51
|
Xi W, Sonam S, Beng Saw T, Ladoux B, Teck Lim C. Emergent patterns of collective cell migration under tubular confinement. Nat Commun 2017; 8:1517. [PMID: 29142242 PMCID: PMC5688140 DOI: 10.1038/s41467-017-01390-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.
Collapse
Affiliation(s)
- Wang Xi
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
| | - Surabhi Sonam
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
- Department of Biomedical Engineering and Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institut Jacques Monod, Université Paris Diderot & CNRS UMR 7592, 75205, Paris cedex 13, France
| | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore.
- Institut Jacques Monod, Université Paris Diderot & CNRS UMR 7592, 75205, Paris cedex 13, France.
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore.
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore.
- Department of Biomedical Engineering and Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore.
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore.
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, #14-01, MD6, 14 Medical Drive, Singapore, 117599, Singapore.
| |
Collapse
|
52
|
|
53
|
Mayett D, Bitten N, Das M, Schwarz JM. Chase-and-run dynamics in cell motility and the molecular rupture of interacting active elastic dimers. Phys Rev E 2017; 96:032407. [PMID: 29346935 DOI: 10.1103/physreve.96.032407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 06/07/2023]
Abstract
Cell migration in morphogenesis and cancer metastasis typically involves interplay between different cell types. We construct and study a minimal, one-dimensional model composed of two different motile cells with each cell represented as an active elastic dimer. The interaction between the two cells via cadherins is modeled as a spring that can rupture beyond a threshold force as it undergoes dynamic loading from the interacting motile cells. We obtain a phase diagram consisting of chase-and-run dynamics and clumping dynamics as a function of the stiffness of the interaction spring and the threshold force and, therefore, posit that active rupture, or rupture via active forces, is a mechanosensitive means to regulate dynamics between cells. Since the parameters in the model differentiate between N- and E-cadherins, we make predictions for the interactions between a placodelike cell and a neural crestlike cell in a microchannel as well as discuss how our results inform chase-and-run dynamics found in a group of placode cells interacting with a group of neural crest cells. In particular, an argument was made in the latter case that the feedback between cadherins and cell-substrate interaction via integrins was necessary to obtain the chase-and-run behavior. Based on our two-cell results, we argue that this feedback accentuates, but is not necessary for, the chase-and-run behavior.
Collapse
Affiliation(s)
- David Mayett
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - Nicholas Bitten
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - J M Schwarz
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
54
|
Cell Division Induces and Switches Coherent Angular Motion within Bounded Cellular Collectives. Biophys J 2017; 112:2419-2427. [PMID: 28591614 DOI: 10.1016/j.bpj.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/17/2017] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Collective cell migration underlies many biological processes, including embryonic development, wound healing, and cancer progression. In the embryo, cells have been observed to move collectively in vortices using a mode of collective migration known as coherent angular motion (CAM). To determine how CAM arises within a population and changes over time, here, we study the motion of mammary epithelial cells within engineered monolayers, in which the cells move collectively about a central axis in the tissue. Using quantitative image analysis, we find that CAM is significantly reduced when mitosis is suppressed. Particle-based simulations recreate the observed trends, suggesting that cell divisions drive the robust emergence of CAM and facilitate switches in the direction of collective rotation. Our simulations predict that the location of a dividing cell, rather than the orientation of the division axis, facilitates the onset of this motion. These predictions agree with experimental observations, thereby providing, to our knowledge, new insight into how cell divisions influence CAM within a tissue. Overall, these findings highlight the dynamic nature of CAM and suggest that regulating cell division is crucial for tuning emergent collective migratory behaviors, such as vortical motions observed in vivo.
Collapse
|
55
|
Hakim V, Silberzan P. Collective cell migration: a physics perspective. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:076601. [PMID: 28282028 DOI: 10.1088/1361-6633/aa65ef] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cells have traditionally been viewed either as independently moving entities or as somewhat static parts of tissues. However, it is now clear that in many cases, multiple cells coordinate their motions and move as collective entities. Well-studied examples comprise development events, as well as physiological and pathological situations. Different ex vivo model systems have also been investigated. Several recent advances have taken place at the interface between biology and physics, and have benefitted from progress in imaging and microscopy, from the use of microfabrication techniques, as well as from the introduction of quantitative tools and models. We review these interesting developments in quantitative cell biology that also provide rich examples of collective out-of-equilibrium motion.
Collapse
Affiliation(s)
- Vincent Hakim
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, PSL Research University, UPMC, Paris, France
| | | |
Collapse
|
56
|
Camley BA, Rappel WJ. Physical models of collective cell motility: from cell to tissue. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:113002. [PMID: 28989187 PMCID: PMC5625300 DOI: 10.1088/1361-6463/aa56fe] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell's shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.
Collapse
|
57
|
Seyed-Allaei H, Schimansky-Geier L, Ejtehadi MR. Gaussian theory for spatially distributed self-propelled particles. Phys Rev E 2017; 94:062603. [PMID: 28085336 DOI: 10.1103/physreve.94.062603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/06/2022]
Abstract
Obtaining a reduced description with particle and momentum flux densities outgoing from the microscopic equations of motion of the particles requires approximations. The usual method, we refer to as truncation method, is to zero Fourier modes of the orientation distribution starting from a given number. Here we propose another method to derive continuum equations for interacting self-propelled particles. The derivation is based on a Gaussian approximation (GA) of the distribution of the direction of particles. First, by means of simulation of the microscopic model, we justify that the distribution of individual directions fits well to a wrapped Gaussian distribution. Second, we numerically integrate the continuum equations derived in the GA in order to compare with results of simulations. We obtain that the global polarization in the GA exhibits a hysteresis in dependence on the noise intensity. It shows qualitatively the same behavior as we find in particles simulations. Moreover, both global polarizations agree perfectly for low noise intensities. The spatiotemporal structures of the GA are also in agreement with simulations. We conclude that the GA shows qualitative agreement for a wide range of noise intensities. In particular, for low noise intensities the agreement with simulations is better as other approximations, making the GA to an acceptable candidates of describing spatially distributed self-propelled particles.
Collapse
Affiliation(s)
- Hamid Seyed-Allaei
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Iran
| | - Lutz Schimansky-Geier
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - Mohammad Reza Ejtehadi
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
58
|
Levin M, Klar AJS, Ramsdell AF. Introduction to provocative questions in left-right asymmetry. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150399. [PMID: 27821529 PMCID: PMC5104499 DOI: 10.1098/rstb.2015.0399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
Left-right asymmetry is a phenomenon that has a broad appeal-to anatomists, developmental biologists and evolutionary biologists-because it is a morphological feature of organisms that spans scales of size and levels of organization, from unicellular protists, to vertebrate organs, to social behaviour. Here, we highlight a number of important aspects of asymmetry that encompass several areas of biology-cell-level, physiological, genetic, anatomical and evolutionary components-and that are based on research conducted in diverse model systems, ranging from single cells to invertebrates to human developmental disorders. Together, the contributions in this issue reveal a heretofore-unsuspected variety in asymmetry mechanisms, including ancient chirality elements that could underlie a much more universal basis to asymmetry development, and provide much fodder for thought with far reaching implications in biomedical, developmental, evolutionary and synthetic biology. The new emerging theme of binary cell-fate choice, promoted by asymmetric cell division of a deterministic cell, has focused on investigating asymmetry mechanisms functioning at the single cell level. These include cytoskeleton and DNA chain asymmetry-mechanisms that are amplified and coordinated with those employed for the determination of the anterior-posterior and dorsal-ventral axes of the embryo.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Amar J S Klar
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD 21702, USA
| | - Ann F Ramsdell
- Department of Cell Biology and Anatomy, School of Medicine and Program in Women's and Gender Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
59
|
Kulawiak DA, Camley BA, Rappel WJ. Modeling Contact Inhibition of Locomotion of Colliding Cells Migrating on Micropatterned Substrates. PLoS Comput Biol 2016; 12:e1005239. [PMID: 27984579 PMCID: PMC5161303 DOI: 10.1371/journal.pcbi.1005239] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
In cancer metastasis, embryonic development, and wound healing, cells can coordinate their motion, leading to collective motility. To characterize these cell-cell interactions, which include contact inhibition of locomotion (CIL), micropatterned substrates are often used to restrict cell migration to linear, quasi-one-dimensional paths. In these assays, collisions between polarized cells occur frequently with only a few possible outcomes, such as cells reversing direction, sticking to one another, or walking past one another. Using a computational phase field model of collective cell motility that includes the mechanics of cell shape and a minimal chemical model for CIL, we are able to reproduce all cases seen in two-cell collisions. A subtle balance between the internal cell polarization, CIL and cell-cell adhesion governs the collision outcome. We identify the parameters that control transitions between the different cases, including cell-cell adhesion, propulsion strength, and the rates of CIL. These parameters suggest hypotheses for why different cell types have different collision behavior and the effect of interventions that modulate collision outcomes. To reproduce the heterogeneity in cell-cell collision outcomes observed experimentally in neural crest cells, we must either carefully tune our parameters or assume that there is significant cell-to-cell variation in key parameters like cell-cell adhesion. Many cells cooperate with their neighbors to move as a group. However, the mechanisms of these cell-cell interactions are not well understood. One experimental tool to analyze interactions is to allow cells to collide with one another, and see what happens. In order to better understand what features these experiments measure, we develop a computational model of cell-cell collisions, and identify the biochemical and mechanical parameters that lead to different outcomes of collisions. We can recreate all known types of collisions seen in experiments, including cells reversing on contact, sticking, or walking past each other. Our model suggests that what happens in a collision may depend strongly on the mechanical forces between the two cells.
Collapse
Affiliation(s)
| | - Brian A. Camley
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
60
|
Albert PJ, Schwarz US. Modeling cell shape and dynamics on micropatterns. Cell Adh Migr 2016; 10:516-528. [PMID: 26838278 PMCID: PMC5079397 DOI: 10.1080/19336918.2016.1148864] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/29/2022] Open
Abstract
Adhesive micropatterns have become a standard tool to study cells under defined conditions. Applications range from controlling the differentiation and fate of single cells to guiding the collective migration of cell sheets. In long-term experiments, single cell normalization is challenged by cell division. For all of these setups, mathematical models predicting cell shape and dynamics can guide pattern design. Here we review recent advances in predicting and explaining cell shape, traction forces and dynamics on micropatterns. Starting with contour models as the simplest approach to explain concave cell shapes, we move on to network and continuum descriptions as examples for static models. To describe dynamic processes, cellular Potts, vertex and phase field models can be used. Different types of model are appropriate to address different biological questions and together, they provide a versatile tool box to predict cell behavior on micropatterns.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
61
|
Schreiber C, Segerer FJ, Wagner E, Roidl A, Rädler JO. Ring-Shaped Microlanes and Chemical Barriers as a Platform for Probing Single-Cell Migration. Sci Rep 2016; 6:26858. [PMID: 27242099 PMCID: PMC4886529 DOI: 10.1038/srep26858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023] Open
Abstract
Quantification and discrimination of pharmaceutical and disease-related effects on cell migration requires detailed characterization of single-cell motility. In this context, micropatterned substrates that constrain cells within defined geometries facilitate quantitative readout of locomotion. Here, we study quasi-one-dimensional cell migration in ring-shaped microlanes. We observe bimodal behavior in form of alternating states of directional migration (run state) and reorientation (rest state). Both states show exponential lifetime distributions with characteristic persistence times, which, together with the cell velocity in the run state, provide a set of parameters that succinctly describe cell motion. By introducing PEGylated barriers of different widths into the lane, we extend this description by quantifying the effects of abrupt changes in substrate chemistry on migrating cells. The transit probability decreases exponentially as a function of barrier width, thus specifying a characteristic penetration depth of the leading lamellipodia. Applying this fingerprint-like characterization of cell motion, we compare different cell lines, and demonstrate that the cancer drug candidate salinomycin affects transit probability and resting time, but not run time or run velocity. Hence, the presented assay allows to assess multiple migration-related parameters, permits detailed characterization of cell motility, and has potential applications in cell biology and advanced drug screening.
Collapse
Affiliation(s)
- Christoph Schreiber
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Felix J Segerer
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Building D, 81377 Munich, Germany
| | - Andreas Roidl
- Department of Pharmacy, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Building D, 81377 Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| |
Collapse
|
62
|
Albert PJ, Schwarz US. Dynamics of Cell Ensembles on Adhesive Micropatterns: Bridging the Gap between Single Cell Spreading and Collective Cell Migration. PLoS Comput Biol 2016; 12:e1004863. [PMID: 27054883 PMCID: PMC4824460 DOI: 10.1371/journal.pcbi.1004863] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
The collective dynamics of multicellular systems arise from the interplay of a few fundamental elements: growth, division and apoptosis of single cells; their mechanical and adhesive interactions with neighboring cells and the extracellular matrix; and the tendency of polarized cells to move. Micropatterned substrates are increasingly used to dissect the relative roles of these fundamental processes and to control the resulting dynamics. Here we show that a unifying computational framework based on the cellular Potts model can describe the experimentally observed cell dynamics over all relevant length scales. For single cells, the model correctly predicts the statistical distribution of the orientation of the cell division axis as well as the final organisation of the two daughters on a large range of micropatterns, including those situations in which a stable configuration is not achieved and rotation ensues. Large ensembles migrating in heterogeneous environments form non-adhesive regions of inward-curved arcs like in epithelial bridge formation. Collective migration leads to swirl formation with variations in cell area as observed experimentally. In each case, we also use our model to predict cell dynamics on patterns that have not been studied before.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
63
|
Camley BA, Zimmermann J, Levine H, Rappel WJ. Emergent Collective Chemotaxis without Single-Cell Gradient Sensing. PHYSICAL REVIEW LETTERS 2016; 116:098101. [PMID: 26991203 PMCID: PMC4885034 DOI: 10.1103/physrevlett.116.098101] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 05/06/2023]
Abstract
Many eukaryotic cells chemotax, sensing and following chemical gradients. However, experiments show that even under conditions when single cells cannot chemotax, small clusters may still follow a gradient. This behavior is observed in neural crest cells, in lymphocytes, and during border cell migration in Drosophila, but its origin remains puzzling. Here, we propose a new mechanism underlying this "collective guidance," and study a model based on this mechanism both analytically and computationally. Our approach posits that contact inhibition of locomotion, where cells polarize away from cell-cell contact, is regulated by the chemoattractant. Individual cells must measure the mean attractant value, but need not measure its gradient, to give rise to directional motility for a cell cluster. We present analytic formulas for how the cluster velocity and chemotactic index depend on the number and organization of cells in the cluster. The presence of strong orientation effects provides a simple test for our theory of collective guidance.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Juliane Zimmermann
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
64
|
|
65
|
Naganathan SR, Middelkoop TC, Fürthauer S, Grill SW. Actomyosin-driven left-right asymmetry: from molecular torques to chiral self organization. Curr Opin Cell Biol 2016; 38:24-30. [DOI: 10.1016/j.ceb.2016.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
|
66
|
Albert PJ, Schwarz US. Optimizing micropattern geometries for cell shape and migration with genetic algorithms. Integr Biol (Camb) 2016; 8:741-50. [DOI: 10.1039/c6ib00061d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adhesive micropatterns have become a standard tool to control cell shape and function in cell culture.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant
- Heidelberg University
- 69120 Heidelberg
- Germany
| |
Collapse
|
67
|
Du W, Chen J, Li H, Zhao G, Liu G, Zhu W, Wu D, Chu J. Direct cellular organization with ring-shaped composite polymers and glass substrates for urethral sphincter tissue engineering. J Mater Chem B 2016; 4:3998-4008. [DOI: 10.1039/c6tb00437g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We introduce the substrates of composite materials for sphincter tissue engineering and demonstrate the mechanisms of how dimensions, curvature and parallelism of constraints affect cellular organization.
Collapse
Affiliation(s)
- Wenqiang Du
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei 230027
- China
| | - Jianfeng Chen
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei 230027
- China
| | - Huan Li
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei 230027
- China
| | - Gang Zhao
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei 230027
- China
| | - Guangli Liu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei 230027
- China
| | - Wulin Zhu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei 230027
- China
| | - Dong Wu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei 230027
- China
| | - Jiaru Chu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei 230027
- China
| |
Collapse
|
68
|
Soumya SS, Gupta A, Cugno A, Deseri L, Dayal K, Das D, Sen S, Inamdar MM. Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications. PLoS Comput Biol 2015; 11:e1004670. [PMID: 26691341 PMCID: PMC4686989 DOI: 10.1371/journal.pcbi.1004670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022] Open
Abstract
Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements. Epithelial and endothelial cells that line various cavities and the vasculature in our bodies, are tightly connected to each other and exist as sheets. Upon confinement in two-dimensional geometries, these cells exhibit rotational motion, which has also been observed in vivo and implicated in physiological processes. However, how this rotational motion is achieved remains unclear. We show that a simple rule wherein preferred direction of motion (i.e., polarization) of cells tends to align with the direction of their velocity is sufficient to induce such coherent movement in confined geometries. We also show that the number of cells within the confinement, the size of the tissue, cell motility and physical properties of the cell and cell-cell connections regulate this coherent motion, and the pattern of invasion when the confinement is relaxed.
Collapse
Affiliation(s)
- S S Soumya
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Animesh Gupta
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Andrea Cugno
- DICAM-Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Luca Deseri
- DICAM-Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Kaushik Dayal
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail:
| |
Collapse
|