51
|
Zhang J, Pan X, Xue Q, He D, Zhu L, Guo Q. Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.03.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
52
|
Dorschner B, Chikatamarla SS, Karlin IV. Entropic multirelaxation-time lattice Boltzmann method for moving and deforming geometries in three dimensions. Phys Rev E 2017; 95:063306. [PMID: 28709335 DOI: 10.1103/physreve.95.063306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work [B. Dorschner, S. Chikatamarla, F. Bösch, and I. Karlin, J. Comput. Phys. 295, 340 (2015)JCTPAH0021-999110.1016/j.jcp.2015.04.017] as well as for three-dimensional one-way coupled simulations of engine-type geometries in B. Dorschner, F. Bösch, S. Chikatamarla, K. Boulouchos, and I. Karlin [J. Fluid Mech. 801, 623 (2016)JFLSA70022-112010.1017/jfm.2016.448] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases, including two-way coupling between fluid and structure and then turbulence and deforming geometries. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil in the transitional regime at a Reynolds number of Re=40000 and, finally, to access the model's performance for deforming geometries, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.
Collapse
Affiliation(s)
- B Dorschner
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - S S Chikatamarla
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - I V Karlin
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
53
|
Wen B, Zhou X, He B, Zhang C, Fang H. Chemical-potential-based lattice Boltzmann method for nonideal fluids. Phys Rev E 2017; 95:063305. [PMID: 28709336 DOI: 10.1103/physreve.95.063305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 06/07/2023]
Abstract
Chemical potential, as an important thermodynamic quantity, has been popularly used in thermodynamic modeling for complex systems, especially for those involving the phase transitions and chemical reactions. Here we present a chemical-potential-based multiphase lattice Boltzmann model, in which the nonideal force is directly evaluated by a chemical potential. The numerical computation is more efficient than the pressure-tensor-based model [Wen et al. Europhys. Lett. 112, 44002 (2015)10.1209/0295-5075/112/44002] because the calculations of the pressure tensor and its divergence are avoided. We have derived several chemical potentials of the popular equations of state from the free-energy density function. The theoretical analyses and numerical results support that the present model satisfies thermodynamics and Galilean invariance. An effective chemical-potential boundary condition is also implemented to investigate the wettability of a solid surface, and the contact angle can be linearly tuned by the surface chemical potential.
Collapse
Affiliation(s)
- Binghai Wen
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xuan Zhou
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
| | - Bing He
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
| | - Chaoying Zhang
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
54
|
Zarghami A, Van den Akker HEA. Thermohydrodynamics of an evaporating droplet studied using a multiphase lattice Boltzmann method. Phys Rev E 2017; 95:043310. [PMID: 28505732 DOI: 10.1103/physreve.95.043310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 11/07/2022]
Abstract
In this paper, the thermohydrodynamics of an evaporating droplet is investigated by using a single-component pseudopotential lattice Boltzmann model. The phase change is applied to the model by adding source terms to the thermal lattice Boltzmann equation in such a way that the macroscopic energy equation of multiphase flows is recovered. In order to gain an exhaustive understanding of the complex hydrodynamics during evaporation, a single droplet is selected as a case study. At first, some tests for a stationary (non-)evaporating droplet are carried out to validate the method. Then the model is used to study the thermohydrodynamics of a falling evaporating droplet. The results show that the model is capable of reproducing the flow dynamics and transport phenomena of a stationary evaporating droplet quite well. Of course, a moving droplet evaporates faster than a stationary one due to the convective transport. Our study shows that our single-component model for simulating a moving evaporating droplet is limited to low Reynolds numbers.
Collapse
Affiliation(s)
- Ahad Zarghami
- Department of Process and Energy, TU Delft, Netherlands
| | - Harry E A Van den Akker
- Transport Phenomena Group, Department of Chemical Engineering, TU Delft, Netherlands.,Bernal Institute, School of Engineering, University of Limerick, Ireland
| |
Collapse
|
55
|
Krämer A, Küllmer K, Reith D, Joppich W, Foysi H. Semi-Lagrangian off-lattice Boltzmann method for weakly compressible flows. Phys Rev E 2017; 95:023305. [PMID: 28297853 DOI: 10.1103/physreve.95.023305] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 11/07/2022]
Abstract
The lattice Boltzmann method is a simulation technique in computational fluid dynamics. In its standard formulation, it is restricted to regular computation grids, second-order spatial accuracy, and a unity Courant-Friedrichs-Lewy (CFL) number. This paper advances the standard lattice Boltzmann method by introducing a semi-Lagrangian streaming step. The proposed method allows significantly larger time steps, unstructured grids, and higher-order accurate representations of the solution to be used. The appealing properties of the approach are demonstrated in simulations of a two-dimensional Taylor-Green vortex, doubly periodic shear layers, and a three-dimensional Taylor-Green vortex.
Collapse
Affiliation(s)
- Andreas Krämer
- Institute for Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Knut Küllmer
- Institute for Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Dirk Reith
- Institute for Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Wolfgang Joppich
- Institute for Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| |
Collapse
|
56
|
Chen R, Yu H(W, Zhu L, Patil RM, Lee T. Spatial and temporal scaling of unequal microbubble coalescence. AIChE J 2016. [DOI: 10.1002/aic.15504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rou Chen
- Mechanical Engineering Dept.Indiana University‐Purdue UniversityIndianapolis (IUPUI)IN 46202
| | - Huidan (Whitney) Yu
- Mechanical Engineering Dept.Indiana University‐Purdue UniversityIndianapolis (IUPUI)IN 46202
| | - Likun Zhu
- Mechanical Engineering Dept.Indiana University‐Purdue UniversityIndianapolis (IUPUI)IN 46202
| | - Raveena M. Patil
- Mechanical Engineering Dept.Indiana University‐Purdue UniversityIndianapolis (IUPUI)IN 46202
| | - Taehun Lee
- Mechanical Engineering Dept.The City College of New YorkNew York NY10031
| |
Collapse
|
57
|
Guo L, Xiao L, Shan X, Zhang X. Modeling adsorption with lattice Boltzmann equation. Sci Rep 2016; 6:27134. [PMID: 27256325 PMCID: PMC4891696 DOI: 10.1038/srep27134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/13/2016] [Indexed: 11/08/2022] Open
Abstract
The research of adsorption theory has recently gained renewed attention due to its critical relevance to a number of trending industrial applications, hydrogen storage and shale gas exploration for instance. The existing theoretical foundation, laid mostly in the early twentieth century, was largely based on simple heuristic molecular interaction models and static interaction potential which, although being insightful in illuminating the fundamental mechanisms, are insufficient for computations with realistic adsorbent structure and adsorbate hydrodynamics, both critical for real-life applications. Here we present and validate a novel lattice Boltzmann model incorporating both adsorbate-adsorbate and adsorbate-adsorbent interactions with hydrodynamics which, for the first time, allows adsorption to be computed with real-life details. Connection with the classic Ono-Kondo lattice theory is established and various adsorption isotherms, both within and beyond the IUPAC classification are observed as a pseudo-potential is varied. This new approach not only enables an important physical to be simulated for real-life applications, but also provides an enabling theoretical framework within which the fundamentals of adsorption can be studied.
Collapse
Affiliation(s)
- Long Guo
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Lizhi Xiao
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Xiaowen Shan
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
- Beijing Aeronautical Science and Technology Research Institute of COMAC, Beijing 102211, China
| | - Xiaoling Zhang
- Research Institute of Petroleum Exploration and Development, China National Petroleum Cooperation, Beijing 100083, China
| |
Collapse
|
58
|
Frapolli N, Chikatamarla SS, Karlin IV. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation. Phys Rev E 2016; 93:063302. [PMID: 27415382 DOI: 10.1103/physreve.93.063302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 05/05/2023]
Abstract
We present in detail the recently introduced entropic lattice Boltzmann model for compressible flows [N. Frapolli et al., Phys. Rev. E 92, 061301(R) (2015)PLEEE81539-375510.1103/PhysRevE.92.061301]. The model is capable of simulating a wide range of laminar and turbulent flows, from thermal and weakly compressible flows to transonic and supersonic flows. The theory behind the construction of the model is laid out and its thermohydrodynamic limit is discussed. Based on this theory and the hydrodynamic limit thereof, we also construct the boundary conditions necessary for the simulation of solid walls. We present the inlet and outlet boundary conditions as well as no-slip and free-slip boundary conditions. Details necessary for the implementation of the compressible lattice Boltzmann model are also reported. Finally, simulations of compressible flows are presented, including two-dimensional supersonic and transonic flows around a diamond and a NACA airfoil, the simulation of the Schardin problem, and the three-dimensional simulation of the supersonic flow around a conical geometry.
Collapse
Affiliation(s)
- N Frapolli
- Department of Mechanical and Processes Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - S S Chikatamarla
- Department of Mechanical and Processes Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Processes Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
59
|
Liu S, Liang Y. Asymptotic-preserving Boltzmann model equations for binary gas mixture. Phys Rev E 2016; 93:023102. [PMID: 26986408 DOI: 10.1103/physreve.93.023102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 11/07/2022]
Abstract
An improved system of Boltzmann model equations is developed for binary gas mixture. This system of model equations has a complete asymptotic preserving property that can strictly recover the Navier-Stokes equations in the continuum limit with the correct constitutive relations and the correct viscosity, thermal conduction, diffusion, and thermal diffusion coefficients. In this equation system, the self- and cross-collision terms in Boltzmann equations are replaced by single relaxation terms. In monocomponent case, this system of equations can be reduced to the commonly used Shakhov equation. The conservation property and the H theorem which are important for model equations are also satisfied by this system of model equations.
Collapse
Affiliation(s)
- Sha Liu
- Aviation Industry Corporation of China, Xi'an Aeronautics Computing Technique Research Institute, No. 15 Jinyeer Road, Yanta District, Xi'an 710065, PR China
| | - Yihua Liang
- Aviation Industry Corporation of China, Xi'an Aeronautics Computing Technique Research Institute, No. 15 Jinyeer Road, Yanta District, Xi'an 710065, PR China
| |
Collapse
|
60
|
Semprebon C, Krüger T, Kusumaatmaja H. Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles. Phys Rev E 2016; 93:033305. [PMID: 27078482 DOI: 10.1103/physreve.93.033305] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 06/05/2023]
Abstract
We present a ternary free-energy lattice Boltzmann model. The distinguishing feature of our model is that we are able to analytically derive and independently vary all fluid-fluid surface tensions and the solid surface contact angles. We carry out a number of benchmark tests: (i) double emulsions and liquid lenses to validate the surface tensions, (ii) ternary fluids in contact with a square well to compare the contact angles against analytical predictions, and (iii) ternary phase separation to verify that the multicomponent fluid dynamics is accurately captured. Additionally we also describe how the model presented here can be extended to include an arbitrary number of fluid components.
Collapse
Affiliation(s)
- Ciro Semprebon
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Timm Krüger
- School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Halim Kusumaatmaja
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
61
|
|
62
|
Frapolli N, Chikatamarla SS, Karlin IV. Entropic lattice Boltzmann model for compressible flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:061301. [PMID: 26764625 DOI: 10.1103/physreve.92.061301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 05/05/2023]
Abstract
We present a lattice Boltzmann model (LBM) that covers the entire range of fluid flows, from low Mach weakly compressible to transonic and supersonic flows. One of the most restrictive limitations of the lattice Boltzmann method, the low Mach number limit, is overcome here by three fundamental changes to the LBM scheme: use of an appropriately chosen multispeed lattice, accurate evaluation of the equilibrium, and the entropic relaxation for the collision. The range of applications is demonstrated through the simulation of a bow shock in front of an airfoil and the simulation of decaying compressible turbulence with shocklets.
Collapse
Affiliation(s)
- N Frapolli
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - S S Chikatamarla
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - I V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
63
|
Bösch F, Chikatamarla SS, Karlin IV. Entropic multirelaxation lattice Boltzmann models for turbulent flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:043309. [PMID: 26565366 DOI: 10.1103/physreve.92.043309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Indexed: 06/05/2023]
Abstract
We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.
Collapse
Affiliation(s)
- Fabian Bösch
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Shyam S Chikatamarla
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Ilya V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
64
|
Mazloomi M A, Chikatamarla SS, Karlin IV. Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:023308. [PMID: 26382547 DOI: 10.1103/physreve.92.023308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 06/05/2023]
Abstract
The recently introduced entropic lattice Boltzmann model (ELBM) for multiphase flows [A. Mazloomi M., S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 114, 174502 (2015)] is extended to the simulation of dynamic fluid-solid interface problems. The thermodynamically consistent, nonlinearly stable ELBM together with a polynomial representation of the equation of state enables us to investigate the dynamics of the contact line in a wide range of applications, from capillary filling to liquid drop impact onto a flat surfaces with different wettability. The static interface behavior is tested by means of the liquid column in a channel to verify the Young-Laplace law. The numerical results of a capillary filling problem in a channel with wettability gradient show an excellent match with the existing analytical solution. Simulations of drop impact onto both wettable and nonwettable surfaces show that the ELBM reproduces the experimentally observed drop behavior in a quantitative manner. Results reported herein demonstrate that the present model is a promising alternative for studying the vapor-liquid-solid interface dynamics.
Collapse
Affiliation(s)
- Ali Mazloomi M
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Shyam S Chikatamarla
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Iliya V Karlin
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|