51
|
M KR, Misra S, Mitra SK. Microparticle Suspensions and Bacteria-Laden Droplets: Are They the Same in Terms of Wetting Signature? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1588-1595. [PMID: 33459022 DOI: 10.1021/acs.langmuir.0c03365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Adhesion behavior of microbial pathogens on commonly encountered surfaces is one of the most pertinent questions now. We present the characterization of bacteria-laden droplets and quantify the adhesion forces on highly repellent surfaces with the help of a simple experimental setup. Comparing the force signature measured directly using an in-house capillary deflection-based droplet force apparatus, we report an anomalous adhesion behavior of live bacteria (E. coli)-laden droplets on repellent surfaces, which stands in stark contrast to the observed adhesion signature when the doping agent is changed to inert microparticles or the same bacteria in an incapacitated state. We showed that the regular contact angle measurements using optical goniometry is unable to differentiate between the live bacteria and the dead ones (including microparticles) and thus delineate its limitations and the complementary nature of the adhesion measurements in understanding the fundamental interfacial interaction of living organisms on solid surfaces.
Collapse
Affiliation(s)
- Kiran Raj M
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sirshendu Misra
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K Mitra
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
52
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
53
|
Senevirathne SWMAI, Hasan J, Mathew A, Woodruff M, Yarlagadda PKDV. Bactericidal efficiency of micro- and nanostructured surfaces: a critical perspective. RSC Adv 2021; 11:1883-1900. [PMID: 35424086 PMCID: PMC8693530 DOI: 10.1039/d0ra08878a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022] Open
Abstract
Micro/nanostructured surfaces (MNSS) have shown the ability to inactivate bacterial cells by physical means. An enormous amount of research has been conducted in this area over the past decade. Here, we review the various surface factors that affect the bactericidal efficiency. For example, surface hydrophobicity of the substrate has been accepted to be influential on the bactericidal effect of the surface, but a review of the literature suggests that the influence of hydrophobicity differs with the bacterial species. Also, various bacterial viability quantification methods on MNSS are critically reviewed for their suitability for the purpose, and limitations of currently used protocols are discussed. Presently used static bacterial viability assays do not represent the conditions of which those surfaces could be applied. Such application conditions do have overlaying fluid flow, and bacterial behaviours are drastically different under flow conditions compared to under static conditions. Hence, it is proposed that the bactericidal effect should be assessed under relevant fluid flow conditions with factors such as shear stress and flowrate given due significance. This review will provide a range of opportunities for future research in design and engineering of micro/nanostructured surfaces with varying experimental conditions.
Collapse
Affiliation(s)
- S W M A I Senevirathne
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - J Hasan
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - A Mathew
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - M Woodruff
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - P K D V Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| |
Collapse
|
54
|
Varghese M, Baskaran A, Hagan MF, Baskaran A. Confinement-Induced Self-Pumping in 3D Active Fluids. PHYSICAL REVIEW LETTERS 2020; 125:268003. [PMID: 33449756 DOI: 10.1103/physrevlett.125.268003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/25/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Two dimensional active fluids display a transition from turbulent to coherent flow upon decreasing the size of the confining geometry. A recent experiment suggests that the behavior in three dimensions is remarkably different; emergent flows transition from turbulence to coherence upon increasing the confinement height to match the width. Using a simple hydrodynamic model of a suspension of extensile rodlike units, we provide the theoretical explanation for this puzzling behavior. Furthermore, using extensive numerical simulations supported by theoretical arguments, we map out the conditions that lead to coherent flows and elucidate the critical role played by the aspect ratio of the confining channel. The mechanism that we identify applies to a large class of symmetries and propulsion mechanisms, leading to a unified set of design principles for self-pumping 3D active fluids.
Collapse
Affiliation(s)
- Minu Varghese
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Arvind Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
55
|
Ishikawa T, Omori T, Kikuchi K. Bacterial biomechanics-From individual behaviors to biofilm and the gut flora. APL Bioeng 2020; 4:041504. [PMID: 33163845 PMCID: PMC7595747 DOI: 10.1063/5.0026953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria inhabit a variety of locations and play important roles in the environment and health. Our understanding of bacterial biomechanics has improved markedly in the last decade and has revealed that biomechanics play a significant role in microbial biology. The obtained knowledge has enabled investigation of complex phenomena, such as biofilm formation and the dynamics of the gut flora. A bottom-up strategy, i.e., from the cellular to the macroscale, facilitates understanding of macroscopic bacterial phenomena. In this Review, we first cover the biomechanics of individual bacteria in the bulk liquid and on surfaces as the base of complex phenomena. The collective behaviors of bacteria in simple environments are next introduced. We then introduce recent advances in biofilm biomechanics, in which adhesion force and the flow environment play crucial roles. We also review transport phenomena in the intestine and the dynamics of the gut flora, focusing on that in zebrafish. Finally, we provide an overview of the future prospects for the field.
Collapse
Affiliation(s)
| | - Toshihiro Omori
- Department Finemechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | | |
Collapse
|
56
|
Gagnon DA, Dessi C, Berezney JP, Boros R, Chen DTN, Dogic Z, Blair DL. Shear-Induced Gelation of Self-Yielding Active Networks. PHYSICAL REVIEW LETTERS 2020; 125:178003. [PMID: 33156652 DOI: 10.1103/physrevlett.125.178003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
An enticing feature of active materials is the possibility of controlling macroscale rheological properties through the activity of the microscopic constituents. Using a unique combination of microscopy and rheology we study three dimensional microtubule-based active materials whose autonomous flows are powered by a continually rearranging connected network. We quantify the relationship between the microscopic dynamics and the bulk mechanical properties of these nonequilibrium networks. Experiments reveal a surprising nonmonotonic viscosity that strongly depends on the relative magnitude of the rate of internally generated activity and the externally applied shear. A simple two-state mechanical model that accounts for both the solidlike and yielded fluidlike elements of the network accurately describes the rheological measurements.
Collapse
Affiliation(s)
- David A Gagnon
- Department of Physics and Institute for Soft Matter Synthesis & Metrology, Georgetown University, 3700 O Street NW, Washington, D.C. 20057, USA
| | - Claudia Dessi
- Department of Physics and Institute for Soft Matter Synthesis & Metrology, Georgetown University, 3700 O Street NW, Washington, D.C. 20057, USA
| | - John P Berezney
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Remi Boros
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Daniel T-N Chen
- Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Zvonimir Dogic
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Daniel L Blair
- Department of Physics and Institute for Soft Matter Synthesis & Metrology, Georgetown University, 3700 O Street NW, Washington, D.C. 20057, USA
| |
Collapse
|
57
|
Carenza LN, Gonnella G, Lamura A, Marenduzzo D, Negro G, Tiribocchi A. Soft channel formation and symmetry breaking in exotic active emulsions. Sci Rep 2020; 10:15936. [PMID: 32985576 PMCID: PMC7522284 DOI: 10.1038/s41598-020-72742-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/22/2020] [Indexed: 11/09/2022] Open
Abstract
We use computer simulations to study the morphology and rheological properties of a bidimensional emulsion resulting from a mixture of a passive isotropic fluid and an active contractile polar gel, in the presence of a surfactant that favours the emulsification of the two phases. By varying the intensity of the contractile activity and of an externally imposed shear flow, we find three possible morphologies. For low shear rates, a simple lamellar state is obtained. For intermediate activity and shear rate, an asymmetric state emerges, which is characterized by shear and concentration banding at the polar/isotropic interface. A further increment in the active forcing leads to the self-assembly of a soft channel where an isotropic fluid flows between two layers of active material. We characterize the stability of this state by performing a dynamical test varying the intensity of the active forcing and shear rate. Finally, we address the rheological properties of the system by measuring the effective shear viscosity, finding that this increases as active forcing is increased-so that the fluid thickens with activity.
Collapse
Affiliation(s)
- L N Carenza
- Dipartimento di Fisica, Università degli Srudi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - G Gonnella
- Dipartimento di Fisica, Università degli Srudi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - A Lamura
- IAC - CNR, Via Amendola, 122/D, 70126, Bari, Italy
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, UK
| | - G Negro
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, UK.
| | - A Tiribocchi
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy.,IAC - CNR, Via dei Taurini 19, Rome, Italy
| |
Collapse
|
58
|
Voß J, Wittkowski R. On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves. NANOSCALE ADVANCES 2020; 2:3890-3899. [PMID: 36132771 PMCID: PMC9417689 DOI: 10.1039/d0na00099j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/20/2020] [Indexed: 05/12/2023]
Abstract
We address the propulsion mechanism of ultrasound-propelled nano- and microparticles that are exposed to a traveling ultrasound wave. Based on direct computational fluid dynamics simulations, we study the effect of two important aspects of the particle shape on the propulsion: rounded vs. pointed and filled vs. hollow shapes. We also study the flow field generated around such particles. Our results reveal that pointedness leads to an increase of the propulsion speed, whereas it is not significantly affected by hollowness. Furthermore, we show that the flow field near to ultrasound-propelled particles can look similar to the flow field generated by pusher squirmers.
Collapse
Affiliation(s)
- Johannes Voß
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster D-48149 Münster Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster D-48149 Münster Germany
| |
Collapse
|
59
|
El Hasadi YM, Crapper M. Self-propelled nanofluids a coolant inspired from nature with enhanced thermal transport properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
60
|
Soni H, Kumar N, Nambisan J, Gupta RK, Sood AK, Ramaswamy S. Phases and excitations of active rod-bead mixtures: simulations and experiments. SOFT MATTER 2020; 16:7210-7221. [PMID: 32393926 DOI: 10.1039/c9sm02552a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a large-scale numerical study, supplemented by experimental observations, on a quasi-two-dimensional active system of polar rods and spherical beads confined between two horizontal plates and energised by vertical vibration. For a low rod concentration Φr, our observations are consistent with a direct phase transition, as bead concentration Φb is increased, from the isotropic phase to a homogeneous flock. For Φr above a threshold value, an ordered band dense in both rods and beads occurs between the disordered phase and the homogeneous flock, in both experiments and simulations. Within the size ranges accessible, we observe only a single band, whose width increases with Φr. Deep in the ordered state, we observe broken-symmetry "sound" modes and giant number fluctuations. The direction-dependent sound speeds and the scaling of fluctuations are consistent with the predictions of field theories of flocking; sound damping rates show departures from such theories, but the range of wavenumbers explored is modest. At very high densities, we see phase separation into rod-rich and bead-rich regions, both of which move coherently.
Collapse
Affiliation(s)
- Harsh Soni
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India. and TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500 107, India
| | - Nitin Kumar
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India. and Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Jyothishraj Nambisan
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India. and School of Physics, Georgia Institute of Technology, 770 State Street NW, Atlanta, GA 30332-0430, USA
| | - Rahul Kumar Gupta
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500 107, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India.
| | - Sriram Ramaswamy
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India. and TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500 107, India
| |
Collapse
|
61
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
62
|
Chakraborty T, Chakraborti S, Das A, Pradhan P. Hydrodynamics, superfluidity, and giant number fluctuations in a model of self-propelled particles. Phys Rev E 2020; 101:052611. [PMID: 32575180 DOI: 10.1103/physreve.101.052611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/15/2020] [Indexed: 11/07/2022]
Abstract
We derive hydrodynamics of a prototypical one-dimensional model, having variable-range hopping, which mimics passive diffusion and ballistic motion of active, or self-propelled, particles. The model has two main ingredients-the hardcore interaction and the competing mechanisms of short- and long-range hopping. We calculate two density-dependent transport coefficients-the bulk-diffusion coefficient and the conductivity, the ratio of which, despite violation of detailed balance, is connected to particle-number fluctuation by an Einstein relation. In the limit of infinite-range hopping, the model exhibits, upon tuning density ρ (or activity), a "superfluidlike" transition from a finitely conducting fluid phase to an infinitely conducting "superfluid" phase, characterized by a divergence in conductivity χ(ρ)∼(ρ-ρ_{c})^{-1} with ρ_{c} being the critical density. The diverging conductivity greatly increases particle (or vacancy) mobility and thus induces "giant" number fluctuations in the system.
Collapse
Affiliation(s)
- Tanmoy Chakraborty
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Subhadip Chakraborti
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.,International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Arghya Das
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
63
|
Rhodeland B, Hoeger K, Ursell T. Bacterial surface motility is modulated by colony-scale flow and granular jamming. J R Soc Interface 2020; 17:20200147. [PMID: 32574537 DOI: 10.1098/rsif.2020.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microbes routinely face the challenge of acquiring territory and resources on wet surfaces. Cells move in large groups inside thin, surface-bound water layers, often achieving speeds of 30 µm s-1 within this environment, where viscous forces dominate over inertial forces (low Reynolds number). The canonical Gram-positive bacterium Bacillus subtilis is a model organism for the study of collective migration over surfaces with groups exhibiting motility on length-scales three orders of magnitude larger than themselves within a few doubling times. Genetic and chemical studies clearly show that the secretion of endogenous surfactants and availability of free surface water are required for this fast group motility. Here, we show that: (i) water availability is a sensitive control parameter modulating an abiotic jamming-like transition that determines whether the group remains fluidized and therefore collectively motile, (ii) groups self-organize into discrete layers as they travel, (iii) group motility does not require proliferation, rather groups are pulled from the front, and (iv) flow within expanding groups is capable of moving material from the parent colony into the expanding tip of a cellular dendrite with implications for expansion into regions of varying nutrient content. Together, these findings illuminate the physical structure of surface-motile groups and demonstrate that physical properties, like cellular packing fraction and flow, regulate motion from the scale of individual cells up to length scales of centimetres.
Collapse
Affiliation(s)
- Ben Rhodeland
- Department of Physics, University of Oregon, Eugene OR 97403, USA
| | - Kentaro Hoeger
- Department of Physics, University of Oregon, Eugene OR 97403, USA
| | - Tristan Ursell
- Department of Physics, University of Oregon, Eugene OR 97403, USA.,Institute of Molecular Biology, University of Oregon, Eugene OR 97403, USA.,Materials Science Institute, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
64
|
Row H, Brady JF. Reverse osmotic effect in active matter. Phys Rev E 2020; 101:062604. [PMID: 32688587 DOI: 10.1103/physreve.101.062604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In nonequilibrium active matter systems, a spatial variation in activity can lead to a spatial variation in concentration of active particles satisfying, at steady state, the condition nU=const [Schnitzer, Phys. Rev. E 48, 2553 (1993)1063-651X10.1103/PhysRevE.48.2553; Tailleur and Cates, Phys. Rev. Lett. 100, 218103 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.218103], where n is the number density and U is the active (swim) speed. We show that this condition holds even when the variation is abrupt and when thermal Brownian motion is present provided that the Péclet number is large. This spatial variation in swim speed and concentration produces a fluid pressure distribution that drives a reverse osmotic flow-fluid flows from regions of high concentration to low.
Collapse
Affiliation(s)
- Hyeongjoo Row
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
65
|
Abstract
Passive tracers in the active bath express fascinating behaviors. However, most studies are restricted to dilute active baths. Here, we use 2D simulation of suspensions consisting of active Brownian particles and a passive disk-shaped tracer to investigate tracers' diffusive behaviors in a wide range of volume fractions. Due to the competition between the thermal noise and collisions with active particles, tracers express a first transition from the normal diffusion to the superdiffusion at a short time scale and recur to normal diffusion at a long time scale. At a low volume fraction, infrequent active collisions retard the first transition of smaller tracers. At a high volume fraction, active particles with high activity aggregating around tracers induce a bimodal probability distribution function of tracer displacements during superdiffusion. Considering the enhancement of diffusion, the non-dimensional enhanced diffusivity increases asymptotically with the Peclet number. The asymptotic line gives an upper limit of non-dimensional enhanced diffusivity of tracers. Cases with lower enhanced diffusion have a high volume fraction and a low active velocity that indicates the inhibition of concentrated active baths. With the high negentropic work of these cases, the inhibition is explained as the change of the configuration of active baths for introducing tracers.
Collapse
Affiliation(s)
- Chen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
66
|
Wang C, Jiang H. Different-shaped micro-objects driven by active particle aggregations. SOFT MATTER 2020; 16:4422-4430. [PMID: 32364209 DOI: 10.1039/d0sm00160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics of passive micro-objects in an active bath has been receiving much attention. However, the influence of the shapes of micro-objects remains unclear. Here, we use 2D simulation to investigate the interaction between active Brownian particles and different-shaped passive micro-objects. We show that active particles accumulate around micro-objects and self-assemble into living aggregations at a high active velocity and high volume fraction. The shapes of micro-objects affect the distributions of the aggregations. In turn, the different distribution of aggregations influences the motion of micro-objects and induces abnormal diffusive behaviors. We further demonstrate that polar distributed aggregations at a high active velocity and the inhibition of the active bath at a low active velocity induce the counterintuitive anisotropic enhanced diffusion of rods, and the steric interaction between active particles induces the reverse translation-rotation coupled diffusion of chevrons.
Collapse
Affiliation(s)
- Chen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
67
|
Mackay F, Toner J, Morozov A, Marenduzzo D. Darcy's Law without Friction in Active Nematic Rheology. PHYSICAL REVIEW LETTERS 2020; 124:187801. [PMID: 32441954 DOI: 10.1103/physrevlett.124.187801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/19/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
We study the dynamics of a contractile active nematic fluid subjected to a Poiseuille flow. In a quasi-1D geometry, we find that the linear rheology of this material is reminiscent of Darcy's law in complex fluids, with a pluglike flow decaying to zero over a well-defined "permeation" length. As a result, the viscosity increases with size, but never diverges, thereby evading the yield stress predicted by previous theories. We find strong shear thinning controlled by an active Ericksen number quantifying the ratio between external pressure difference and internal active stresses. In 2D, the increase of linear regime viscosity with size only persists up to a critical length beyond which we observe active turbulent patterns, with very low apparent viscosity. The ratio between the critical and permeation length determining the stability of the Darcy regime can be made indefinitely large by varying the flow aligning parameter or magnitude of nematic order.
Collapse
Affiliation(s)
- Fraser Mackay
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - John Toner
- Institute for Fundamental Science and Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Alexander Morozov
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
68
|
Deblais A, Woutersen S, Bonn D. Rheology of Entangled Active Polymer-Like T. Tubifex Worms. PHYSICAL REVIEW LETTERS 2020; 124:188002. [PMID: 32441969 DOI: 10.1103/physrevlett.124.188002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
We experimentally study the rheology of long, slender, and entangled living worms (Tubifex Tubifex). Their level of activity can be controlled by changing the temperature or by adding small amounts of alcohol to make the worms temporarily inactive. Performing classical rheology experiments on this entangled polymer-like system, we find that the rheology is qualitatively similar to that of usual polymers, but, quantitatively, (i) shear thinning is reduced by activity, (ii) the characteristic shear rate for the onset of shear-thinning is given by the time scale of the activity, and (iii) the low shear viscosity as a function of concentration shows a very different scaling from that of regular polymers. Our study paves the way towards a new experimental research field of active "polymer-like worms."
Collapse
Affiliation(s)
- A Deblais
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - S Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - D Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
69
|
Pöhnl R, Popescu MN, Uspal WE. Axisymmetric spheroidal squirmers and self-diffusiophoretic particles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:164001. [PMID: 31801127 DOI: 10.1088/1361-648x/ab5edd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study, by means of an exact analytical solution, the motion of a spheroidal, axisymmetric squirmer in an unbounded fluid, as well as the low Reynolds number hydrodynamic flow associated to it. In contrast to the case of a spherical squirmer-for which, e.g. the velocity of the squirmer and the magnitude of the stresslet associated with the flow induced by the squirmer are respectively determined by the amplitudes of the first two slip ('squirming') modes-for the spheroidal squirmer each squirming mode either contributes to the velocity, or contributes to the stresslet. The results are straightforwardly extended to the self-phoresis of axisymmetric, spheroidal, chemically active particles in the case when the phoretic slip approximation holds.
Collapse
Affiliation(s)
- R Pöhnl
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- IVth Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Department of Mechanical Engineering, University of Hawai'i at Manoa, 2540 Dole Street Holmes 302 Honolulu, HI 96822, United States of America
| | - M N Popescu
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - W E Uspal
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- IVth Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Department of Mechanical Engineering, University of Hawai'i at Manoa, 2540 Dole Street Holmes 302 Honolulu, HI 96822, United States of America
| |
Collapse
|
70
|
Loisy A, Eggers J, Liverpool TB. How many ways a cell can move: the modes of self-propulsion of an active drop. SOFT MATTER 2020; 16:3106-3124. [PMID: 32154549 DOI: 10.1039/d0sm00070a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous physical models have been proposed to explain how cell motility emerges from internal activity, mostly focused on how crawling motion arises from internal processes. Here we offer a classification of self-propulsion mechanisms based on general physical principles, showing that crawling is not the only way for cells to move on a substrate. We consider a thin drop of active matter on a planar substrate and fully characterize its autonomous motion for all three possible sources of driving: (i) the stresses induced in the bulk by active components, which allow in particular tractionless motion, (ii) the self-propulsion of active components at the substrate, which gives rise to crawling motion, and (iii) a net capillary force, possibly self-generated, and coupled to internal activity. We determine travelling-wave solutions to the lubrication equations as a function of a dimensionless activity parameter for each mode of motion. Numerical simulations are used to characterize the drop motion over a wide range of activity magnitudes, and explicit analytical solutions in excellent agreement with the simulations are derived in the weak-activity regime.
Collapse
Affiliation(s)
- Aurore Loisy
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
71
|
Kobayashi F, Sasaki Y, Fujii S, Orihara H, Nagaya T. Negative viscosity of liquid crystals in the presence of turbulence: Conductivity dependence, phase diagram, and self-oscillation. Phys Rev E 2020; 101:022702. [PMID: 32168609 DOI: 10.1103/physreve.101.022702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/15/2020] [Indexed: 11/07/2022]
Abstract
Recently, we reported the discovery of enormous negative viscosity of a nematic liquid crystal in the presence of turbulence induced by ac electric fields, which enabled us to observe unique phenomena related to the negative viscosity, such as spontaneous shear flow, hysteresis in flow curves, and self-oscillation [Orihara et al., Phys. Rev. E 99, 012701 (2019)10.1103/PhysRevE.99.012701]. In the present paper, we report the rheological properties of another nematic liquid crystal, which is a homologue of the previous one. The properties of the present liquid crystal are strongly dependent on electrical conductivity. Three samples with different conductivities were prepared by changing the amount of an ionic dopant. It was found that the lowest-conductivity sample without dopant shows no negative viscosity whereas the other ion-doped samples exhibit negative viscosity with strong dependence on the frequency of the ac electric field, consistent with microscopic observations. Phase diagrams of the negative- and positive-viscosity states in the amplitude and frequency plane are constructed to show the conductivity effect. Furthermore, we propose a model to reproduce another type of self-oscillation found in the present study.
Collapse
Affiliation(s)
- Fumiaki Kobayashi
- Division of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
| | - Yuji Sasaki
- Division of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
| | - Shuji Fujii
- Division of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
| | - Hiroshi Orihara
- Division of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
| | - Tomoyuki Nagaya
- Division of Natural Sciences, Oita University, Oita 870-1192, Japan
| |
Collapse
|
72
|
Linkmann M, Marchetti MC, Boffetta G, Eckhardt B. Condensate formation and multiscale dynamics in two-dimensional active suspensions. Phys Rev E 2020; 101:022609. [PMID: 32168685 DOI: 10.1103/physreve.101.022609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 02/05/2020] [Indexed: 11/07/2022]
Abstract
The collective effects of microswimmers in active suspensions result in active turbulence, a spatiotemporally chaotic dynamics at mesoscale, which is characterized by the presence of vortices and jets at scales much larger than the characteristic size of the individual active constituents. To describe this dynamics, Navier-Stokes-based one-fluid models driven by small-scale forces have been proposed. Here, we provide a justification of such models for the case of dense suspensions in two dimensions (2D). We subsequently carry out an in-depth numerical study of the properties of one-fluid models as a function of the active driving in view of possible transition scenarios from active turbulence to large-scale pattern, referred to as condensate, formation induced by the classical inverse energy cascade in Newtonian 2D turbulence. Using a one-fluid model it was recently shown [M. Linkmann et al., Phys. Rev. Lett 122, 214503 (2019)10.1103/PhysRevLett.122.214503] that two-dimensional active suspensions support two nonequilibrium steady states, one with a condensate and one without, which are separated by a subcritical transition. Here, we report further details on this transition such as hysteresis and discuss a low-dimensional model that describes the main features of the transition through nonlocal-in-scale coupling between the small-scale driving and the condensate.
Collapse
Affiliation(s)
- Moritz Linkmann
- Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - M Cristina Marchetti
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Guido Boffetta
- Dipartimento di Fisica and INFN, Università di Torino, via P. Giuria 1, 10125 Torino, Italy
| | - Bruno Eckhardt
- Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany
| |
Collapse
|
73
|
Abstract
We confine a dense suspension of motile Escherichia coli inside a spherical droplet in a water-in-oil emulsion, creating a "bacterially" propelled droplet. We show that droplets move in a persistent random walk, with a persistence time τ∼ 0.3 s, a long-time diffusion coefficient D∼ 0.5 μm2 s-1, and an average instantaneous speed V∼ 1.5 μm s-1 when the bacterial suspension is at the maximum studied concentration. Several droplets are analyzed, varying the drop radius and bacterial concentration. We show that the persistence time, diffusion coefficient and average speed increase with the bacterial concentration inside the drop, but are largely independent of the droplet size. By measuring the turbulent-like motion of the bacteria inside the drop, we demonstrate that the mean velocity of the bacteria near the bottom of the drop, which is separated from a glass substrate by a thin lubrication oil film, is antiparallel to the instantaneous velocity of the drop. This suggests that the driving mechanism is a slippery rolling of the drop over the substrate, caused by the collective motion of the bacteria. Our results show that microscopic organisms can transfer useful mechanical energy to their confining environment, opening the way to the assembly of mesoscopic motors composed of microswimmers.
Collapse
Affiliation(s)
- Gabriel Ramos
- Departamento de Física, FCFM, Universidad de Chile, Av. Blanco Encalada 2008, Santiago, Chile.
| | | | | |
Collapse
|
74
|
A combined rheometry and imaging study of viscosity reduction in bacterial suspensions. Proc Natl Acad Sci U S A 2020; 117:2326-2331. [PMID: 31964833 PMCID: PMC7007524 DOI: 10.1073/pnas.1912690117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Suspending self-propelled "pushers" in a liquid lowers its viscosity. We study how this phenomenon depends on system size in bacterial suspensions using bulk rheometry and particle-tracking rheoimaging. Above the critical bacterial volume fraction needed to decrease the viscosity to zero, [Formula: see text], large-scale collective motion emerges in the quiescent state, and the flow becomes nonlinear. We confirm a theoretical prediction that such instability should be suppressed by confinement. Our results also show that a recent application of active liquid-crystal theory to such systems is untenable.
Collapse
|
75
|
Burkholder EW, Brady JF. Nonlinear microrheology of active Brownian suspensions. SOFT MATTER 2020; 16:1034-1046. [PMID: 31854425 DOI: 10.1039/c9sm01713e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rheological properties of active suspensions are studied via microrheology: tracking the motion of a colloidal probe particle in order to measure the viscoelastic response of the embedding material. The passive probe particle with size R is pulled through the suspension by an external force Fext, which causes it to translate at some speed Uprobe. The bath is comprised of a Newtonian solvent with viscosity ηs and a dilute dispersion of active Brownian particles (ABPs) with size a, characteristic swim speed U0, and a reorientation time τR. The motion of the probe distorts the suspension microstructure, so the bath exerts a reactive force on the probe. In a passive suspension, the degree of distortion is governed by the Péclet number, Pe = Fext/(kBT/a), the ratio of the external force to the thermodynamic restoring force of the suspension. In active suspensions, however, the relevant parameter is Ladv/l = UprobeτR/U0τR∼Fext/Fswim, where Fswim = ζU0 is the swim force that propels the ABPs (ζ is the Stokes drag on a swimmer). When the external forces are weak, Ladv≪l, the autonomous motion of the bath particles leads to "swim-thinning," though the effective suspension viscosity is always greater than ηs. When advection dominates, Ladv≫l, we recover the familiar behavior of the microrheology of passive suspensions. The non-Newtonian behavior for intermediate values of Ladv/l is determined by l/Rc = U0τR/Rc-the ratio of the swimmer's run length l to the geometric length scale associated with interparticle interactions Rc = R + a. The results in this manuscript are approximate as they are based on numerical solutions to mean-field equations that describe the motion of the active bath particles.
Collapse
Affiliation(s)
- Eric W Burkholder
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. and Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
76
|
Recho P, Putelat T, Truskinovsky L. Active gel segment behaving as an active particle. Phys Rev E 2020; 100:062403. [PMID: 31962422 DOI: 10.1103/physreve.100.062403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/14/2022]
Abstract
We reduce a one-dimensional model of an active segment (AS), which is used, for instance, in the description of contraction-driven cell motility, to a zero-dimensional model of an active particle (AP) characterized by two internal degrees of freedom: position and polarity. Both models give rise to hysteretic force-velocity relations showing that an active agent can support two opposite polarities under the same external force and that it can maintain the same polarity while being dragged by external forces with opposite orientations. This double bistability results in a rich dynamic repertoire which we illustrate by studying static, stalled, motile, and periodically repolarizing regimes displayed by an active agent confined in a viscoelastic environment. We show that the AS and AP models can be calibrated to generate quantitatively similar dynamic responses.
Collapse
Affiliation(s)
- P Recho
- LIPhy, CNRS-UMR 5588, Université Grenoble Alpes, F-38000 Grenoble, France
| | - T Putelat
- SAS, Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom.,DEM, Queen's School of Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
| | | |
Collapse
|
77
|
Loisy A, Eggers J, Liverpool TB. Tractionless Self-Propulsion of Active Drops. PHYSICAL REVIEW LETTERS 2019; 123:248006. [PMID: 31922859 DOI: 10.1103/physrevlett.123.248006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 06/10/2023]
Abstract
We report on a new mode of self-propulsion exhibited by compact drops of active liquids on a substrate which, remarkably, is tractionless, i.e., which imparts no mechanical stress locally on the surface. We show, both analytically and by numerical simulation, that the equations of motion for an active nematic drop possess a simple self-propelling solution, with no traction on the solid surface and in which the direction of motion is controlled by the winding of the nematic director field across the drop height. The physics underlying this mode of motion has the same origins as that giving rise to the zero viscosity observed in bacterial suspensions. This topologically protected tractionless self-propusion provides a robust physical mechanism for efficient cell migration in crowded environments like tissues.
Collapse
Affiliation(s)
- Aurore Loisy
- School of Mathematics, University of Bristol, Bristol BS8 1UG, United Kingdom
| | - Jens Eggers
- School of Mathematics, University of Bristol, Bristol BS8 1UG, United Kingdom
| | | |
Collapse
|
78
|
Jeanneret R, Pushkin DO, Polin M. Confinement Enhances the Diversity of Microbial Flow Fields. PHYSICAL REVIEW LETTERS 2019; 123:248102. [PMID: 31922880 DOI: 10.1103/physrevlett.123.248102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Despite their importance in many biological, ecological, and physical processes, microorganismal fluid flows under tight confinement have not been investigated experimentally. Strong screening of Stokelets in this geometry suggests that the flow fields of different microorganisms should be universally dominated by the 2D source dipole from the swimmer's finite-size body. Confinement therefore is poised to collapse differences across microorganisms, which are instead well established in bulk. We combine experiments and theoretical modeling to show that, in general, this is not correct. Our results demonstrate that potentially minute details like microswimmer spinning and the physical arrangement of the propulsion appendages have in fact a leading role in setting qualitative topological properties of the hydrodynamic flow fields of microswimmers under confinement. This is well captured by an effective 2D model, even under relatively weak confinement. These results imply that active confined hydrodynamics is much richer than in bulk and depends in a subtle manner on the size, shape, and propulsion mechanisms of the active components.
Collapse
Affiliation(s)
- Raphaël Jeanneret
- IMEDEA, University of the Balearic Islands, Carrer de Miquel Marquès, 21, 07190 Esporles, Spain
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Dmitri O Pushkin
- Mathematics Department, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Marco Polin
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Centre For Mechanochemical Cell Biology, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
79
|
Dal Cengio S, Levis D, Pagonabarraga I. Linear Response Theory and Green-Kubo Relations for Active Matter. PHYSICAL REVIEW LETTERS 2019; 123:238003. [PMID: 31868450 DOI: 10.1103/physrevlett.123.238003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 05/12/2023]
Abstract
We address the question of how interacting active systems in a nonequilibrium steady state respond to an external perturbation. We establish an extended fluctuation-dissipation theorem for active Brownian particles (ABP), which highlights the role played by the local violation of detailed balance due to activity. By making use of a Markovian approximation we derive closed Green-Kubo expressions for the diffusivity and mobility of ABP and quantify the deviations from the Stokes-Einstein relation. We compute the linear response function to an external force using unperturbed simulations of ABP and compare the results with the analytical predictions of the transport coefficients. Our results show the importance of the interplay between activity and interactions in the departure from equilibrium linear response.
Collapse
Affiliation(s)
- Sara Dal Cengio
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
- CECAM Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
- CECAM Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| |
Collapse
|
80
|
Cupples G, Smith DJ, Hicks MR, Dyson RJ. Oriented suspension mechanics with application to improving flow linear dichroism spectroscopy. Proc Math Phys Eng Sci 2019; 475:20190184. [PMID: 31892831 PMCID: PMC6936618 DOI: 10.1098/rspa.2019.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022] Open
Abstract
Flow linear dichroism is a biophysical spectroscopic technique that exploits the shear-induced alignment of elongated particles in suspension. Motivated by the broad aim of optimizing the sensitivity of this technique, and more specifically by a hand-held synthetic biotechnology prototype for waterborne-pathogen detection, a model of steady and oscillating pressure-driven channel flow and orientation dynamics of a suspension of slender microscopic fibres is developed. The model couples the Fokker-Planck equation for Brownian suspensions with the narrow channel flow equations, the latter modified to incorporate mechanical anisotropy induced by the particles. The linear dichroism signal is estimated through integrating the perpendicular components of the distribution function via an appropriate formula which takes the biaxial nature of the orientation into account. For the specific application of pathogen detection via binding of M13 bacteriophage, it is found that increases in the channel depth are more significant in improving the linear dichroism signal than increases in the channel width. Increasing the channel depth to 2 mm and pressure gradient to 5 × 104 Pa m-1 essentially maximizes the alignment. Oscillating flow can produce nearly equal alignment to steady flow at appropriate frequencies, which has significant potential practical value in the analysis of small sample volumes.
Collapse
Affiliation(s)
- G. Cupples
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| | - D. J. Smith
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| | - M. R. Hicks
- Linear Diagnostics Ltd, BioHub Birmingham, 97 Vincent Drive, Birmingham B15 2SQ, UK
| | - R. J. Dyson
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
81
|
Magnetotactic bacteria in a droplet self-assemble into a rotary motor. Nat Commun 2019; 10:5082. [PMID: 31705050 PMCID: PMC6841940 DOI: 10.1038/s41467-019-13031-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022] Open
Abstract
From intracellular protein trafficking to large-scale motion of animal groups, the physical concepts driving the self-organization of living systems are still largely unraveled. Self-organization of active entities, leading to novel phases and emergent macroscopic properties, recently shed new light on these complex dynamical processes. Here we show that under the application of a constant magnetic field, motile magnetotactic bacteria confined in water-in-oil droplets self-assemble into a rotary motor exerting a torque on the external oil phase. A collective motion in the form of a large-scale vortex, reversable by inverting the field direction, builds up in the droplet with a vorticity perpendicular to the magnetic field. We study this collective organization at different concentrations, magnetic fields and droplet radii and reveal the formation of two torque-generating areas close to the droplet interface. We characterize quantitatively the mechanical energy extractable from this new biological and self-assembled motor.
Collapse
|
82
|
|
83
|
Baker RD, Montenegro-Johnson T, Sediako AD, Thomson MJ, Sen A, Lauga E, Aranson IS. Shape-programmed 3D printed swimming microtori for the transport of passive and active agents. Nat Commun 2019; 10:4932. [PMID: 31666512 PMCID: PMC6821728 DOI: 10.1038/s41467-019-12904-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Through billions of years of evolution, microorganisms mastered unique swimming behaviors to thrive in complex fluid environments. Limitations in nanofabrication have thus far hindered the ability to design and program synthetic swimmers with the same abilities. Here we encode multi-behavioral responses in microscopic self-propelled tori using nanoscale 3D printing. We show experimentally and theoretically that the tori continuously transition between two primary swimming modes in response to a magnetic field. The tori also manipulated and transported other artificial swimmers, bimetallic nanorods, as well as passive colloidal particles. In the first behavioral mode, the tori accumulated and transported nanorods; in the second mode, nanorods aligned along the toriʼs self-generated streamlines. Our results indicate that such shape-programmed microswimmers have a potential to manipulate biological active matter, e.g. bacteria or cells. While there are many demonstrations of self-propelled synthetic particles, there are fewer realisations of multimode swimming for the same particle. Here the authors demonstrate two swimming behaviours in magnetically manipulated microtori and show that these can manipulate other active particles.
Collapse
Affiliation(s)
- Remmi Danae Baker
- Department of Material Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | | | - Anton D Sediako
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Murray J Thomson
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
| | - Igor S Aranson
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Mathematics, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
84
|
Szakasits ME, Saud KT, Mao X, Solomon MJ. Rheological implications of embedded active matter in colloidal gels. SOFT MATTER 2019; 15:8012-8021. [PMID: 31497836 DOI: 10.1039/c9sm01496a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colloidal gels represent an important class of soft matter, in which networks formed due to strong, short-range interactions display solid-like mechanical properties, such as a finite low-frequency elastic modulus. Here we examine the effect of embedded active colloids on the linear viscoelastic moduli of fractal cluster colloidal gels. We find that the autonomous, out-of-equilibrium dynamics of active colloids incorporated into the colloidal network decreases gel elasticity, in contrast to observed stiffening effects of myosin motors in actin networks. Fractal cluster gels are formed by the well-known mechanism of aggregating polystyrene colloids through addition of divalent electrolyte. Active Janus particles with a platinum hemisphere are created from the same polystyrene colloids and homogeneously embedded in the gels at dilute concentration at the time of aggregation. Upon addition of hydrogen peroxide - a fuel that drives the diffusiophoretic motion of the embedded Janus particles - the microdynamics and mechanical rheology change in proportion to the concentration of hydrogen peroxide and the number of active colloids. We propose a theoretical explanation of this effect in which the decrease in modulus is mediated by active motion-induced softening of the inter-particle attraction. Furthermore, we characterize the failure of the fluctuation-dissipation theorem in the active gels by identifying a discrepancy between the frequency-dependent macroscopic viscoelastic moduli and the values predicted by microrheology from measurement of the gel microdynamics. These findings support efforts to engineer gels for autonomous function by tuning the microscopic dynamics of embedded active particles. Such reconfigurable gels, with multi-state mechanical properties, could find application in materials such as paints and coatings, pharmaceuticals, self-healing materials, and soft robotics.
Collapse
Affiliation(s)
- Megan E Szakasits
- Department of Chemical Engineering, University of Michigan, Ann Arbor, USA.
| | - Keara T Saud
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, USA
| | - Michael J Solomon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
85
|
Negro G, Carenza LN, Lamura A, Tiribocchi A, Gonnella G. Rheology of active polar emulsions: from linear to unidirectional and inviscid flow, and intermittent viscosity. SOFT MATTER 2019; 15:8251-8265. [PMID: 31553342 DOI: 10.1039/c9sm01288e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rheological behaviour of an emulsion made of an active polar component and an isotropic passive fluid is studied by lattice Boltzmann methods. Different flow regimes are found by varying the values of the shear rate and extensile activity (occurring, e.g., in microtubule-motor suspensions). By increasing the activity, a first transition occurs from the linear flow regime to spontaneous persistent unidirectional macro-scale flow, followed by another transition either to a (low shear) intermittent flow regime with the coexistence of states with positive, negative, and vanishing apparent viscosity, or to a (high shear) symmetric shear thinning regime. The different behaviours can be explained in terms of the dynamics of the polarization field close to the walls. A maximum entropy production principle selects the most likely states in the intermittent regime.
Collapse
Affiliation(s)
- G Negro
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy.
| | | | | | | | | |
Collapse
|
86
|
Wang X, Shen X, Wang Z, Kong Y. Viscoelasticity variation in a biofilm-mediated Bacillus subtilis suspension induced by adding polyethylene glycol. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:599-608. [PMID: 31280338 DOI: 10.1007/s00249-019-01385-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/27/2019] [Accepted: 07/01/2019] [Indexed: 11/24/2022]
Abstract
Recent experiments show that synthetic polymers can influence the degree of microbial aggregation and the rheological properties of bacterial suspensions, the study of which can help us control biofilm formation. In this article, we add polyethylene glycol (PEG) with various molecular weights and concentrations into two types Bacillus subtilis cell cultures, Luria Broth (LB) and Minimal Salts glutamate glycerol (MSgg), respectively. We first observe cell clusters in cell suspensions with various concentrations of PEG, and measure cluster size in both static and dynamic fluid environments. We find that cells gather together into big clusters and most of the cells are arranged longitudinally; and the large cell clusters are divided into smaller aggregates under fluid shear. We then use a rheometer to measure the viscoelastic properties of various cell cultures, to represent the degree of aggregation of the bacterial suspensions. We find the storage modulus, the loss modulus and the viscosity of bacterial suspensions not only depend on the cell aggregation but also depend on the directionality of cellular motion.
Collapse
Affiliation(s)
- Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China. .,School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Xing Shen
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhaocan Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuhao Kong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
87
|
Carenza LN, Gonnella G, Lamura A, Negro G, Tiribocchi A. Lattice Boltzmann methods and active fluids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:81. [PMID: 31250142 DOI: 10.1140/epje/i2019-11843-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 05/24/2023]
Abstract
We review the state of the art of active fluids with particular attention to hydrodynamic continuous models and to the use of Lattice Boltzmann Methods (LBM) in this field. We present the thermodynamics of active fluids, in terms of liquid crystals modelling adapted to describe large-scale organization of active systems, as well as other effective phenomenological models. We discuss how LBM can be implemented to solve the hydrodynamics of active matter, starting from the case of a simple fluid, for which we explicitly recover the continuous equations by means of Chapman-Enskog expansion. Going beyond this simple case, we summarize how LBM can be used to treat complex and active fluids. We then review recent developments concerning some relevant topics in active matter that have been studied by means of LBM: spontaneous flow, self-propelled droplets, active emulsions, rheology, active turbulence, and active colloids.
Collapse
Affiliation(s)
- Livio Nicola Carenza
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy.
| | - Antonio Lamura
- Istituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 70126, Bari, Italy
| | - Giuseppe Negro
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - Adriano Tiribocchi
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
| |
Collapse
|
88
|
Linkmann M, Boffetta G, Marchetti MC, Eckhardt B. Phase Transition to Large Scale Coherent Structures in Two-Dimensional Active Matter Turbulence. PHYSICAL REVIEW LETTERS 2019; 122:214503. [PMID: 31283308 DOI: 10.1103/physrevlett.122.214503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 06/09/2023]
Abstract
The collective motion of microswimmers in suspensions induce patterns of vortices on scales that are much larger than the characteristic size of a microswimmer, attaining a state called bacterial turbulence. Hydrodynamic turbulence acts on even larger scales and is dominated by inertial transport of energy. Using an established modification of the Navier-Stokes equation that accounts for the small-scale forcing of hydrodynamic flow by microswimmers, we study the properties of a dense suspension of microswimmers in two dimensions, where the conservation of enstrophy can drive an inverse cascade through which energy is accumulated on the largest scales. We find that the dynamical and statistical properties of the flow show a sharp transition to the formation of vortices at the largest length scale. The results show that 2D bacterial and hydrodynamic turbulence are separated by a subcritical phase transition.
Collapse
Affiliation(s)
- Moritz Linkmann
- Fachbereich Physik, Philipps-Universität of Marburg, D-35032 Marburg, Germany
| | - Guido Boffetta
- Dipartimento di Fisica and INFN, Università di Torino, via P. Giuria 1, 10125 Torino, Italy
| | - M Cristina Marchetti
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Bruno Eckhardt
- Fachbereich Physik, Philipps-Universität of Marburg, D-35032 Marburg, Germany
| |
Collapse
|
89
|
Affiliation(s)
- Eric W. Burkholder
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John F. Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
90
|
Asheichyk K, Solon AP, Rohwer CM, Krüger M. Response of active Brownian particles to shear flow. J Chem Phys 2019; 150:144111. [DOI: 10.1063/1.5086495] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kiryl Asheichyk
- 4th Institute for Theoretical Physics, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Alexandre P. Solon
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matiére Condensée, LPTMC, F-75005 Paris, France
| | - Christian M. Rohwer
- 4th Institute for Theoretical Physics, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Matthias Krüger
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
91
|
Nejad MR, Najafi A. Chemotaxis mediated interactions can stabilize the hydrodynamic instabilities in active suspensions. SOFT MATTER 2019; 15:3248-3255. [PMID: 30916708 DOI: 10.1039/c9sm00058e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ordered phases in active suspensions of polar swimmers are under long-wavelength hydrodynamic mediated instabilities. In this article, we show that chemical molecules dissolved in aqueous suspensions, as an unavoidable part of most wet active systems, can mediate long-range interactions and subsequently stabilize the polar phase. Chemoattractants in living suspensions and dissolved molecules in synthesized Janus suspensions are reminiscent of such chemical molecules. Communication between swimmers through the gradients of such chemicals is the foundation of this stabilization mechanism. To classify the stable states of such active systems, we investigate the detailed phase diagrams for two classes of systems with momentum conserving and non-conserving dynamics. Our linear stability analysis shows that the proposed stabilization mechanism can work for swimmers with different dynamical properties, e.g., pushers or pullers and with various static characteristics, e.g., spherical, oblate or prolate geometries.
Collapse
Affiliation(s)
- Mehrana R Nejad
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | | |
Collapse
|
92
|
Colloid Transport in Porous Media: A Review of Classical Mechanisms and Emerging Topics. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01270-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
93
|
Loisy A, Thompson AP, Eggers J, Liverpool TB. Exact results for sheared polar active suspensions with variable liquid crystalline order. J Chem Phys 2019; 150:104902. [PMID: 30876347 DOI: 10.1063/1.5080343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We consider a confined sheared active polar liquid crystal with a uniform orientation and study the effect of variations in the magnitude of polarization. Restricting our analysis to one-dimensional geometries, we demonstrate that with asymmetric boundary conditions, this system is characterized, macroscopically, by a linear shear stress vs. shear strain relationship that does not pass through the origin: At a zero strain rate, the fluid sustains a non-zero stress. Analytic solutions for the polarization, density, and velocity fields are derived for asymptotically large or small systems and are shown by comparison with precise numerical solutions to be good approximations for finite-size systems.
Collapse
Affiliation(s)
- Aurore Loisy
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Anthony P Thompson
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Jens Eggers
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | | |
Collapse
|
94
|
Choudhury U, Singh DP, Qiu T, Fischer P. Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807382. [PMID: 30697826 DOI: 10.1002/adma.201807382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The rheological properties of a colloidal suspension are a function of the concentration of the colloids and their interactions. While suspensions of passive colloids are well studied and have been shown to form crystals, gels, and glasses, examples of energy-consuming "active" colloidal suspensions are still largely unexplored. Active suspensions of biological matter, such as motile bacteria or dense mixtures of active actin-motor-protein mixtures have, respectively, reveals superfluid-like and gel-like states. Attractive inanimate systems for active matter are chemically self-propelled particles. It has so far been challenging to use these swimming particles at high enough densities to affect the bulk material properties of the suspension. Here, it is shown that light-triggered asymmetric titanium dioxide that self-propel, can be obtained in large quantities, and self-organize to make a gram-scale active medium. The suspension shows an activity-dependent tenfold reversible change in its bulk viscosity.
Collapse
Affiliation(s)
- Udit Choudhury
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Zernicke Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Dhruv P Singh
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Tian Qiu
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, Pfaffenwaldring 55, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
95
|
Markovich T, Tjhung E, Cates ME. Shear-Induced First-Order Transition in Polar Liquid Crystals. PHYSICAL REVIEW LETTERS 2019; 122:088004. [PMID: 30932571 DOI: 10.1103/physrevlett.122.088004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 06/09/2023]
Abstract
The hydrodynamic theory of polar liquid crystals is widely used to describe biological active fluids as well as passive molecular materials. Depending on the "shear-alignment parameter", in passive or weakly active polar fluids under external shear, the polar order parameter p is either inclined to the flow at a fixed (Leslie) angle, or rotates continuously. Here, we study the role of an additional "shear-elongation parameter" that has been neglected in the recent literature and causes |p| to change under flow. We show that this effect can give rise to a shear-induced first-order phase transition from isotropic to polar, and significantly change the rheological properties of both active and passive polar fluids.
Collapse
Affiliation(s)
- Tomer Markovich
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Elsen Tjhung
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
96
|
Portela R, Almeida PL, Sobral RG, Leal CR. Motility and cell shape roles in the rheology of growing bacteria cultures. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:26. [PMID: 30810829 DOI: 10.1140/epje/i2019-11787-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Cell shape, size and self-motility appear as determinant intrinsic cell factors in the rheological behavior of living bacterial cultures during the growth process. In this work three different species were considered due to their differences on these intrinsic characteristics: two different strains of Staphylococcus aureus - strain COL and its isogenic cell wall autolysis mutant, RUSAL9 - both non-motile and Escherichia coli and Bacillus subtilis - both presenting intrinsic motility. In situ real-time rheology, was used to characterize the activity of growing bacteria, under steady-shear conditions, in particular the viscosity growth curve was measured, for a constant shear flow rate, presenting for all studied cultures, different and rich flow curves. These complex rheological behaviors are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties, where cell size and shape and intrinsic motility are major players.
Collapse
Affiliation(s)
- R Portela
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO@REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - P L Almeida
- Área Departamental de Física, ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, P-1959-007, Lisboa, Portugal
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - R G Sobral
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO@REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - C R Leal
- Área Departamental de Física, ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, P-1959-007, Lisboa, Portugal.
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
97
|
Du Y, Jiang H, Hou Z. Study of active Brownian particle diffusion in polymer solutions. SOFT MATTER 2019; 15:2020-2031. [PMID: 30724318 DOI: 10.1039/c8sm02292e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The diffusion behavior of an active Brownian particle (ABP) in polymer solutions is studied using Langevin dynamics simulations. We find that the long time diffusion coefficient D can show a non-monotonic dependence on the particle size R if the active force Fa is large enough, wherein a bigger particle would diffuse faster than a smaller one which is quite counterintuitive. By analyzing the short time dynamics in comparison to the passive one, we find that such non-trivial dependence results from the competition between persistent motion of the ABP and the length-scale dependent effective viscosity that the particle experiences in the polymer solution. We have also introduced an effective viscosity ηeff experienced by the ABP phenomenologically. Such an active ηeff is found to be larger than a passive one and strongly depends on R and Fa. In addition, we find that the dependence of D on propelling force Fa presents a good power-law scaling at a fixed R and the scaling factor changes non-monotonically with R. Such results demonstrate that the active process plays rather subtle roles in the diffusion of nano-particles in complex solutions.
Collapse
Affiliation(s)
- Yunfei Du
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | |
Collapse
|
98
|
Guzmán M, Soto R. Nonideal rheology of semidilute bacterial suspensions. Phys Rev E 2019; 99:012613. [PMID: 30780215 DOI: 10.1103/physreve.99.012613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 11/07/2022]
Abstract
The rheology of semidilute bacterial suspensions is studied with the tools of kinetic theory, considering binary interactions, going beyond the ideal gas approximation. Two models for the interactions are considered, which encompass both the steric and short-range interactions. In these, swimmers can either align polarly regardless of the state previous to the collision, or they can align axially, ending up antiparallel if the relative angle between directors is large. In both cases, it is found that an ordered phase develops when increasing the density, where the shear stress oscillates with large amplitudes, when a constant shear rate is imposed. This oscillation disappears for large shear rates in a continuous or discontinuous transition, depending on if the aligning is polar or axial, respectively. For pusher swimmers these nonlinear effects can produce an increase on the shear stress, contrary to the prediction of a viscosity reduction made for the dilute regime with the ideal gas approximation.
Collapse
Affiliation(s)
- Marcelo Guzmán
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| | - Rodrigo Soto
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| |
Collapse
|
99
|
Dey KK. Dynamic Coupling at Low Reynolds Number. Angew Chem Int Ed Engl 2019; 58:2208-2228. [DOI: 10.1002/anie.201804599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Krishna Kanti Dey
- Discipline of PhysicsIndian Institute of Technology Gandhinagar Gandhinagar Gujarat 382355 India
| |
Collapse
|
100
|
Koessel FR, Jabbari-Farouji S. Controlling stability and transport of magnetic microswimmers by an external field. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/125/28001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|