in which donees are randomly selected and vaccinated at no cost. Through mean-field analysis and computations, we find that, under the partial-subsidy policy, the vaccination coverage depends monotonically on the sensitivity of individuals to payoff difference, but the dependence is non-monotonous for the free-subsidy policy. Due to the role models of the donees for relatively irrational individuals and the unchanged strategies of the donees for rational individuals, the free-subsidy policy can in general lead to higher vaccination coverage. Our findings indicate that any disease-control policy should be exercised with extreme care: its success depends on the complex interplay among the intrinsic mathematical rules of epidemic spreading, governmental policies, and behavioral responses of individuals.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- School of Mathematical Science, Anhui University, Hefei 230039, P. R. China
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
- Department of Communication Engineering, North University of China, Taiyuan, Shan'xi 030051, P. R. China
| | - Zhi-Xi Wu
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou 730000, China
| | - Ming Tang
- Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
55
|
Role of investment heterogeneity in the cooperation on spatial public goods game. PLoS One 2014; 9:e91012. [PMID: 24632779 PMCID: PMC3954582 DOI: 10.1371/journal.pone.0091012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022] Open
Abstract
Public cooperation plays a significant role in the survival and maintenance of biological species, to elucidate its origin thus becomes an interesting question from various disciplines. Through long-term development, the public goods game has proven to be a useful tool, where cooperator making contribution can beat again the free-rides. Differentiating from the traditional homogeneous investment, individual trend of making contribution is more likely affected by the investment level of his neighborhood. Based on this fact, we here investigate the impact of heterogeneous investment on public cooperation, where the investment sum is mapped to the proportion of cooperators determined by parameter α. Interestingly, we find, irrespective of interaction networks, that the increment of α (increment of heterogeneous investment) is beneficial for promoting cooperation and even guarantees the complete cooperation dominance under weak replication factor. While this promotion effect can be attributed to the formation of more robust cooperator clusters and shortening END period. Moreover, we find that this simple mechanism can change the potential interaction network, which results in the change of phase diagrams. We hope that our work may shed light on the understanding of the cooperative behavior in other social dilemmas.
Collapse
|
56
|
Tang C, Wang Z, Li X. Moderate intra-group bias maximizes cooperation on interdependent populations. PLoS One 2014; 9:e88412. [PMID: 24533084 PMCID: PMC3922813 DOI: 10.1371/journal.pone.0088412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 11/18/2022] Open
Abstract
Evolutionary game theory on spatial structures has received increasing attention during the past decades. However, the majority of these achievements focuses on single and static population structures, which is not fully consistent with the fact that real structures are composed of many interactive groups. These groups are interdependent on each other and present dynamical features, in which individuals mimic the strategy of neighbors and switch their partnerships continually. It is however unclear how the dynamical and interdependent interactions among groups affect the evolution of collective behaviors. In this work, we employ the prisoner's dilemma game to investigate how the dynamics of structure influences cooperation on interdependent populations, where populations are represented by group structures. It is found that the more robust the links between cooperators (or the more fragile the links between cooperators and defectors), the more prevalent of cooperation. Furthermore, theoretical analysis shows that the intra-group bias can favor cooperation, which is only possible when individuals are likely to attach neighbors within the same group. Yet, interestingly, cooperation can be even inhibited for large intra-group bias, allowing the moderate intra-group bias maximizes the cooperation level.
Collapse
Affiliation(s)
- Changbing Tang
- Adaptive Networks and Control Lab, Department of Electronic Engineering, Fudan University, Shanghai, PR China
| | - Zhen Wang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Center for Nonlinear Studies and the Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex systems (Hong Kong), Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xiang Li
- Adaptive Networks and Control Lab, Department of Electronic Engineering, Fudan University, Shanghai, PR China
| |
Collapse
|