51
|
Nicolas A, Barrat JL, Rottler J. Effects of Inertia on the Steady-Shear Rheology of Disordered Solids. PHYSICAL REVIEW LETTERS 2016; 116:058303. [PMID: 26894739 DOI: 10.1103/physrevlett.116.058303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 06/05/2023]
Abstract
We study the finite-shear-rate rheology of disordered solids by means of molecular dynamics simulations in two dimensions. By systematically varying the damping strength ζ in the low-temperature limit, we identify two well-defined flow regimes, separated by a thin (temperature-dependent) crossover region. In the overdamped regime, the athermal rheology is governed by the competition between elastic forces and viscous forces, whose ratio gives the Weissenberg number Wi∝ζγ[over ˙]; the macroscopic stress Σ follows the frequently encountered Herschel-Bulkley law Σ=Σ_{0}+ksqrt[Wi], with yield stress Σ_{0}>0. In the underdamped (inertial) regime, dramatic changes in the rheology are observed for low damping: the flow curve becomes nonmonotonic. This change is not caused by longer-lived correlations in the particle dynamics at lower damping; instead, for weak dissipation, the sample heats up considerably due to, and in proportion to, the driving. By thermostating more or less underdamped systems, we are able to link quantitatively the rheology to the kinetic temperature and the shear rate, rescaled with Einstein's vibration frequency.
Collapse
Affiliation(s)
| | | | - Jörg Rottler
- Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
52
|
Karimi K, Barrat JL. Role of inertia in the rheology of amorphous systems: A finite-element-based elastoplastic model. Phys Rev E 2016; 93:022904. [PMID: 26986396 DOI: 10.1103/physreve.93.022904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 06/05/2023]
Abstract
A simple finite-element analysis with varying damping strength is used to model the athermal shear rheology of densely packed glassy systems at a continuum level. We focus on the influence of dissipation on bulk rheological properties. Our numerical studies, done over a wide range of damping coefficients, identify two well-separated rheological regimes along with a crossover region controlled by a critical damping. In the overdamped limit, inertial effects are negligible and the rheological response is well described by the commonly observed Herschel-Bulkley equation. In stark contrast, inertial vibrations in the underdamped regime prompt a significant drop in the mean-stress level, leading to a nonmonotonic constitutive relation. The observed negative slope in the flow curve, which is a signature of mechanical instability and thus permanent shear banding, arises from the sole influence of inertia, in qualitative agreement with the recent molecular dynamics study of Nicolas et al., Phys. Rev. Lett. 116, 058303 (2016).
Collapse
Affiliation(s)
- Kamran Karimi
- Université Grenoble Alpes and CNRS, LiPhy, F-38000 Grenoble, France
| | | |
Collapse
|
53
|
Benzi R, Sbragaglia M, Bernaschi M, Succi S, Toschi F. Cooperativity flows and shear-bandings: a statistical field theory approach. SOFT MATTER 2016; 12:514-530. [PMID: 26486875 DOI: 10.1039/c5sm01862e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cooperativity effects have been proposed to explain the non-local rheology in the dynamics of soft jammed systems. Based on the analysis of the free-energy model proposed by L. Bocquet, A. Colin and A. Ajdari, Phys. Rev. Lett., 2009, 103, 036001, we show that cooperativity effects resulting from the non-local nature of the fluidity (inverse viscosity) are intimately related to the emergence of shear-banding configurations. This connection materializes through the onset of inhomogeneous compact solutions (compactons), wherein the fluidity is confined to finite-support subregions of the flow and strictly zero elsewhere. The compacton coexistence with regions of zero fluidity ("non-flowing vacuum") is shown to be stabilized by the presence of mechanical noise, which ultimately shapes up the equilibrium distribution of the fluidity field, the latter acting as an order parameter for the flow-noflow transitions occurring in the material.
Collapse
Affiliation(s)
- R Benzi
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - M Sbragaglia
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - M Bernaschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - S Succi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - F Toschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy and Department of Physics and Department of Mathematics and Computer Science and J. M. Burgerscentrum, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| |
Collapse
|
54
|
Priezjev NV. The effect of a reversible shear transformation on plastic deformation of an amorphous solid. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:435002. [PMID: 26416789 DOI: 10.1088/0953-8984/27/43/435002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Langevin dynamics simulations are performed to investigate the plastic response of a model glass to a local shear transformation in a quiescent system. The deformation of the material is induced by a spherical inclusion that is gradually strained into an ellipsoid of the same volume and then reverted back into the sphere. We show that the number of cage-breaking events increases with increasing strain amplitude of the shear transformation. The results of numerical simulations indicate that the density of cage jumps is larger in the cases of weak damping or slow shear transformation. Remarkably, we also found that, for a given strain amplitude, the peak value of the density profiles is a function of the ratio of the damping coefficient and the time scale of the shear transformation.
Collapse
Affiliation(s)
- Nikolai V Priezjev
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
55
|
Lin J, Gueudré T, Rosso A, Wyart M. Criticality in the Approach to Failure in Amorphous Solids. PHYSICAL REVIEW LETTERS 2015; 115:168001. [PMID: 26550903 DOI: 10.1103/physrevlett.115.168001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 06/05/2023]
Abstract
Failure of amorphous solids is fundamental to various phenomena, including landslides and earthquakes. Recent experiments indicate that highly plastic regions form elongated structures that are especially apparent near the maximal shear stress Σmax where failure occurs. This observation suggested that Σmax acts as a critical point where the length scale of those structures diverges, possibly causing macroscopic transient shear bands. Here, we argue instead that the entire solid phase (Σ<Σmax) is critical, that plasticity always involves system-spanning events, and that their magnitude diverges at Σmax independently of the presence of shear bands. We relate the statistics and fractal properties of these rearrangements to an exponent θ that captures the stability of the material, which is observed to vary continuously with stress, and we confirm our predictions in elastoplastic models.
Collapse
Affiliation(s)
- Jie Lin
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| | - Thomas Gueudré
- DISAT, Politecnico Corso Duca degli Abruzzi, I-10129 Torino, Italy
| | - Alberto Rosso
- Laboratoire de Physique Théorique et Modèles Statistiques (UMR CNRS 8626), Université de Paris-Sud, Orsay Cedex 91405, France
| | - Matthieu Wyart
- Institute of Theoretical Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
56
|
Puosi F, Olivier J, Martens K. Probing relevant ingredients in mean-field approaches for the athermal rheology of yield stress materials. SOFT MATTER 2015; 11:7639-7647. [PMID: 26294288 DOI: 10.1039/c5sm01694k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Although the notion of mechanical noise is expected to play a key role in the non-linear rheology of athermally sheared amorphous systems, its characterization has so far remained elusive. Here, we show using molecular dynamic simulations that in spite of the presence of strong spatio-temporal correlations in the system, the local stress exhibits normal diffusion under the effect of the mechanical noise in the finite driving regime. The diffusion constant appears to be proportional to the mean plastic activity. Our data suggests that the corresponding proportionality constant is density independent, and can be directly related to the specific form of the rheological flow curve, pointing the way to a generic way of modeling mechanical noise in mean-field equations.
Collapse
Affiliation(s)
- Francesco Puosi
- Laboratoire de Physique de l'École Normale Supérieure de Lyon, Université de Lyon, CNRS, 46 Allée d'Italie, 69364 Lyon cédex 07, France.
| | | | | |
Collapse
|
57
|
Langer JS. Shear-transformation-zone theory of yielding in athermal amorphous materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012318. [PMID: 26274172 DOI: 10.1103/physreve.92.012318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. In particular, for realistic many-body models with short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.
Collapse
Affiliation(s)
- J S Langer
- Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
| |
Collapse
|
58
|
|
59
|
Lerner E, Bailey NP, Dyre JC. Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052304. [PMID: 25493793 DOI: 10.1103/physreve.90.052304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 06/04/2023]
Abstract
Athermal steady-state plastic flows were simulated for the Kob-Andersen binary Lennard-Jones system and its repulsive version in which the sign of the attractive terms is changed to a plus. Properties evaluated include the distributions of energy drops, stress drops, and strain intervals between the flow events. We show that simulations at a single density in conjunction with an equilibrium-liquid simulation at the same density allow one to predict the plastic flow-event statistics at other densities. This is done by applying the recently established "hidden scale invariance" of simple liquids to the glass phase. The resulting scaling of flow-event properties reveals quasiuniversality, i.e., that the probability distributions of energy drops, stress drops, and strain intervals in properly reduced units are virtually independent of the microscopic pair potentials.
Collapse
Affiliation(s)
- Edan Lerner
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003
| | - Nicholas P Bailey
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
60
|
Lin J, Lerner E, Rosso A, Wyart M. Scaling description of the yielding transition in soft amorphous solids at zero temperature. Proc Natl Acad Sci U S A 2014; 111:14382-7. [PMID: 25246567 PMCID: PMC4210034 DOI: 10.1073/pnas.1406391111] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yield stress materials flow if a sufficiently large shear stress is applied. Although such materials are ubiquitous and relevant for industry, there is no accepted microscopic description of how they yield, even in the simplest situations in which temperature is negligible and in which flow inhomogeneities such as shear bands or fractures are absent. Here we propose a scaling description of the yielding transition in amorphous solids made of soft particles at zero temperature. Our description makes a connection between the Herschel-Bulkley exponent characterizing the singularity of the flow curve near the yield stress Σc, the extension and duration of the avalanches of plasticity observed at threshold, and the density P(x) of soft spots, or shear transformation zones, as a function of the stress increment x beyond which they yield. We argue that the critical exponents of the yielding transition may be expressed in terms of three independent exponents, θ, df, and z, characterizing, respectively, the density of soft spots, the fractal dimension of the avalanches, and their duration. Our description shares some similarity with the depinning transition that occurs when an elastic manifold is driven through a random potential, but also presents some striking differences. We test our arguments in an elasto-plastic model, an automaton model similar to those used in depinning, but with a different interaction kernel, and find satisfying agreement with our predictions in both two and three dimensions.
Collapse
Affiliation(s)
- Jie Lin
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003; and
| | - Edan Lerner
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003; and
| | - Alberto Rosso
- Laboratoire de Physique Théorique et Modèles Statistiques (Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8626), Université de Paris-Sud, 91405 Orsay Cedex, France
| | - Matthieu Wyart
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003; and
| |
Collapse
|