• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4697669)   Today's Articles (7013)
For: Schneider E, Dai L, Topper RQ, Drechsel-Grau C, Tuckerman ME. Stochastic Neural Network Approach for Learning High-Dimensional Free Energy Surfaces. Phys Rev Lett 2017;119:150601. [PMID: 29077427 DOI: 10.1103/physrevlett.119.150601] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 05/27/2023]
Number Cited by Other Article(s)
51
Ceriotti M. Unsupervised machine learning in atomistic simulations, between predictions and understanding. J Chem Phys 2019;150:150901. [PMID: 31005087 DOI: 10.1063/1.5091842] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
52
Capelli R, Bochicchio A, Piccini G, Casasnovas R, Carloni P, Parrinello M. Chasing the Full Free Energy Landscape of Neuroreceptor/Ligand Unbinding by Metadynamics Simulations. J Chem Theory Comput 2019;15:3354-3361. [DOI: 10.1021/acs.jctc.9b00118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
53
Singh AR, Rohr BA, Gauthier JA, Nørskov JK. Predicting Chemical Reaction Barriers with a Machine Learning Model. Catal Letters 2019. [DOI: 10.1007/s10562-019-02705-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
54
Häse F, Fdez Galván I, Aspuru-Guzik A, Lindh R, Vacher M. How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry. Chem Sci 2019;10:2298-2307. [PMID: 30881655 PMCID: PMC6385677 DOI: 10.1039/c8sc04516j] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 01/11/2023]  Open
55
Giri SK, Goswami HP. Nonequilibrium fluctuations of a driven quantum heat engine via machine learning. Phys Rev E 2019;99:022104. [PMID: 30934252 DOI: 10.1103/physreve.99.022104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 11/07/2022]
56
Zaleski DP, Prozument K. Automated assignment of rotational spectra using artificial neural networks. J Chem Phys 2018;149:104106. [DOI: 10.1063/1.5037715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
57
Ahalawat N, Mondal J. Assessment and optimization of collective variables for protein conformational landscape: GB1 β-hairpin as a case study. J Chem Phys 2018;149:094101. [PMID: 30195312 DOI: 10.1063/1.5041073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
58
Cuendet MA, Margul DT, Schneider E, Vogt-Maranto L, Tuckerman ME. Endpoint-restricted adiabatic free energy dynamics approach for the exploration of biomolecular conformational equilibria. J Chem Phys 2018;149:072316. [DOI: 10.1063/1.5027479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]  Open
59
Bejagam KK, Singh S, An Y, Deshmukh SA. Machine-Learned Coarse-Grained Models. J Phys Chem Lett 2018;9:4667-4672. [PMID: 30024761 DOI: 10.1021/acs.jpclett.8b01416] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
60
Zhang L, Han J, Wang H, Car R, E W. DeePCG: Constructing coarse-grained models via deep neural networks. J Chem Phys 2018;149:034101. [PMID: 30037247 DOI: 10.1063/1.5027645] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
61
Wehmeyer C, Noé F. Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics. J Chem Phys 2018;148:241703. [PMID: 29960344 DOI: 10.1063/1.5011399] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
62
Guo AZ, Sevgen E, Sidky H, Whitmer JK, Hubbell JA, de Pablo JJ. Adaptive enhanced sampling by force-biasing using neural networks. J Chem Phys 2018;148:134108. [PMID: 29626875 DOI: 10.1063/1.5020733] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
63
Zhang L, Wang H, E W. Reinforced dynamics for enhanced sampling in large atomic and molecular systems. J Chem Phys 2018;148:124113. [DOI: 10.1063/1.5019675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
64
Sidky H, Whitmer JK. Learning free energy landscapes using artificial neural networks. J Chem Phys 2018;148:104111. [DOI: 10.1063/1.5018708] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
65
Pérez A, Martínez-Rosell G, De Fabritiis G. Simulations meet machine learning in structural biology. Curr Opin Struct Biol 2018;49:139-144. [PMID: 29477048 DOI: 10.1016/j.sbi.2018.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022]
66
Lemke T, Peter C. Neural Network Based Prediction of Conformational Free Energies - A New Route toward Coarse-Grained Simulation Models. J Chem Theory Comput 2017;13:6213-6221. [DOI: 10.1021/acs.jctc.7b00864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
PrevPage 2 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA