51
|
Martin D, O'Byrne J, Cates ME, Fodor É, Nardini C, Tailleur J, van Wijland F. Statistical mechanics of active Ornstein-Uhlenbeck particles. Phys Rev E 2021; 103:032607. [PMID: 33862678 DOI: 10.1103/physreve.103.032607] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
We study the statistical properties of active Ornstein-Uhlenbeck particles (AOUPs). In this simplest of models, the Gaussian white noise of overdamped Brownian colloids is replaced by a Gaussian colored noise. This suffices to grant this system the hallmark properties of active matter, while still allowing for analytical progress. We study in detail the steady-state distribution of AOUPs in the small persistence time limit and for spatially varying activity. At the collective level, we show AOUPs to experience motility-induced phase separation both in the presence of pairwise forces or due to quorum-sensing interactions. We characterize both the instability mechanism leading to phase separation and the resulting phase coexistence. We probe how, in the stationary state, AOUPs depart from their thermal equilibrium limit by investigating the emergence of ratchet currents and entropy production. In the small persistence time limit, we show how fluctuation-dissipation relations are recovered. Finally, we discuss how the emerging properties of AOUPs can be characterized from the dynamics of their collective modes.
Collapse
Affiliation(s)
- David Martin
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Jérémy O'Byrne
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Étienne Fodor
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg
| | - Cesare Nardini
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Julien Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Frédéric van Wijland
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| |
Collapse
|
52
|
Speck T. Coexistence of active Brownian disks: van der Waals theory and analytical results. Phys Rev E 2021; 103:012607. [PMID: 33601548 DOI: 10.1103/physreve.103.012607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/06/2021] [Indexed: 11/07/2022]
Abstract
At thermal equilibrium, intensive quantities like temperature and pressure have to be uniform throughout the system, restricting inhomogeneous systems composed of different phases. The paradigmatic example is the coexistence of vapor and liquid, a state that can also be observed for active Brownian particles steadily driven away from equilibrium. Recently, a strategy has been proposed that allows to predict phase equilibria of active particles [Solon et al., Phys. Rev. E 97, 020602(R) (2018)2470-004510.1103/PhysRevE.97.020602]. Here we elaborate on this strategy and formulate it in the framework of a van der Waals theory for active disks. For a given equation of state, we derive the effective free energy analytically and show that it yields coexisting densities in very good agreement with numerical results. We discuss the interfacial tension and the relation to Cahn-Hilliard models.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
53
|
Guioth J, Bertin E. Nonequilibrium grand-canonical ensemble built from a physical particle reservoir. Phys Rev E 2021; 103:022107. [PMID: 33736010 DOI: 10.1103/physreve.103.022107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/12/2021] [Indexed: 11/07/2022]
Abstract
We introduce a nonequilibrium grand-canonical ensemble defined by considering the stationary state of a driven system of particles put in contact with a particle reservoir. When an additivity assumption holds for the large deviation function of density, a chemical potential of the reservoir can be defined. The grand-canonical distribution then takes a form similar to the equilibrium one. At variance with equilibrium, though, the probability weight is "renormalized" by a contribution coming from the contact, with respect to the canonical probability weight of the isolated system. A formal grand-canonical potential can be introduced in terms of a scaled cumulant generating function, defined as the Legendre-Fenchel transform of the large deviation function of density. The role of the formal Legendre parameter can be played, physically, by the chemical potential of the reservoir when the latter can be defined, or by a potential energy difference applied between the system and the reservoir. Static fluctuation-response relations naturally follow from the large deviation structure. Some of the results are illustrated on two different explicit examples, a gas of noninteracting active particles and a lattice model of interacting particles.
Collapse
Affiliation(s)
- Jules Guioth
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, England, United Kingdom
| | - Eric Bertin
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| |
Collapse
|
54
|
Ro S, Kafri Y, Kardar M, Tailleur J. Disorder-Induced Long-Ranged Correlations in Scalar Active Matter. PHYSICAL REVIEW LETTERS 2021; 126:048003. [PMID: 33576681 DOI: 10.1103/physrevlett.126.048003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
We study the impact of quenched random potentials and torques on scalar active matter. Microscopic simulations reveal that motility-induced phase separation is replaced in two dimensions by an asymptotically homogeneous phase with anomalous long-ranged correlations and nonvanishing steady-state currents. Using a combination of phenomenological models and a field-theoretical treatment, we show the existence of a lower-critical dimension d_{c}=4, below which phase separation is only observed for systems smaller than an Imry-Ma length scale. We identify a weak-disorder regime in which the structure factor scales as S(q)∼1/q^{2}, which accounts for our numerics. In d=2, we predict that, at larger scales, the behavior should cross over to a strong-disorder regime. In d>2, these two regimes exist separately, depending on the strength of the potential.
Collapse
Affiliation(s)
- Sunghan Ro
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julien Tailleur
- Université de Paris, laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
55
|
Turci F, Wilding NB. Phase Separation and Multibody Effects in Three-Dimensional Active Brownian Particles. PHYSICAL REVIEW LETTERS 2021; 126:038002. [PMID: 33543975 DOI: 10.1103/physrevlett.126.038002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Simulation studies of the phase diagram of repulsive active Brownian particles in three dimensions reveal that the region of motility-induced phase separation between a high and low density phase is enclosed by a region of gas-crystal phase separation. Near-critical loci and structural crossovers can additionally be identified in analogy with simple fluids. Motivated by the striking similarity to the behavior of equilibrium fluids with short-ranged pairwise attractions, we show that a direct mapping to pair potentials in the dilute limit implies interactions that are insufficiently attractive to engender phase separation. Instead, this is driven by the emergence of multibody effects associated with particle caging that occurs at sufficiently high number density. We quantify these effects via information-theoretical measures of n-body effective interactions extracted from the configurational structure.
Collapse
Affiliation(s)
- Francesco Turci
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - Nigel B Wilding
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| |
Collapse
|
56
|
Dulaney AR, Mallory SA, Brady JF. The "isothermal" compressibility of active matter. J Chem Phys 2021; 154:014902. [PMID: 33412882 DOI: 10.1063/5.0029364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We demonstrate that the mechanically defined "isothermal" compressibility behaves as a thermodynamic-like response function for suspensions of active Brownian particles. The compressibility computed from the active pressure-a combination of the collision and unique swim pressures-is capable of predicting the critical point for motility induced phase separation, as expected from the mechanical stability criterion. We relate this mechanical definition to the static structure factor via an active form of the thermodynamic compressibility equation and find the two to be equivalent, as would be the case for equilibrium systems. This equivalence indicates that compressibility behaves like a thermodynamic response function, even when activity is large. Finally, we discuss the importance of the phase interface when defining an active chemical potential. Previous definitions of the active chemical potential are shown to be accurate above the critical point but breakdown in the coexistence region. Inclusion of the swim pressure in the mechanical compressibility definition suggests that the interface is essential for determining phase behavior.
Collapse
Affiliation(s)
- Austin R Dulaney
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Stewart A Mallory
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
57
|
Caprini L, Marini Bettolo Marconi U. Active matter at high density: Velocity distribution and kinetic temperature. J Chem Phys 2020; 153:184901. [DOI: 10.1063/5.0029710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Dipartimento di Fisica, Universitá di Camerino, Via Madonna delle Carceri, I-62032 Camerino, Italy
| | | |
Collapse
|
58
|
O'Byrne J, Tailleur J. Lamellar to Micellar Phases and Beyond: When Tactic Active Systems Admit Free Energy Functionals. PHYSICAL REVIEW LETTERS 2020; 125:208003. [PMID: 33258650 DOI: 10.1103/physrevlett.125.208003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
We consider microscopic models of active particles whose velocities, rotational diffusivities, and tumbling rates depend on the gradient of a local field that is either externally imposed or depends on all particle positions. Despite the fundamental differences between active and passive dynamics at the microscopic scale, we show that a large class of such tactic active systems admit fluctuating hydrodynamics equivalent to those of interacting Brownian colloids in equilibrium. We exploit this mapping to show how taxis may lead to the lamellar and micellar phases observed for soft repulsive colloids. In the context of chemotaxis, we show how the competition between chemoattractant and chemorepellent may lead to a bona fide equilibrium liquid-gas phase separation in which a loss of thermodynamic stability of the fluid signals the onset of a chemotactic collapse.
Collapse
Affiliation(s)
- J O'Byrne
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - J Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
59
|
Shi XQ, Fausti G, Chaté H, Nardini C, Solon A. Self-Organized Critical Coexistence Phase in Repulsive Active Particles. PHYSICAL REVIEW LETTERS 2020; 125:168001. [PMID: 33124871 DOI: 10.1103/physrevlett.125.168001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
We revisit motility-induced phase separation in two models of active particles interacting by pairwise repulsion and uncover new qualitative features: the resulting dense phase contains gas bubbles distributed algebraically up to a typically extremely large cutoff scale. At large enough system size and/or global density, all the gas may be contained inside the bubbles, at which point the system is microphase separated with a finite cutoff bubble scale. We further observe that the ordering is clearly anomalous, with different dynamics for the coarsening of the dense phase and of the gas bubbles. This self-organized critical phenomenology is reproduced by a "reduced bubble model" that implements the basic idea of reverse Ostwald ripening put forward in Tjhung et al. [Phys. Rev. X 8, 031080 (2018)PRXHAE2160-330810.1103/PhysRevX.8.031080].
Collapse
Affiliation(s)
- Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Giordano Fausti
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Cesare Nardini
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Alexandre Solon
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
60
|
Ma Z, Yang M, Ni R. Dynamic Assembly of Active Colloids: Theory and Simulation. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhan Ma
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang Drive, 637459 Singapore
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing 100190 China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing 100049 China
| | - Ran Ni
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
61
|
Zakine R, Zhao Y, Knežević M, Daerr A, Kafri Y, Tailleur J, van Wijland F. Surface Tensions between Active Fluids and Solid Interfaces: Bare vs Dressed. PHYSICAL REVIEW LETTERS 2020; 124:248003. [PMID: 32639798 DOI: 10.1103/physrevlett.124.248003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We analyze the surface tension exerted at the interface between an active fluid and a solid boundary in terms of tangential forces. Focusing on active systems known to possess an equation of state for the pressure, we show that interfacial forces are of a more complex nature. Using a number of macroscopic setups, we show that the surface tension is a combination of an equation-of-state abiding part and of setup-dependent contributions. The latter arise from generic setup-dependent steady currents which "dress" the measurement of the "bare" surface tension. The former shares interesting properties with its equilibrium counterpart, and can be used to generalize the Young-Laplace law to active systems. Finally, we show how a suitably designed probe can directly access this bare surface tension, which can also be computed using a generalized virial formula.
Collapse
Affiliation(s)
- R Zakine
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Y Zhao
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - M Knežević
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - A Daerr
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Y Kafri
- Department of Physics, Technion, Haifa 32000, Israel
| | - J Tailleur
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - F van Wijland
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
62
|
Caballero F, Cates ME. Stealth Entropy Production in Active Field Theories near Ising Critical Points. PHYSICAL REVIEW LETTERS 2020; 124:240604. [PMID: 32639820 DOI: 10.1103/physrevlett.124.240604] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
We address the steady-state entropy production rate (EPR) of active scalar ϕ^{4} theories, which lack time-reversal symmetry, close to a phase-separation critical point. We consider both nonconserved (model A) and conserved (model B) dynamics at Gaussian level, and also address the former at leading order in ε=4-d. In each case, activity is irrelevant in the RG sense: the active model lies in the same (dynamic Ising) universality class as its time-reversible counterpart. Hence one might expect that activity brings no new critical behavior. Here we show instead that, on approach to criticality in these models, the singular part of the EPR per (diverging) spacetime correlation volume either remains finite or itself diverges. A nontrivial critical scaling for entropy production thus ranks among universal dynamic Ising-class properties.
Collapse
Affiliation(s)
- Fernando Caballero
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
63
|
Fraggedakis D, Bazant MZ. Tuning the stability of electrochemical interfaces by electron transfer reactions. J Chem Phys 2020; 152:184703. [DOI: 10.1063/5.0006833] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dimitrios Fraggedakis
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z. Bazant
- Departments of Chemical Engineering and Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
64
|
Wang C, Jiang H. Different-shaped micro-objects driven by active particle aggregations. SOFT MATTER 2020; 16:4422-4430. [PMID: 32364209 DOI: 10.1039/d0sm00160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics of passive micro-objects in an active bath has been receiving much attention. However, the influence of the shapes of micro-objects remains unclear. Here, we use 2D simulation to investigate the interaction between active Brownian particles and different-shaped passive micro-objects. We show that active particles accumulate around micro-objects and self-assemble into living aggregations at a high active velocity and high volume fraction. The shapes of micro-objects affect the distributions of the aggregations. In turn, the different distribution of aggregations influences the motion of micro-objects and induces abnormal diffusive behaviors. We further demonstrate that polar distributed aggregations at a high active velocity and the inhibition of the active bath at a low active velocity induce the counterintuitive anisotropic enhanced diffusion of rods, and the steric interaction between active particles induces the reverse translation-rotation coupled diffusion of chevrons.
Collapse
Affiliation(s)
- Chen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
65
|
Gompper G, Winkler RG, Speck T, Solon A, Nardini C, Peruani F, Löwen H, Golestanian R, Kaupp UB, Alvarez L, Kiørboe T, Lauga E, Poon WCK, DeSimone A, Muiños-Landin S, Fischer A, Söker NA, Cichos F, Kapral R, Gaspard P, Ripoll M, Sagues F, Doostmohammadi A, Yeomans JM, Aranson IS, Bechinger C, Stark H, Hemelrijk CK, Nedelec FJ, Sarkar T, Aryaksama T, Lacroix M, Duclos G, Yashunsky V, Silberzan P, Arroyo M, Kale S. The 2020 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:193001. [PMID: 32058979 DOI: 10.1088/1361-648x/ab6348] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Maloney RC, Liao GJ, Klapp SHL, Hall CK. Clustering and phase separation in mixtures of dipolar and active particles. SOFT MATTER 2020; 16:3779-3791. [PMID: 32239046 DOI: 10.1039/c9sm02311a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly of colloidal particles in dynamic environments has become an important field of study because of potential applications in fabricating out-of-equilibrium materials. We investigate the phase behavior of mixtures of passive dipolar colloids and active soft spheres using Brownian dynamics simulations in two dimensions. The phase behaviors exhibited include dipolar percolated network, dipolar string-fluid, isotropic fluid, and a phase-separated state. We find that the clustering of dipolar colloids is enhanced in the presence of slow-moving active particles compared to the clustering of dipolar particles mixed with passive particles. When the active particle motility is high, the chains of dipolar particles are either broken into short chains or pushed into dense clusters. Motility-induced phase separation into dense and dilute phases is also present. The area fraction of particles in the dilute phase increases as the fraction of active particles in the system decreases, while the area fraction of particles in the dense phase remains constant. Our findings are relevant to the development of reconfigurable self-assembled materials.
Collapse
Affiliation(s)
- Ryan C Maloney
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Guo-Jun Liao
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D10623 Berlin, Germany
| | - Carol K Hall
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
67
|
van der Meer B, Prymidis V, Dijkstra M, Filion L. Predicting the phase behavior of mixtures of active spherical particles. J Chem Phys 2020; 152:144901. [DOI: 10.1063/5.0002279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Berend van der Meer
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Vasileios Prymidis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Laura Filion
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
68
|
Abstract
Large-scale collective behavior in suspensions of active particles can be understood from the balance of statistical forces emerging beyond the direct microscopic particle interactions. Here we review some aspects of the collective forces that can arise in suspensions of self-propelled active Brownian particles: wall forces under confinement, interfacial forces, and forces on immersed bodies mediated by the suspension. Even for non-aligning active particles, these forces are intimately related to a non-uniform polarization of particle orientations induced by walls and bodies, or inhomogeneous density profiles. We conclude by pointing out future directions and promising areas for the application of collective forces in synthetic active matter, as well as their role in living active matter.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany.
| |
Collapse
|
69
|
Marbach S, Kavokine N, Bocquet L. Resonant osmosis across active switchable membranes. J Chem Phys 2020; 152:054704. [PMID: 32035444 DOI: 10.1063/1.5138987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To overcome the traditional paradigm of filtration, where separation is essentially performed upon steric sieving principles, we explore the concept of dynamic osmosis through active membranes. A partially permeable membrane presents a time-tuneable feature that changes the effective pore interaction with the solute and thus actively changes permeability with time. In general, we find that slow flickering frequencies effectively decrease the osmotic pressure and large flickering frequencies do not change it. In the presence of an asymmetric membrane, we find a resonant frequency where pumping of the solute is performed and can be analyzed in terms of ratchet transport. We discuss and highlight the properties of this resonant osmotic transport. Furthermore, we show that dynamic osmosis allows us to pump the solute at the nanoscale using less energy than reverse osmosis. This opens new possibilities to build advanced filtration devices and design artificial ionic machinery.
Collapse
Affiliation(s)
- Sophie Marbach
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Nikita Kavokine
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Lydéric Bocquet
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| |
Collapse
|
70
|
Omar AK, Wang ZG, Brady JF. Microscopic origins of the swim pressure and the anomalous surface tension of active matter. Phys Rev E 2020; 101:012604. [PMID: 32069575 DOI: 10.1103/physreve.101.012604] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 06/10/2023]
Abstract
The unique pressure exerted by active particles-the "swim" pressure-has proven to be a useful quantity in explaining many of the seemingly confounding behaviors of active particles. However, its use has also resulted in some puzzling findings including an extremely negative surface tension between phase separated active particles. Here, we demonstrate that this contradiction stems from the fact that the swim pressure is not a true pressure. At a boundary or interface, the reduction in particle swimming generates a net active force density-an entirely self-generated body force. The pressure at the boundary, which was previously identified as the swim pressure, is in fact an elevated (relative to the bulk) value of the traditional particle pressure that is generated by this interfacial force density. Recognizing this unique mechanism for stress generation allows us to define a much more physically plausible surface tension. We clarify the utility of the swim pressure as an "equivalent pressure" (analogous to those defined from electrostatic and gravitational body forces) and the conditions in which this concept can be appropriately applied.
Collapse
Affiliation(s)
- Ahmad K Omar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
71
|
Dal Cengio S, Levis D, Pagonabarraga I. Linear Response Theory and Green-Kubo Relations for Active Matter. PHYSICAL REVIEW LETTERS 2019; 123:238003. [PMID: 31868450 DOI: 10.1103/physrevlett.123.238003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 05/12/2023]
Abstract
We address the question of how interacting active systems in a nonequilibrium steady state respond to an external perturbation. We establish an extended fluctuation-dissipation theorem for active Brownian particles (ABP), which highlights the role played by the local violation of detailed balance due to activity. By making use of a Markovian approximation we derive closed Green-Kubo expressions for the diffusivity and mobility of ABP and quantify the deviations from the Stokes-Einstein relation. We compute the linear response function to an external force using unperturbed simulations of ABP and compare the results with the analytical predictions of the transport coefficients. Our results show the importance of the interplay between activity and interactions in the departure from equilibrium linear response.
Collapse
Affiliation(s)
- Sara Dal Cengio
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
- CECAM Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
- CECAM Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| |
Collapse
|
72
|
Mandal S, Liebchen B, Löwen H. Motility-Induced Temperature Difference in Coexisting Phases. PHYSICAL REVIEW LETTERS 2019; 123:228001. [PMID: 31868412 DOI: 10.1103/physrevlett.123.228001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Unlike in thermodynamic equilibrium where coexisting phases always have the same temperature, here we show that systems comprising "active" self-propelled particles can self-organize into two coexisting phases at different kinetic temperatures, which are separated from each other by a sharp and persistent temperature gradient. Contrasting previous studies that have focused on overdamped descriptions of active particles, we show that a "hot-cold coexistence" occurs if and only if accounting for inertia, which is significant, e.g., in activated dusty plasmas, microflyers, whirling fruits, or beetles at interfaces. Our results exemplify a route to use active particles to create a self-sustained temperature gradient across coexisting phases. This phenomenon is fundamentally beyond equilibrium physics and is accompanied by a slow coarsening law with an exponent significantly smaller than the universal 1/3 exponent seen in both equilibrium systems and overdamped active Brownian particles.
Collapse
Affiliation(s)
- Suvendu Mandal
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Theorie Weicher Materie, Fachbereich Physik, Technische Universität Darmstadt, Hochschulstraße 12, 64289 Darmstadt, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
73
|
Hermann S, Krinninger P, de Las Heras D, Schmidt M. Phase coexistence of active Brownian particles. Phys Rev E 2019; 100:052604. [PMID: 31869869 DOI: 10.1103/physreve.100.052604] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Indexed: 06/10/2023]
Abstract
We investigate motility-induced phase separation of active Brownian particles, which are modeled as purely repulsive spheres that move due to a constant swim force with freely diffusing orientation. We develop on the basis of power functional concepts an analytical theory for nonequilibrium phase coexistence and interfacial structure. Theoretical predictions are validated against Brownian dynamics computer simulations. We show that the internal one-body force field has four nonequilibrium contributions: (i) isotropic drag and (ii) interfacial drag forces against the forward motion, (iii) a superadiabatic spherical pressure gradient, and (iv) the quiet life gradient force. The intrinsic spherical pressure is balanced by the swim pressure, which arises from the polarization of the free interface. The quiet life force opposes the adiabatic force, which is due to the inhomogeneous density distribution. The balance of quiet life and adiabatic forces determines bulk coexistence via equality of two bulk state functions, which are independent of interfacial contributions. The internal force fields are kinematic functionals which depend on density and current but are independent of external and swim forces, consistent with power functional theory. The phase transition originates from nonequilibrium repulsion, with the agile gas being more repulsive than the quiet liquid.
Collapse
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Philip Krinninger
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
74
|
Guioth J, Bertin E. Nonequilibrium chemical potentials of steady-state lattice gas models in contact: A large-deviation approach. Phys Rev E 2019; 100:052125. [PMID: 31870002 DOI: 10.1103/physreve.100.052125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 06/10/2023]
Abstract
We introduce a general framework to describe the stationary state of two driven systems exchanging particles or mass through a contact, in a slow exchange limit. The definition of chemical potentials for the systems in contact requires that the large-deviation function describing the repartition of mass between the two systems is additive, in the sense of being a sum of contributions from each system. We show that this additivity property does not hold for an arbitrary contact dynamics, but is satisfied on condition that a macroscopic detailed balance condition holds at contact, and that the coarse-grained contact dynamics satisfies a factorization property. However, the nonequilibrium chemical potentials of the systems in contact keep track of the contact dynamics, and thus do not obey an equation of state. These nonequilibrium chemical potentials can be related either to the equilibrium chemical potential, or to the nonequilibrium chemical potential of the isolated systems. Results are applied both to an exactly solvable driven lattice gas model and to the Katz-Lebowitz-Spohn model using a numerical procedure to evaluate the chemical potential. The breaking of the additivity property is also illustrated on the exactly solvable model.
Collapse
Affiliation(s)
- Jules Guioth
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Eric Bertin
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| |
Collapse
|
75
|
Clewett JPD, Bowley RM, Swift MR. Reduced Thermodynamic Description of Phase Separation in a Quasi-One-Dimensional Granular Gas. PHYSICAL REVIEW LETTERS 2019; 123:118001. [PMID: 31573237 DOI: 10.1103/physrevlett.123.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/05/2019] [Indexed: 06/10/2023]
Abstract
We describe simulations of a quasi-one-dimensional, vibrated granular gas which exhibits an apparent phase separation into a liquidlike phase and a gaslike phase. In thermal equilibrium, such a phase separation in one dimension is prohibited by entropic considerations. We propose that the granular gas minimizes a function of the conserved mechanical variables alone: the particle number and volume. Simulations in small cells can be used to extract the equation of state and predict the coexisting pressure and densities, as confirmation of the minimization principle. Fluctuations in the system manifest themselves as persistent density waves but they do not destroy the phase-separated state.
Collapse
Affiliation(s)
- James P D Clewett
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - R M Bowley
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Michael R Swift
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
76
|
Coelho RCV, Araújo NAM, Telo da Gama MM. Active nematic-isotropic interfaces in channels. SOFT MATTER 2019; 15:6819-6829. [PMID: 31334740 DOI: 10.1039/c9sm00859d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We use numerical simulations to investigate the hydrodynamic behavior of the interface between nematic (N) and isotropic (I) phases of a confined active liquid crystal. At low activities, a stable interface with constant shape and velocity is observed separating the two phases. For nematics in homeotropic channels, the velocity of the interface at the NI transition increases from zero (i) linearly with the activity for contractile systems and (ii) quadratically for extensile ones. Interestingly, the nematic phase expands for contractile systems while it contracts for extensile ones, as a result of the active forces at the interface. Since both activity and temperature affect the stability of the nematic, for active nematics in the stable regime the temperature can be tuned to observe static interfaces, providing an operational definition for the coexistence of active nematic and isotropic phases. At higher activities, beyond the stable regime, an interfacial instability is observed for extensile nematics. In this regime defects are nucleated at the interface and move away from it. The dynamics of these defects is regular and persists asymptotically for a finite range of activities. We used an improved hybrid model of finite differences and the lattice Boltzmann method with a multi-relaxation-time collision operator, the accuracy of which allowed us to characterize the dynamics of the distinct interfacial regimes.
Collapse
Affiliation(s)
- Rodrigo C V Coelho
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
| | | | | |
Collapse
|
77
|
Partridge B, Lee CF. Critical Motility-Induced Phase Separation Belongs to the Ising Universality Class. PHYSICAL REVIEW LETTERS 2019; 123:068002. [PMID: 31491158 DOI: 10.1103/physrevlett.123.068002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Indexed: 06/10/2023]
Abstract
A collection of self-propelled particles with volume exclusion interactions can exhibit the phenomenology of a gas-liquid phase separation, known as motility-induced phase separation (MIPS). The nonequilibrium nature of the system is fundamental to the phase transition; however, it is unclear whether MIPS at criticality contributes a novel universality class to nonequilibrium physics. We demonstrate here that this is not the case by showing that a generic critical MIPS belongs to the Ising universality class with conservative dynamics.
Collapse
Affiliation(s)
- Benjamin Partridge
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
78
|
Rapp L, Bergmann F, Zimmermann W. Systematic extension of the Cahn-Hilliard model for motility-induced phase separation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:57. [PMID: 31089905 DOI: 10.1140/epje/i2019-11825-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We consider a continuum model for motility-induced phase separation (MIPS) of active Brownian particles (ABP) (J. Chem. Phys. 142, 224149 (2015)). Using a recently introduced perturbative analysis (Phys. Rev. E 98, 020604(R) (2018)), we show that this continuum model reduces to the classic Cahn-Hilliard (CH) model near the onset of MIPS. This makes MIPS another example of the so-called active phase separation. We further introduce a generalization of the perturbative analysis to the next higher order. This results in a generic higher-order extension of the CH model for active phase separation. Our analysis establishes the mathematical link between the basic mean-field ABP model on the one hand, and the leading order and extended CH models on the other hand. Comparing numerical simulations of the three models, we find that the leading-order CH model agrees nearly perfectly with the full continuum model near the onset of MIPS. We also give estimates of the control parameter beyond which the higher-order corrections become relevant and compare the extended CH model to recent phenomenological models.
Collapse
Affiliation(s)
- Lisa Rapp
- Theoretische Physik I, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Fabian Bergmann
- Theoretische Physik I, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Walter Zimmermann
- Theoretische Physik I, Universität Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
79
|
Wittmann R, Smallenburg F, Brader JM. Pressure, surface tension, and curvature in active systems: A touch of equilibrium. J Chem Phys 2019; 150:174908. [DOI: 10.1063/1.5086390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- René Wittmann
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Frank Smallenburg
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Orsay, France
| | - Joseph M. Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
80
|
Das S, Gompper G, Winkler RG. Local stress and pressure in an inhomogeneous system of spherical active Brownian particles. Sci Rep 2019; 9:6608. [PMID: 31036857 PMCID: PMC6488661 DOI: 10.1038/s41598-019-43077-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/15/2019] [Indexed: 02/05/2023] Open
Abstract
The stress of a fluid on a confining wall is given by the mechanical wall forces, independent of the nature of the fluid being passive or active. At thermal equilibrium, an equation of state exists and stress is likewise obtained from intrinsic bulk properties; even more, stress can be calculated locally. Comparable local descriptions for active systems require a particular consideration of active forces. Here, we derive expressions for the stress exerted on a local volume of a systems of spherical active Brownian particles (ABPs). Using the virial theorem, we obtain two identical stress expressions, a stress due to momentum flux across a hypothetical plane, and a bulk stress inside of the local volume. In the first case, we obtain an active contribution to momentum transport in analogy to momentum transport in an underdamped passive system, and we introduce an active momentum. In the second case, a generally valid expression for the swim stress is derived. By simulations, we demonstrate that the local bulk stress is identical to the wall stress of a confined system for both, non-interacting ABPs as well as ABPs with excluded-volume interactions. This underlines the existence of an equation of state for a system of spherical ABPs. Most importantly, our calculations demonstrated that active stress is not a wall (boundary) effect, but is caused by momentum transport. We demonstrate that the derived stress expression permits the calculation of the local stress in inhomogeneous systems of ABPs.
Collapse
Affiliation(s)
- Shibananda Das
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
81
|
Digregorio P, Levis D, Suma A, Cugliandolo LF, Gonnella G, Pagonabarraga I. 2D melting and motility induced phase separation in Active Brownian Hard Disks and Dumbbells. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1163/1/012073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
82
|
Guioth J, Bertin E. Lack of an equation of state for the nonequilibrium chemical potential of gases of active particles in contact. J Chem Phys 2019; 150:094108. [DOI: 10.1063/1.5085740] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jules Guioth
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- CNRS, LIPhy, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Eric Bertin
- CNRS, LIPhy, Université Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|
83
|
Fischer A, Chatterjee A, Speck T. Aggregation and sedimentation of active Brownian particles at constant affinity. J Chem Phys 2019; 150:064910. [PMID: 30769983 DOI: 10.1063/1.5081115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Andreas Fischer
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Arkya Chatterjee
- Department of Physics, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
84
|
Nemoto T, Fodor É, Cates ME, Jack RL, Tailleur J. Optimizing active work: Dynamical phase transitions, collective motion, and jamming. Phys Rev E 2019; 99:022605. [PMID: 30934223 DOI: 10.1103/physreve.99.022605] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 06/09/2023]
Abstract
Active work measures how far the local self-forcing of active particles translates into real motion. Using population Monte Carlo methods, we investigate large deviations in the active work for repulsive active Brownian disks. Minimizing the active work generically results in dynamical arrest; in contrast, despite the lack of aligning interactions, trajectories of high active work correspond to a collectively moving, aligned state. We use heuristic and analytic arguments to explain the origin of dynamical phase transitions separating the arrested, typical, and aligned regimes.
Collapse
Affiliation(s)
- Takahiro Nemoto
- Philippe Meyer Institute for Theoretical Physics, Physics Department, École Normale Supérieure & PSL Research University, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Étienne Fodor
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Michael E Cates
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Robert L Jack
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Julien Tailleur
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS/P7, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France
| |
Collapse
|
85
|
Omar AK, Wu Y, Wang ZG, Brady JF. Swimming to Stability: Structural and Dynamical Control via Active Doping. ACS NANO 2019; 13:560-572. [PMID: 30592601 DOI: 10.1021/acsnano.8b07421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
External fields can decidedly alter the free energy landscape of soft materials and can be exploited as a powerful tool for the assembly of targeted nanostructures and colloidal materials. Here, we use computer simulations to demonstrate that nonequilibrium internal fields or forces-forces that are generated by driven components within a system-in the form of active particles can precisely modulate the dynamical free energy landscape of a model soft material, a colloidal gel. Embedding a small fraction of active particles within a gel can provide a unique pathway for the dynamically frustrated network to circumvent the kinetic barriers associated with reaching a lower free energy state through thermal fluctuations alone. Moreover, by carefully tuning the active particle properties (the propulsive swim force and persistence length) in comparison to those of the gel, the active particles may induce depletion-like forces between the constituent particles of the gel despite there being no geometric size asymmetry between the particles. These resulting forces can rapidly push the system toward disparate regions of phase space. Intriguingly, the state of the material can be altered by tuning macroscopic transport properties such as the solvent viscosity. Our findings highlight the potential wide-ranging structural and kinetic control facilitated by varying the dynamical properties of a remarkably small fraction of driven particles embedded in a host material.
Collapse
Affiliation(s)
- Ahmad K Omar
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Yanze Wu
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - John F Brady
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
86
|
Rodenburg J, Paliwal S, de Jager M, Bolhuis PG, Dijkstra M, van Roij R. Ratchet-induced variations in bulk states of an active ideal gas. J Chem Phys 2018; 149:174910. [DOI: 10.1063/1.5048698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jeroen Rodenburg
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Siddharth Paliwal
- Soft Condensed Matter Group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Marjolein de Jager
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Peter G. Bolhuis
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter Group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - René van Roij
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
87
|
Digregorio P, Levis D, Suma A, Cugliandolo LF, Gonnella G, Pagonabarraga I. Full Phase Diagram of Active Brownian Disks: From Melting to Motility-Induced Phase Separation. PHYSICAL REVIEW LETTERS 2018; 121:098003. [PMID: 30230874 DOI: 10.1103/physrevlett.121.098003] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 05/20/2023]
Abstract
We establish the complete phase diagram of self-propelled hard disks in two spatial dimensions from the analysis of the equation of state and the statistics of local order parameters. The equilibrium melting scenario is maintained at small activities, with coexistence between active liquid and hexatic order, followed by a proper hexatic phase, and a further transition to an active solid. As activity increases, the emergence of hexatic and solid order is shifted towards higher densities. Above a critical activity and for a certain range of packing fractions, the system undergoes motility-induced phase separation and demixes into low and high density phases; the latter can be either disordered (liquid) or ordered (hexatic or solid) depending on the activity.
Collapse
Affiliation(s)
- Pasquale Digregorio
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - Demian Levis
- CECAM Centre Européeen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, Batochimie, Avenue Forel 2, 1015 Lausanne, Switzerland
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Antonio Suma
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Leticia F Cugliandolo
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - Ignacio Pagonabarraga
- CECAM Centre Européeen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, Batochimie, Avenue Forel 2, 1015 Lausanne, Switzerland
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| |
Collapse
|
88
|
|
89
|
Guioth J, Bertin E. Large deviations and chemical potential in bulk-driven systems in contact. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/123/10002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
90
|
Bott MC, Winterhalter F, Marechal M, Sharma A, Brader JM, Wittmann R. Isotropic-nematic transition of self-propelled rods in three dimensions. Phys Rev E 2018; 98:012601. [PMID: 30110778 DOI: 10.1103/physreve.98.012601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Using overdamped Brownian dynamics simulations we investigate the isotropic-nematic (IN) transition of self-propelled rods in three spatial dimensions. For two well-known model systems (Gay-Berne potential and hard spherocylinders) we find that turning on activity moves to higher densities the phase boundary separating an isotropic phase from a (nonpolar) nematic phase. This active IN phase boundary is distinct from the boundary between isotropic and polar-cluster states previously reported in two-dimensional simulation studies and, unlike the latter, is not sensitive to the system size. We thus identify a generic feature of anisotropic active particles in three dimensions.
Collapse
Affiliation(s)
- M C Bott
- Soft Matter Theory, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - F Winterhalter
- Institut für Theoretische Physik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - M Marechal
- Institut für Theoretische Physik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - A Sharma
- Leibniz-Institut für Polymerforschung Dresden, 01069 Dresden, Germany
| | - J M Brader
- Soft Matter Theory, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - R Wittmann
- Soft Matter Theory, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
91
|
Kourbane-Houssene M, Erignoux C, Bodineau T, Tailleur J. Exact Hydrodynamic Description of Active Lattice Gases. PHYSICAL REVIEW LETTERS 2018; 120:268003. [PMID: 30004761 DOI: 10.1103/physrevlett.120.268003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/23/2018] [Indexed: 06/08/2023]
Abstract
We introduce lattice gas models of active matter systems whose coarse-grained "hydrodynamic" description can be derived exactly. We illustrate our approach by considering two systems exhibiting two of the most studied collective behaviors in active matter: the motility-induced phase separation and the transition to collective motion. In both cases, we derive coupled partial differential equations describing the dynamics of the local density and polarization fields and show how they quantitatively predict the emerging properties of the macroscopic lattice gases.
Collapse
Affiliation(s)
| | - Clément Erignoux
- Instituto de Matemática Pura e Aplicada, CEP 22460-320, Rio de Janeiro, Brazil
| | - Thierry Bodineau
- CMAP, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
92
|
Tlili S, Gauquelin E, Li B, Cardoso O, Ladoux B, Delanoë-Ayari H, Graner F. Collective cell migration without proliferation: density determines cell velocity and wave velocity. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172421. [PMID: 29892428 PMCID: PMC5990758 DOI: 10.1098/rsos.172421] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/23/2018] [Indexed: 05/18/2023]
Abstract
Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.
Collapse
Affiliation(s)
- Sham Tlili
- Laboratoire Matière et Systèmes Complexes, Université Denis Diderot - Paris 7, CNRS UMR 7057, Condorcet building, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
- Mechanobiology Institute, Department of Biological Sciences, National University of Singapore, 5A Engineering Drive, 1, 117411 Singapore
| | - Estelle Gauquelin
- Institut Jacques Monod, Université Denis Diderot - Paris 7, CNRS UMR 7592, Buffon building, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Brigitte Li
- Laboratoire Matière et Systèmes Complexes, Université Denis Diderot - Paris 7, CNRS UMR 7057, Condorcet building, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Olivier Cardoso
- Laboratoire Matière et Systèmes Complexes, Université Denis Diderot - Paris 7, CNRS UMR 7057, Condorcet building, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Benoît Ladoux
- Mechanobiology Institute, Department of Biological Sciences, National University of Singapore, 5A Engineering Drive, 1, 117411 Singapore
- Institut Jacques Monod, Université Denis Diderot - Paris 7, CNRS UMR 7592, Buffon building, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Hélène Delanoë-Ayari
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5306, Institut Lumière Matière, Campus LyonTech - La Doua, Kastler building, 10 rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - François Graner
- Laboratoire Matière et Systèmes Complexes, Université Denis Diderot - Paris 7, CNRS UMR 7057, Condorcet building, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| |
Collapse
|
93
|
Bruss IR, Glotzer SC. Phase separation of self-propelled ballistic particles. Phys Rev E 2018; 97:042609. [PMID: 29758693 DOI: 10.1103/physreve.97.042609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 06/08/2023]
Abstract
Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation. However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome this limitation, we present a predictive model that relies on two density-dependent timescales: τ_{F}, the mean time particles spend between collisions; and τ_{C}, the mean lifetime of a collision. We show that only when τ_{F}<τ_{C} do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical calculations and active particle simulations, we measure these timescales and determine the critical density for phase separation in both two and three dimensions.
Collapse
Affiliation(s)
- Isaac R Bruss
- Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sharon C Glotzer
- Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|