51
|
Bianco V, Locatelli E, Malgaretti P. Globulelike Conformation and Enhanced Diffusion of Active Polymers. PHYSICAL REVIEW LETTERS 2018; 121:217802. [PMID: 30517801 DOI: 10.1103/physrevlett.121.217802] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 06/09/2023]
Abstract
We study the dynamics and conformation of polymers composed by active monomers. By means of Brownian dynamics simulations we show that, when the direction of the self-propulsion of each monomer is aligned with the backbone, the polymer undergoes a coil-to-globulelike transition, highlighted by a marked change of the scaling exponent of the gyration radius. Concurrently, the diffusion coefficient of the center of mass of the polymer becomes essentially independent of the polymer size for sufficiently long polymers or large magnitudes of the self-propulsion. These effects are reduced when the self-propulsion of the monomers is not bound to be tangent to the backbone of the polymer. Our results, rationalized by a minimal stochastic model, open new routes for activity-controlled polymers and, possibly, for a new generation of polymer-based drug carriers.
Collapse
Affiliation(s)
- Valentino Bianco
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Wien 1090, Austria
- Faculty of Chemistry, Chemical Physics Deprtment, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Emanuele Locatelli
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Wien 1090, Austria
| | - Paolo Malgaretti
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute for Theoretical Physics IV, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
52
|
Martín-Gómez A, Gompper G, Winkler RG. Active Brownian Filamentous Polymers under Shear Flow. Polymers (Basel) 2018; 10:E837. [PMID: 30960761 PMCID: PMC6403868 DOI: 10.3390/polym10080837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
The conformational and rheological properties of active filaments/polymers exposed to shear flow are studied analytically. Using the continuous Gaussian semiflexible polymer model extended by the activity, we derive analytical expressions for the dependence of the deformation, orientation, relaxation times, and viscosity on the persistence length, shear rate, and activity. The model yields a Weissenberg-number dependent shear-induced deformation, alignment, and shear thinning behavior, similarly to the passive counterpart. Thereby, the model shows an intimate coupling between activity and shear flow. As a consequence, activity enhances the shear-induced polymer deformation for flexible polymers. For semiflexible polymers/filaments, a nonmonotonic deformation is obtained because of the activity-induced shrinkage at moderate and swelling at large activities. Independent of stiffness, activity-induced swelling facilitates and enhances alignment and shear thinning compared to a passive polymer. In the asymptotic limit of large activities, a polymer length- and stiffness-independent behavior is obtained, with universal shear-rate dependencies for the conformations, dynamics, and rheology.
Collapse
Affiliation(s)
- Aitor Martín-Gómez
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
53
|
Yang QS, Fan QW, Shen ZL, Xia YQ, Tian WD, Chen K. Beating of grafted chains induced by active Brownian particles. J Chem Phys 2018; 148:214904. [PMID: 29884058 DOI: 10.1063/1.5029967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the interplay between active Brownian particles (ABPs) and a "hairy" surface in two-dimensional geometry. We find that the increase of propelling force leads to and enhances inhomogeneous accumulation of ABPs inside the brush region. Oscillation of chain bundles (beating like cilia) is found in company with the formation and disassembly of a dynamic cluster of ABPs at large propelling forces. Meanwhile chains are stretched and pushed down due to the effective shear force by ABPs. The decrease of the average brush thickness with propelling force reflects the growth of the beating amplitude of chain bundles. Furthermore, the beating phenomenon is investigated in a simple single-chain system. We find that the chain swings regularly with a major oscillatory period, which increases with chain length and decreases with the increase of propelling force. We build a theory to describe the phenomenon and the predictions on the relationship between the period and amplitude for various chain lengths, and propelling forces agree very well with simulation data.
Collapse
Affiliation(s)
- Qiu-Song Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Qing-Wei Fan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Zhuang-Lin Shen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Yi-Qi Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| |
Collapse
|
54
|
Eisenstecken T, Gompper G, Winkler RG. Internal dynamics of semiflexible polymers with active noise. J Chem Phys 2018; 146:154903. [PMID: 28433012 DOI: 10.1063/1.4981012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The intramolecular dynamics of flexible and semiflexible polymers in response to active noise is studied theoretically. The active noise may either originate from interactions of a passive polymer with a bath of active Brownian particles or the polymer itself is comprised of active Brownian particles. We describe the polymer by the continuous Gaussian semiflexible-polymer model, taking into account the finite polymer extensibility. Our analytical calculations predict a strong dependence of the polymer dynamics on the activity. In particular, active semiflexible polymers exhibit a crossover from a bending elasticity-dominated dynamics at weak activity to that of flexible polymers at strong activity. The end-to-end vector correlation function decays exponentially for times longer than the longest polymer relaxation time. Thereby, the polymer relaxation determines the decay of the correlation function for long and flexible polymers. For shorter and stiffer polymers, the relaxation behavior of individual active Brownian particles dominates the decay above a certain activity. The diffusive dynamics of a polymer is substantially enhanced by the activity. Three regimes can be identified in the mean square displacement for sufficiently strong activities: an activity-induced ballistic regime at short times, followed by a Rouse-type polymer-specific regime for any polymer stiffness, and free diffusion at long times, again determined by the activity.
Collapse
Affiliation(s)
- Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
55
|
Affiliation(s)
| | - Chantal Valeriani
- Departamento de Física Aplicada I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Angelo Cacciuto
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
56
|
Li HS, Wang C, Tian WD, Ma YQ, Xu C, Zheng N, Chen K. Spontaneous symmetry breaking induced unidirectional rotation of a chain-grafted colloidal particle in the active bath. SOFT MATTER 2017; 13:8031-8038. [PMID: 29034931 DOI: 10.1039/c7sm01772c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exploiting the energy of randomly moving active agents such as bacteria is a fascinating way to power a microdevice. Here we show, by simulations, that a chain-grafted disk-like colloidal particle can rotate unidirectionally and hence output work when immersed in a thin film of active particle suspension. The collective spontaneous symmetry breaking of chain configurations is the origin of the unidirectional rotation. Long persistence time, large propelling force and/or small rotating friction are keys to sustaining the collective broken symmetry and realizing the rotation. In the rotating state, we find very simple linear relations, e.g. between the mean angular speed and the propelling force. The time-evolving asymmetry of chain configurations reveals that there are two types of non-rotating state. The basic phenomena are also observed in the macroscopic granular experiments, implying the generic nature of these phenomena. Our findings provide new insights into the collective spontaneous symmetry breaking in active systems with flexible objects and also open the way to conceive new soft/deformable microdevices.
Collapse
Affiliation(s)
- Hui-Shu Li
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China.
| | | | | | | | | | | | | |
Collapse
|
57
|
Shin J, Cherstvy AG, Kim WK, Zaburdaev V. Elasticity-based polymer sorting in active fluids: a Brownian dynamics study. Phys Chem Chem Phys 2017; 19:18338-18347. [DOI: 10.1039/c7cp02947k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While the dynamics of polymer chains in equilibrium media is well understood by now, the polymer dynamics in active non-equilibrium environments can be very different.
Collapse
Affiliation(s)
- Jaeoh Shin
- Max Planck Institute for the Physics of Complex Systems
- 01187 Dresden
- Germany
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Won Kyu Kim
- Institut für Weiche Materie and Funktionale Materialen
- Helmholtz-Zentrum Berlin
- 14109 Berlin
- Germany
| | - Vasily Zaburdaev
- Max Planck Institute for the Physics of Complex Systems
- 01187 Dresden
- Germany
| |
Collapse
|
58
|
Argun A, Moradi AR, Pinçe E, Bagci GB, Imparato A, Volpe G. Non-Boltzmann stationary distributions and nonequilibrium relations in active baths. Phys Rev E 2016; 94:062150. [PMID: 28085327 DOI: 10.1103/physreve.94.062150] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Indexed: 11/07/2022]
Abstract
Most natural and engineered processes, such as biomolecular reactions, protein folding, and population dynamics, occur far from equilibrium and therefore cannot be treated within the framework of classical equilibrium thermodynamics. Here we experimentally study how some fundamental thermodynamic quantities and relations are affected by the presence of the nonequilibrium fluctuations associated with an active bath. We show in particular that, as the confinement of the particle increases, the stationary probability distribution of a Brownian particle confined within a harmonic potential becomes non-Boltzmann, featuring a transition from a Gaussian distribution to a heavy-tailed distribution. Because of this, nonequilibrium relations (e.g., the Jarzynski equality and Crooks fluctuation theorem) cannot be applied. We show that these relations can be restored by using the effective potential associated with the stationary probability distribution. We corroborate our experimental findings with theoretical arguments.
Collapse
Affiliation(s)
- Aykut Argun
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden.,Soft Matter Lab, Department of Physics, Bilkent University, Cankaya, 06800 Ankara, Turkey
| | - Ali-Reza Moradi
- Soft Matter Lab, Department of Physics, Bilkent University, Cankaya, 06800 Ankara, Turkey.,Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran.,Optics Research Center, Institute for Advanced Studies in Basic Sciences, P.O. Box 45137-66731, Zanjan, Iran
| | - Erçaǧ Pinçe
- Soft Matter Lab, Department of Physics, Bilkent University, Cankaya, 06800 Ankara, Turkey
| | - Gokhan Baris Bagci
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey
| | - Alberto Imparato
- Department of Physics and Astronomy, University of Aarhus Ny Munkegade, Building 1520, DK-8000 Aarhus C, Denmark
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden.,Soft Matter Lab, Department of Physics, Bilkent University, Cankaya, 06800 Ankara, Turkey.,UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
59
|
Pu M, Jiang H, Hou Z. Polymer translocation through nanopore into active bath. J Chem Phys 2016; 145:174902. [PMID: 27825228 DOI: 10.1063/1.4966591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time τ can show a bell-shape dependence on the particle activity Fa at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that τ can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.
Collapse
Affiliation(s)
- Mingfeng Pu
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
60
|
Paoluzzi M, Di Leonardo R, Marchetti MC, Angelani L. Shape and Displacement Fluctuations in Soft Vesicles Filled by Active Particles. Sci Rep 2016; 6:34146. [PMID: 27678166 PMCID: PMC5039690 DOI: 10.1038/srep34146] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/07/2016] [Indexed: 11/09/2022] Open
Abstract
We investigate numerically the dynamics of shape and displacement fluctuations of two-dimensional flexible vesicles filled with active particles. At low concentration most of the active particles accumulate at the boundary of the vesicle where positive particle number fluctuations are amplified by trapping, leading to the formation of pinched spots of high density, curvature and pressure. At high concentration the active particles cover the vesicle boundary almost uniformly, resulting in fairly homogeneous pressure and curvature, and nearly circular vesicle shape. The change between polarized and spherical shapes is driven by the number of active particles. The center-of-mass of the vesicle performs a persistent random walk with a long time diffusivity that is strongly enhanced for elongated active particles due to orientational correlations in their direction of propulsive motion. In our model shape-shifting induces directional sensing and the cell spontaneously migrate along the polarization direction.
Collapse
Affiliation(s)
- Matteo Paoluzzi
- Department of Physics and Syracuse Soft Matter Program, Syracuse University, Syracuse NY 13244, USA
- Dipartimento di Fisica Università Sapienza, P.le A Moro 2, 00185 Rome, Italy
| | - Roberto Di Leonardo
- Dipartimento di Fisica Università Sapienza, P.le A Moro 2, 00185 Rome, Italy
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Piazzale A. Moro 2, I-00185, Roma, Italy
| | - M. Cristina Marchetti
- Department of Physics and Syracuse Soft Matter Program, Syracuse University, Syracuse NY 13244, USA
| | - Luca Angelani
- Dipartimento di Fisica Università Sapienza, P.le A Moro 2, 00185 Rome, Italy
- ISC-CNR, Institute for Complex Systems, Piazzale A. Moro 2, I-00185 Roma, Italy
| |
Collapse
|
61
|
Nikola N, Solon AP, Kafri Y, Kardar M, Tailleur J, Voituriez R. Active Particles with Soft and Curved Walls: Equation of State, Ratchets, and Instabilities. PHYSICAL REVIEW LETTERS 2016; 117:098001. [PMID: 27610886 DOI: 10.1103/physrevlett.117.098001] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 06/06/2023]
Abstract
We study, from first principles, the pressure exerted by an active fluid of spherical particles on general boundaries in two dimensions. We show that, despite the nonuniform pressure along curved walls, an equation of state is recovered upon a proper spatial averaging. This holds even in the presence of pairwise interactions between particles or when asymmetric walls induce ratchet currents, which are accompanied by spontaneous shear stresses on the walls. For flexible obstacles, the pressure inhomogeneities lead to a modulational instability as well as to the spontaneous motion of short semiflexible filaments. Finally, we relate the force exerted on objects immersed in active baths to the particle flux they generate around them.
Collapse
Affiliation(s)
| | - Alexandre P Solon
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yariv Kafri
- Department of Physics, Technion, Haifa 32000, Israel
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS /UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
- Laboratoire Jean Perrin, UMR 8237 CNRS /UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| |
Collapse
|
62
|
Eisenstecken T, Gompper G, Winkler RG. Conformational Properties of Active Semiflexible Polymers. Polymers (Basel) 2016; 8:E304. [PMID: 30974577 PMCID: PMC6431937 DOI: 10.3390/polym8080304] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
The conformational properties of flexible and semiflexible polymers exposed to active noise are studied theoretically. The noise may originate from the interaction of the polymer with surrounding active (Brownian) particles or from the inherent motion of the polymer itself, which may be composed of active Brownian particles. In the latter case, the respective monomers are independently propelled in directions changing diffusively. For the description of the polymer, we adopt the continuous Gaussian semiflexible polymer model. Specifically, the finite polymer extensibility is taken into account, which turns out to be essential for the polymer conformations. Our analytical calculations predict a strong dependence of the relaxation times on the activity. In particular, semiflexible polymers exhibit a crossover from a bending elasticity-dominated dynamics to the flexible polymer dynamics with increasing activity. This leads to a significant activity-induced polymer shrinkage over a large range of self-propulsion velocities. For large activities, the polymers swell and their extension becomes comparable to the contour length. The scaling properties of the mean square end-to-end distance with respect to the polymer length and monomer activity are discussed.
Collapse
Affiliation(s)
- Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
63
|
Mallory SA, Cacciuto A. Activity-assisted self-assembly of colloidal particles. Phys Rev E 2016; 94:022607. [PMID: 27627360 DOI: 10.1103/physreve.94.022607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 06/06/2023]
Abstract
We outline a basic strategy of how self-propulsion can be used to improve the yield of a typical colloidal self-assembly process. The success of this approach is predicated on the thoughtful design of the colloidal building block as well as how self-propulsion is endowed to the particle. As long as a set of criteria are satisfied, it is possible to significantly increase the rate of self-assembly, and greatly expand the window in parameter space where self-assembly can occur. In addition, we show that by tuning the relative on-off time of the self-propelling force it is possible to modulate the effective speed of the colloids allowing for further optimization of the self-assembly process.
Collapse
Affiliation(s)
- S A Mallory
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - A Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
64
|
Trefz B, Das SK, Egorov SA, Virnau P, Binder K. Activity mediated phase separation: Can we understand phase behavior of the nonequilibrium problem from an equilibrium approach? J Chem Phys 2016; 144:144902. [DOI: 10.1063/1.4945365] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Benjamin Trefz
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128 Mainz, Germany
- Graduate School Material Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Subir K. Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Sergei A. Egorov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Peter Virnau
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128 Mainz, Germany
| | - Kurt Binder
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128 Mainz, Germany
| |
Collapse
|
65
|
Kaiser A, Babel S, ten Hagen B, von Ferber C, Löwen H. How does a flexible chain of active particles swell? J Chem Phys 2016; 142:124905. [PMID: 25833607 DOI: 10.1063/1.4916134] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the swelling of a flexible linear chain composed of active particles by analytical theory and computer simulation. Three different situations are considered: a free chain, a chain confined to an external harmonic trap, and a chain dragged at one end. First, we consider an ideal chain with harmonic springs and no excluded volume between the monomers. The Rouse model of polymers is generalized to the case of self-propelled monomers and solved analytically. The swelling, as characterized by the spatial extension of the chain, scales with the monomer number defining a Flory exponent ν which is ν = 1/2, 0, 1 in the three different situations. As a result, we find that activity does not change the Flory exponent but affects the prefactor of the scaling law. This can be quantitatively understood by mapping the system onto an equilibrium chain with a higher effective temperature such that the chain swells under an increase of the self-propulsion strength. We then use computer simulations to study the effect of self-avoidance on active polymer swelling. In the three different situations, the Flory exponent is now ν = 3/4, 1/4, 1 and again unchanged under self-propulsion. However, the chain extension behaves non-monotonic in the self-propulsion strength.
Collapse
Affiliation(s)
- Andreas Kaiser
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sonja Babel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Borge ten Hagen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Christian von Ferber
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
66
|
Küchler N, Löwen H, Menzel AM. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields. Phys Rev E 2016; 93:022610. [PMID: 26986380 DOI: 10.1103/physreve.93.022610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.
Collapse
Affiliation(s)
- Niklas Küchler
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
67
|
Li HS, Zhang BK, Li J, Tian WD, Chen K. Brush in the bath of active particles: Anomalous stretching of chains and distribution of particles. J Chem Phys 2015; 143:224903. [DOI: 10.1063/1.4936921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hui-shu Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Bo-kai Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Department of Physics, Nanjing Normal University, Nanjing 210023, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Kavli Institute for Theoretical Physics China, CAS, Beijing 100190, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
- Kavli Institute for Theoretical Physics China, CAS, Beijing 100190, China
| |
Collapse
|
68
|
Mallory SA, Valeriani C, Cacciuto A. Anomalous dynamics of an elastic membrane in an active fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012314. [PMID: 26274169 DOI: 10.1103/physreve.92.012314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Using numerical simulations, we characterized the behavior of an elastic membrane immersed in an active fluid. Our findings reveal a nontrivial folding and re-expansion of the membrane that is controlled by the interplay of its resistance to bending and the self-propulsion strength of the active components in solution. We show how flexible membranes tend to collapse into multifolded states, whereas stiff membranes fluctuate between an extended configuration and a singly folded state. This study provides a simple example of how to exploit the random motion of active particles to perform mechanical work at the microscale.
Collapse
Affiliation(s)
- S A Mallory
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - C Valeriani
- Departamento de Fisica Aplicada I, Facultad de Ciencias Fisica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|