51
|
Liu A, Zhu Y, Wang Y, Wang T, Zhao S, Feng K, Li L, Wu P. Molecular identification of phenylalanine ammonia lyase-encoding genes EfPALs and EfPAL2-interacting transcription factors in Euryale ferox. FRONTIERS IN PLANT SCIENCE 2023; 14:1114345. [PMID: 37008508 PMCID: PMC10064797 DOI: 10.3389/fpls.2023.1114345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Flavonoids are one of the most important secondary metabolites in plants, and phenylalanine ammonia-lyase (PAL) is the first rate-limiting enzyme for their biosynthesis. However, detailed information on the regulation of PAL in plants is still little. In this study, PAL in E. ferox was identified and functionally analyzed, and its upstream regulatory network was investigated. Through genome-wide identification, we obtained 12 putative PAL genes from E. ferox. Phylogenetic tree and synteny analysis revealed that PAL in E. ferox was expanded and mostly preserved. Subsequently, enzyme activity assays demonstrated that EfPAL1 and EfPAL2 both catalyzed the production of cinnamic acid from phenylalanine only, with EfPAL2 exhibiting a superior enzyme activity. Overexpression of EfPAL1 and EfPAL2 in Arabidopsis thaliana, respectively, both enhanced the biosynthesis of flavonoids. Furthermore, two transcription factors, EfZAT11 and EfHY5, were identified by yeast one-hybrid library assays as binding to the promoter of EfPAL2, and further luciferase (LUC) activity analysis indicated that EfZAT11 promoted the expression of EfPAL2, while EfHY5 repressed the expression of EfPAL2. These results suggested that EfZAT11 and EfHY5 positively and negatively regulate flavonoid biosynthesis, respectively. Subcellular localization revealed that EfZAT11 and EfHY5 were localized in the nucleus. Our findings clarified the key EfPAL1 and EfPAL2 of flavonoid biosynthesis in E. ferox and established the upstream regulatory network of EfPAL2, which would provide novel information for the study of flavonoid biosynthesis mechanism.
Collapse
Affiliation(s)
- AiLian Liu
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - Yue Zhu
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - YuHao Wang
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - TianYu Wang
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - ShuPing Zhao
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - LiangJun Li
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
52
|
Zhou L, Zawaira A, Lu Q, Yang B, Li J. Transcriptome analysis reveals defense-related genes and pathways during dodder (Cuscuta australis) parasitism on white clover (Trifolium repens). Front Genet 2023; 14:1106936. [PMID: 37007956 PMCID: PMC10060986 DOI: 10.3389/fgene.2023.1106936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Dodders (Cuscuta australis R. Br.) are holo-parasitic stem angiosperms with an extensive host range that have significant ecological and economic potential impact on the ecosystem and the agricultural system. However, how the host plant responds to this biotic stress remains mostly unexplored. To identify the defense-related genes and the pathways in white clover (Trifolium repens L.) induced by dodder parasitism, we performed a comparative transcriptome analysis of the leaf and root tissues from white clover with and without dodder infection by high throughput sequencing. We identified 1,329 and 3,271 differentially expressed genes (DEGs) in the leaf and root tissues, respectively. Functional enrichment analysis revealed that plant-pathogen interaction, plant hormone signal transduction, and phenylpropanoid biosynthesis pathways were significantly enriched. Eight WRKY, six AP2/ERF, four bHLH, three bZIP, three MYB, and three NAC transcription factors showed a close relationship with lignin synthesis-related genes, which defended white clover against dodder parasitism. Real-time quantitative PCR (RT-qPCR) for nine DEGs, further validated the data obtained from transcriptome sequencing. Our results provide new insights into understanding the complex regulatory network behind these parasite-host plant interactions.
Collapse
Affiliation(s)
- Li Zhou
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Alexander Zawaira
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Qiuwei Lu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Beifen Yang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
- *Correspondence: Junmin Li,
| |
Collapse
|
53
|
Tan R, Chen M, Wang L, Zhang J, Zhao S. A tracking work on how Sm4CL2 re-directed the biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2023; 42:297-308. [PMID: 36459184 DOI: 10.1007/s00299-022-02957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Overexpression and antisense expression of Sm4CL2 re-directed the biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a widely used traditional Chinese medicine and its main active ingredients are water-soluble phenolic acids and lipophilic diterpenoids which are produced through the phenylpropanoid pathway and terpenoid pathway, respectively. 4-Coumaric acid: Coenzyme A ligase (4CL) is a key enzyme in the phenylpropanoid metabolism. We had obtained Sm4CL2-overexpressing (Sm4CL2-OE) and antisense Sm4CL2-expressing (anti-Sm4CL2) danshen hairy roots over ten years ago. In the follow-up study, we found that total salvianolic acids in Sm4CL2-OE-4 hairy roots increased to 1.35 times of the control-3, and that in anti-Sm4CL2-1 hairy roots decreased to 37.32% of the control-3, but tanshinones in anti-Sm4CL2-1 was accumulated to 1.77 ± 0.16 mg/g of dry weight, compared to undetectable in Sm4CL2-OE-4 and the control-3 hairy roots. Interestingly, Sm4CL2-OE-4 hairy roots contained more lignin, 1.36 times of the control-3, and enhanced cell wall and xylem lignification. Transcriptomic analysis revealed that overexpression of Sm4CL2 caused the upregulation of other phenylpropanoid pathway genes and antisense Sm4CL2 expression resulted in the downregulation of other phenylpropanoid pathway genes but activated the expression of terpenoid pathway genes like SmCYP76AK5, SmGPPS.SSUII.1 and SmDXS2. Protein-protein interaction analysis suggested that Sm4CL2 might interact with PAL, PAL4, CSE, CCoAOMT and SmCYP84A60, and appeared to play a key role in the interaction network. The tracking work in this study proved that Sm4CL2 could redirect both salvianolic acids and tanshinones biosynthesis possibly through synergistically regulating other pathway genes. It also indicated that genetic modification of plant secondary metabolism with biosynthetic gene might cause other responses through protein-protein interactions.
Collapse
Affiliation(s)
- Ronghui Tan
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinjia Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
54
|
Li W, Hao Z, Yang L, Xia H, Tu Z, Cui Z, Wu J, Li H. Genome-wide identification and characterization of LcCCR13 reveals its potential role in lignin biosynthesis in Liriodendron chinense. FRONTIERS IN PLANT SCIENCE 2023; 13:1110639. [PMID: 36726672 PMCID: PMC9884966 DOI: 10.3389/fpls.2022.1110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Introduction Wood formation is closely related to lignin biosynthesis. Cinnamoyl-CoA reductase (CCR) catalyzes the conversion of cinnamoyl-CoA to cinnamaldehydes, which is the initiation of the lignin biosynthesis pathway and a crucial point in the manipulation of associated traits. Liriodendron chinense is an economically significant timber tree. Nevertheless, the underlying mechanism of wood formation in it remains unknown; even the number of LcCCR family members in this species is unclear. Materials and Results This study aimed to perform a genome-wide identification of genes(s) involved in lignin biosynthesis in L. chinense via RT-qPCR assays and functional verification. Altogether, 13 LcCCR genes were identified that were divided into four major groups based on structural and phylogenetic features. The gene structures and motif compositions were strongly conserved between members of the same groups. Subsequently, the expression patterns analysis based on RNA-seq data indicated that LcCCR5/7/10/12/13 had high expression in the developing xylem at the stem (DXS). Furthermore, the RT-qPCR assays showed that LcCCR13 had the highest expression in the stem as compared to other tissues. Moreover, the overexpression of the LcCCR13 in transgenic tobacco plants caused an improvement in the CCR activity and lignin content, indicating that it plays a key role in lignin biosynthesis in the stems. Discussion Our research lays a foundation for deeper investigation of the lignin synthesis and uncovers the genetic basis of wood formation in L. chinense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
55
|
A Joint Transcriptomic and Metabolomic Analysis Reveals the Regulation of Shading on Lignin Biosynthesis in Asparagus. Int J Mol Sci 2023; 24:ijms24021539. [PMID: 36675053 PMCID: PMC9866179 DOI: 10.3390/ijms24021539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Asparagus belongs to the Liliaceae family and has important economic and pharmacological value. Lignin plays a crucial role in cell wall structural integrity, stem strength, water transport, mechanical support and plant resistance to pathogens. In this study, various biological methods were used to study the mechanism of shading on the asparagus lignin accumulation pathway. The physiological results showed that shading significantly reduced stem diameter and cell wall lignin content. Microstructure observation showed that shading reduced the number of vascular bundles and xylem area, resulting in decreased lignin content, and thus reducing the lignification of asparagus. Cinnamic acid, caffeic acid, ferulic acid and sinapyl alcohol are crucial intermediate metabolites in the process of lignin synthesis. Metabolomic profiling showed that shading significantly reduced the contents of cinnamic acid, caffeic acid, ferulic acid and sinapyl alcohol. Transcriptome profiling identified 37 differentially expressed genes related to lignin, including PAL, C4H, 4CL, CAD, CCR, POD, CCoAOMT, and F5H related enzyme activity regulation genes. The expression levels of POD, CCoAOMT, and CCR genes were significantly decreased under shading treatment, while the expression levels of CAD and F5H genes exhibited no significant difference with increased shading. The downregulation of POD, CCoAOMT genes and the decrease in CCR gene expression levels inhibited the activities of the corresponding enzymes under shading treatment, resulting in decreased downstream content of caffeic acid, ferulic acid, sinaperol, chlorogenic acid and coniferin. A significant decrease in upstream cinnamic acid content was observed with shading, which also led to decreased downstream metabolites and reduced asparagus lignin content. In this study, transcriptomic and metabolomic analysis revealed the key regulatory genes and metabolites of asparagus lignin under shading treatment. This study provides a reference for further understanding the mechanism of lignin biosynthesis and the interaction of related genes.
Collapse
|
56
|
Yao X, Liang X, Chen Q, Liu Y, Wu C, Wu M, Shui J, Qiao Y, Zhang Y, Geng Y. MePAL6 regulates lignin accumulation to shape cassava resistance against two-spotted spider mite. FRONTIERS IN PLANT SCIENCE 2023; 13:1067695. [PMID: 36684737 PMCID: PMC9853075 DOI: 10.3389/fpls.2022.1067695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The two-spotted spider mite (TSSM) is a devastating pest of cassava production in China. Lignin is considered as an important defensive barrier against pests and diseases, several genes participate in lignin biosynthesis, however, how these genes modulate lignin accumulation in cassava and shape TSSM-resistance is largely unknown. METHODS To fill this knowledge gap, while under TSSM infestation, the cassava lignin biosynthesis related genes were subjected to expression pattern analysis followed by family identification, and genes with significant induction were used for further function exploration. RESULTS Most genes involved in lignin biosynthesis were up-regulated when the mite-resistant cassava cultivars were infested by TSSM, noticeably, the MePAL gene presented the most vigorous induction among these genes. Therefore, we paid more attention to dissect the function of MePAL gene during cassava-TSSM interaction. Gene family identification showed that there are 6 MePAL members identified in cassava genome, further phylogenetic analysis, gene duplication, cis-elements and conserved motif prediction speculated that these genes may probably contribute to biotic stress responses in cassava. The transcription profile of the 6 MePAL genes in TSSM-resistant cassava cultivar SC9 indicated a universal up-regulation pattern. To further elucidate the potential correlation between MePAL expression and TSSM-resistance, the most strongly induced gene MePAL6 were silenced using virus-induced gene silencing (VIGS) assay, we found that silencing of MePAL6 in SC9 not only simultaneously suppressed the expression of other lignin biosynthesis genes such as 4-coumarate--CoA ligase (4CL), hydroxycinnamoyltransferase (HCT) and cinnamoyl-CoA reductase (CCR), but also resulted in decrease of lignin content. Ultimately, the suppression of MePAL6 in SC9 can lead to significant deterioration of TSSM-resistance. DISCUSSION This study accurately identified MePAL6 as critical genes in conferring cassava resistance to TSSM, which could be considered as promising marker gene for evaluating cassava resistance to insect pest.
Collapse
Affiliation(s)
- Xiaowen Yao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Xiao Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Qing Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Ying Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Chunling Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Mufeng Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Jun Shui
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yang Qiao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yao Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yue Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| |
Collapse
|
57
|
Wang Z, Ma L, Liu P, Luo Z, Li Z, Wu M, Xu X, Pu W, Huang P, Yang J. Transcription factor NtWRKY33a modulates the biosynthesis of polyphenols by targeting NtMYB4 and NtHCT genes in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111522. [PMID: 36332766 DOI: 10.1016/j.plantsci.2022.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
There are abundant polyphenols in tobacco leaves mainly including chlorogenic acid (CGA), rutin, and scopoletin, which not only influence plant growth, development, and environmental adaptation, but also have a great impact on the industrial utilization of tobacco leaves. Few transcription factors regulating the biosynthesis of polyphenols have been identified in tobacco so far. In this study, two NtWRKY33 genes were identified from N. tabacum genome. NtWRKY33a showed higher transcriptional activity than NtWRKY33b, and encoded a nuclear localized protein. Overexpression and knock-out of NtWRKY33a gene revealed that NtWRKY33a inhibited the accumulation of rutin, scopoletin, and total polyphenols, but meanwhile promoted the biosynthesis of CGA. Chromatin immunoprecipitation and Dual-Luc assays indicated that NtWRKY33a could directly bind to the promoters of NtMYB4 and NtHCT, and thus induced the transcription of these two genes. The contents of polyphenols in ntwrky33a, ntmy4, and ntwrky33a/ntmyb4 mutants further confirmed that the repression of NtWRKY33a on the biosynthesis of rutin, scopoletin, and total polyphenols depends on the activity of NtMYB4. Moreover, the promotion of NtHCT by NtWRKY33a modulates the distribution of metabolism flux into the synthesis of CGA. Ectopic expression of NtWRKY33a inhibit the expression of NtSAUR14, NtSAUR59, NtSAUR66, NtIAA4, NtIAA17, and NtIAA19 genes, indicating that NtWRKY33a might be involved in the regulation of plant auxin response. Our study revealed new functions of NtWRKY33a in regulating the synthesis of polyphenols, and provided a promising target for manipulating polyphenols contents in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Lanxin Ma
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Pingjun Huang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
58
|
Khatri P, Chen L, Rajcan I, Dhaubhadel S. Functional characterization of Cinnamate 4-hydroxylase gene family in soybean (Glycine max). PLoS One 2023; 18:e0285698. [PMID: 37186600 PMCID: PMC10184913 DOI: 10.1371/journal.pone.0285698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Cinnamate 4-hydroxylase (C4H) is the first key cytochrome P450 monooxygenase (P450) enzyme in the phenylpropanoid pathway. It belongs to the CYP73 family of P450 superfamily, and catalyzes the conversion of trans-cinnamic acid to p-coumaric acid. Since p-coumaric acid serves as the precursor for the synthesis of a wide variety of metabolites involved in plant development and stress resistance, alteration in the expression of soybean C4H genes is expected to affect the downstream metabolite levels, and its ability to respond to stress. In this study, we identified four C4H genes in the soybean genome that are distributed into both class I and class II CYP73 family. GmC4H2, GmC4H14 and GmC4H20 displayed tissue- and developmental stage-specific gene expression patterns with their transcript accumulation at the highest level in root tissues. GmC4H10 appears to be a pseudogene as its transcript was not detected in any soybean tissues. Furthermore, protein homology modelling revealed substrate docking only for GmC4H2, GmC4H14 and GmC4H20. To demonstrate the function of GmC4Hs, we modified a cloning vector for the heterologous expression of P450s in yeast, and used it for microsomal protein production and enzyme assay. Our results confirmed that GmC4H2, GmC4H14 and GmC4H20 contain the ability to hydroxylate trans-cinnamic acid with varying efficiencies.
Collapse
Affiliation(s)
- Praveen Khatri
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Ling Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
59
|
Identification and Functional Analysis of CAD Gene Family in Pomegranate ( Punica granatum). Genes (Basel) 2022; 14:genes14010026. [PMID: 36672766 PMCID: PMC9858471 DOI: 10.3390/genes14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
[Objective] Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. The aim of this study was to identify CAD gene family members in pomegranate and its expression correlation with seed hardness. [Methods] Based on the reported CAD sequence of Arabidopsis, the CAD gene family of pomegranate was identified by homologous comparison, and then phylogenetic, molecular characterization, and expression profile analysis were performed. [Results] Pomegranate CAD gene family has 25 members, distributed on seven chromosomes of pomegranate. All pomegranate CAD proteins have similar physical and chemical properties. We divide the family into four groups based on evolutionary relationships. The member of group I, called bona fide CAD, was involved in lignin synthesis. Most of the members of group II were involved in stress resistance. The functions of groups III and IV need to be explored. We found four duplicated modes (whole genome duplication or segmental (WGD), tandem duplication (TD), dispersed duplication (DSD), proximal duplication (PD) in this family; TD (36%) had the largest number of them. We predicted that 20 cis-acting elements were involved in lignin synthesis, stress resistance, and response to various hormones. Gene expression profiles further demonstrated that the PgCAD gene family had multiple functions. [Conclusions] Pomegranate CAD gene family is involved in lignin synthesis of hard-seeded cultivar Hongyushizi and Baiyushizi, but its role in seed hardness of soft-seeded cultivar Tunisia needs to be further studied.
Collapse
|
60
|
Wang Y, Xu J, Zhao W, Li J, Chen J. Genome-wide identification, characterization, and genetic diversity of CCR gene family in Dalbergia odorifera. FRONTIERS IN PLANT SCIENCE 2022; 13:1064262. [PMID: 36600926 PMCID: PMC9806228 DOI: 10.3389/fpls.2022.1064262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Lignin is a complex aromatic polymer plays major biological roles in maintaining the structure of plants and in defending them against biotic and abiotic stresses. Cinnamoyl-CoA reductase (CCR) is the first enzyme in the lignin-specific biosynthetic pathway, catalyzing the conversion of hydroxycinnamoyl-CoA into hydroxy cinnamaldehyde. Dalbergia odorifera T. Chen is a rare rosewood species for furniture, crafts and medicine. However, the CCR family genes in D. odorifera have not been identified, and their function in lignin biosynthesis remain uncertain. METHODS AND RESULTS Here, a total of 24 genes, with their complete domains were identified. Detailed sequence characterization and multiple sequence alignment revealed that the DoCCR protein sequences were relatively conserved. They were divided into three subfamilies and were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that seven DoCCRs were grouped together with functionally characterized CCRs of dicotyledons involved in developmental lignification. Synteny analysis showed that segmental and tandem duplications were crucial in the expansion of CCR family in D. odorifera, and purifying selection emerged as the main force driving these genes evolution. Cis-acting elements in the putative promoter regions of DoCCRs were mainly associated with stress, light, hormones, and growth/development. Further, analysis of expression profiles from the RNA-seq data showed distinct expression patterns of DoCCRs among different tissues and organs, as well as in response to stem wounding. Additionally, 74 simple sequence repeats (SSRs) were identified within 19 DoCCRs, located in the intron or untranslated regions (UTRs), and mononucleotide predominated. A pair of primers with high polymorphism and good interspecific generality was successfully developed from these SSRs, and 7 alleles were amplified in 105 wild D. odorifera trees from 17 areas covering its whole native distribution. DISCUSSION Overall, this study provides a basis for further functional dissection of CCR gene families, as well as breeding improvement for wood properties and stress resistance in D. odorifera.
Collapse
Affiliation(s)
- Yue Wang
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jieru Xu
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Wenxiu Zhao
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jia Li
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Research Institute of Forestry, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| |
Collapse
|
61
|
Akhter S, Sami AA, Toma TI, Jahan B, Islam T. Caffeoyl-CoA 3-O-methyltransferase gene family in jute: Genome-wide identification, evolutionary progression and transcript profiling under different quandaries. FRONTIERS IN PLANT SCIENCE 2022; 13:1035383. [PMID: 36589126 PMCID: PMC9798919 DOI: 10.3389/fpls.2022.1035383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Jute (Corchorus sp.), is a versatile, naturally occurring, biodegradable material that holds the promising possibility of diminishing the extensive use of plastic bags. One of the major components of the cell wall, lignin plays both positive and negative roles in fiber fineness and quality. Although it gives mechanical strength to plants, an excess amount of it is responsible for the diminution of fiber quality. Among various gene families involved in the lignin biosynthesis, Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is the most significant and has remained mostly unexplored. In this study, an extensive in-silico characterization of the CCoAOMT gene family was carried out in two jute species (C. capsularis L. and C. olitoroius L.) by analyzing their structural, functional, molecular and evolutionary characteristics. A total of 6 CCoAOMT gene members were identified in each of the two species using published reference genomes. These two jute species showed high syntenic conservation and the identified CCoAOMT genes formed four clusters in the phylogenetic tree. Histochemical assay of lignin in both jute species could shed light on the deposition pattern in stems and how it changes in response to abiotic stresses. Furthermore, expression profiling using qPCR showed considerable alteration of CCoAOMT transcripts under various abiotic stresses and hormonal treatment. This study will lay a base for further analysis and exploration of target candidates for overexpression of gene silencing using modern biotechnological techniques to enhance the quality of this economically important fiber crop.
Collapse
|
62
|
Chen B, Guo Y, Zhang X, Wang L, Cao L, Zhang T, Zhang Z, Zhou W, Xie L, Wang J, Sun S, Yang C, Zhang Q. Climate-responsive DNA methylation is involved in the biosynthesis of lignin in birch. FRONTIERS IN PLANT SCIENCE 2022; 13:1090967. [PMID: 36531363 PMCID: PMC9757698 DOI: 10.3389/fpls.2022.1090967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Lignin is one of the most important secondary metabolites and essential to the formation of cell walls. Changes in lignin biosynthesis have been reported to be associated with environmental variations and can influence plant fitness and their adaptation to abiotic stresses. However, the molecular mechanisms underlying this association remain unclear. In this study, we evaluated the relations between the lignin biosynthesis and environmental factors and explored the role of epigenetic modification (DNA methylation) in contributing to these relations if any in natural birch. Significantly negative correlations were observed between the lignin content and temperature ranges. Analyzing the transcriptomes of birches in two habitats with different temperature ranges showed that the expressions of genes and transcription factors (TFs) involving lignin biosynthesis were significantly reduced at higher temperature ranges. Whole-genome bisulfite sequencing revealed that promoter DNA methylation of two NAC-domain TFs, BpNST1/2 and BpSND1, may be involved in the inhibition of these gene expressions, and thereby reduced the content of lignin. Based on these results we proposed a DNA methylation-mediated lignin biosynthesis model which responds to environmental factors. Overall, this study suggests the possibility of environmental signals to induce epigenetic variations that result in changes in lignin content, which can aid to develop resilient plants to combat ongoing climate changes or to manipulate secondary metabolite biosynthesis for agricultural, medicinal, or industrial values.
Collapse
Affiliation(s)
- Bowei Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yile Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lishan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lesheng Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zihui Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wei Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Linan Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shanwen Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
63
|
A draft genome of the medicinal plant Cremastra appendiculata (D. Don) provides insights into the colchicine biosynthetic pathway. Commun Biol 2022; 5:1294. [PMID: 36434059 PMCID: PMC9700805 DOI: 10.1038/s42003-022-04229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Cremastra appendiculata (D. Don) Makino is a rare terrestrial orchid with a high market value as an ornamental and Chinese traditional medicinal herb with a wide range of pharmacological properties. The pseudobulbs of C. appendiculata are one of the primary sources of the famous traditional Chinese medicine "Shancigu", which has been clinically used for treating many diseases, especially, as the main component to treat gout. The lack of genetic research and genome data restricts the modern development and clinical use of C. appendiculata. Here, we report a 2.3 Gb chromosome-level genome of C. appendiculata. We identify a series of candidates of 35 candidate genes responsible for colchicine biosynthesis, among which O-methyltransferase (OMT) gene exhibits an important role in colchicine biosynthesis. Co-expression analysis reveal purple and green-yellow module have close relationships with pseudobulb parts and comprise most of the colchicine pathway genes. Overall, our genome data and the candidate genes reported here set the foundation to decipher the colchicine biosynthesis pathways in medicinal plants.
Collapse
|
64
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
65
|
Kim S, Wengier DL, Ragland CJ, Sattely ES. Transcriptional Reactivation of Lignin Biosynthesis for the Heterologous Production of Etoposide Aglycone in Nicotiana benthamiana. ACS Synth Biol 2022; 11:3379-3387. [PMID: 36122905 PMCID: PMC9594330 DOI: 10.1021/acssynbio.2c00289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nicotiana benthamiana is a valuable plant chassis for heterologous production of medicinal plant natural products. This host is well suited for the processing of organelle-localized plant enzymes, and the conservation of the primary metabolism across the plant kingdom often provides required plant-specific precursor molecules that feed a given pathway. Despite this commonality in metabolism, limited precursor supply and/or competing host pathways can interfere with yields of heterologous products. Here, we use transient transcriptional reprogramming of endogenous N. benthamiana metabolism to drastically improve flux through the etoposide pathway derived from the medicinal plant Podophyllum spp. Specifically, coexpression of a single lignin-associated transcription factor, MYB85, with pathway genes results in unprecedented levels of heterologous product accumulation in N. benthamiana leaves: 1 mg/g dry weight (DW) of the etoposide aglycone, 35 mg/g DW (-)-deoxypodophyllotoxin, and 3.5 mg/g DW (-)-epipodophyllotoxin─up to two orders of magnitude above previously reported biosynthetic yields for the etoposide aglycone and eight times higher than what is observed for (-)-deoxypodophyllotoxin in the native medicinal plant. Unexpectedly, transient activation of lignin metabolism by transcription factor overexpression also reduces the production of undesired side products that likely result from competing N. benthamiana metabolism. Our work demonstrates that synthetic activation of lignin biosynthesis in leaf tissue is an effective strategy for optimizing the production of medicinal compounds derived from phenylpropanoid precursors in the plant chassis N. benthamiana. Furthermore, our results highlight the engineering value of MYB85, an early switch in lignin biosynthesis, for on-demand modulation of monolignol flux and support the role of MYB46 as a master regulator of lignin polymer deposition.
Collapse
Affiliation(s)
- Stacie
S. Kim
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Diego L. Wengier
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Carin J. Ragland
- Department
of Biology, Stanford University, Stanford, California 94305, United States
| | - Elizabeth S. Sattely
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States,Howard
Hughes Medical Institute, Stanford University, Stanford, California 94305, United States,
| |
Collapse
|
66
|
Chao N, Huang S, Kang X, Yidilisi K, Dai M, Liu L. Systematic functional characterization of cinnamyl alcohol dehydrogenase family members revealed their functional divergence in lignin biosynthesis and stress responses in mulberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:145-156. [PMID: 35849944 DOI: 10.1016/j.plaphy.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Mulberry (Morus) is used as a feed additive and biofuel materials. Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.95) catalyzes the final step of monolignol biosynthesis and is responsible for various monolignols. Five MaCADs from Morus alba were cloned and functionally characterized in the present study. These MaCADs encoded proteins with 357-364 amino acids, and the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. However, MaCAD1, 2, and 5 shared similar amino acids at substrate binding positions that differed from those possessed by bona fide CADs. MaCAD3 and 4 had conservative substrate binding sites, and both phylogenetic and expression profile analysis indicated they were bona fide CADs involved in lignin biosynthesis. The enzymatic assay showed that MaCAD1 and 5 had a high affinity to p-coumaryl aldehyde. MaCAD4 preferentially used coniferyl aldehyde and sinapyl aldehyde as substrates. His-72 and Tyr-124 in MaCAD1 stabilized p-coumaryl aldehyde, and may have resulted in the substrate preference for p-coumaryl aldehyde. Down-regulation of MaCADs in mulberry showed that MaCAD3/4 were dominant CADs that functioned in monolignol biosynthesis, and decreased MaCAD3/4 resulted in significant decreases of lignin content in both stems and leaves. MaCADs exhibited different expression patterns in response to various stresses, indicating their possible diverse roles. MaCAD2 and MaCAD5 may play positive roles in response to drought and cold stresses, respectively. These results provide a systematic functional analysis of MaCADs in mulberry and an important foundation for the genetic modification of the monolignol pathway in mulberry.
Collapse
Affiliation(s)
- Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Shuai Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Xiaoru Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Keermula Yidilisi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Mingjie Dai
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
67
|
Zhang Y, Shan X, Zhao Q, Shi F. The MicroRNA397a-LACCASE17 module regulates lignin biosynthesis in Medicago ruthenica (L.). FRONTIERS IN PLANT SCIENCE 2022; 13:978515. [PMID: 36061772 PMCID: PMC9434696 DOI: 10.3389/fpls.2022.978515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Mechanical strength is essential for the upright growth habit, which is one of the most important characteristics of terrestrial plants. Lignin, a phenylpropanoid-derived polymer mainly present in secondary cell walls plays critical role in providing mechanical support. Here, we report that the prostrate-stem cultivar of the legume forage Medicago ruthenica cultivar 'Mengnong No. 1' shows compromised mechanical strength compared with the erect-stem cultivar 'Zhilixing'. The erect-stem cultivar, 'Zhilixing' has significantly higher lignin content, leading to higher mechanical strength than the prostrate-stem cultivar. The low abundance of miRNA397a in the Zhiixing cultivar causes reduced cleavage of MrLAC17 transcript, which results in enhanced expression level of MrLAC17 compared to that in the prostrate-stem cultivar Mengnong No. 1. Complementation of the Arabidopsis lac4 lac17 double mutants with MrLAC17 restored the lignin content to wild-type levels, confirming that MrLAC17 perform an exchangeable role with Arabidopsis laccases. LAC17-mediated lignin polymerization is therefore increased in the 'Zhilixing', causing the erect stem phenotype. Our data reveal the importance of the miR397a in the lignin biosynthesis and suggest a strategy for molecular breeding targeting plant architecture in legume forage.
Collapse
Affiliation(s)
- Yutong Zhang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaotong Shan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fengling Shi
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
68
|
Jiang Y, Zhu Q, Yang H, Zhi T, Ren C. Phenylalanine suppresses cell death caused by loss of fumarylacetoacetate hydrolase in Arabidopsis. Sci Rep 2022; 12:13546. [PMID: 35941360 PMCID: PMC9360007 DOI: 10.1038/s41598-022-17819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) catalyzes the final step of Tyrosine (Tyr) degradation pathway essential to animals and the deficiency of FAH causes an inborn lethal disease. In plants, a role of this pathway was unknown until we found that mutation of Short-day Sensitive Cell Death1 (SSCD1), encoding Arabidopsis FAH, results in cell death under short day. Phenylalanine (Phe) could be converted to Tyr and then degraded in both animals and plants. Phe ingestion in animals worsens the disease caused by FAH defect. However, in this study we found that Phe represses cell death caused by FAH defect in plants. Phe treatment promoted chlorophyll biosynthesis and suppressed the up-regulation of reactive oxygen species marker genes in the sscd1 mutant. Furthermore, the repression of sscd1 cell death by Phe could be reduced by α-aminooxi-β-phenylpropionic acid but increased by methyl jasmonate, which inhibits or activates Phe ammonia-lyase catalyzing the first step of phenylpropanoid pathway, respectively. In addition, we found that jasmonate signaling up-regulates Phe ammonia-lyase 1 and mediates the methyl jasmonate enhanced repression of sscd1 cell death by Phe. These results uncovered the relation between chlorophyll biosynthesis, phenylpropanoid pathway and jasmonate signaling in regulating the cell death resulting from loss of FAH in plants.
Collapse
Affiliation(s)
- Yihe Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Zhu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.,Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Tiantian Zhi
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Chunmei Ren
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China. .,Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
69
|
Qiang Z, Sun H, Ge F, Li W, Li C, Wang S, Zhang B, Zhu L, Zhang S, Wang X, Lai J, Qin F, Zhou Y, Fu Y. The transcription factor ZmMYB69 represses lignin biosynthesis by activating ZmMYB31/42 expression in maize. PLANT PHYSIOLOGY 2022; 189:1916-1919. [PMID: 35640133 PMCID: PMC9343001 DOI: 10.1093/plphys/kiac233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
A MYB family transcription factor ZmMYB69 is a transcriptional activator at the upper level of ZmMYB31 and ZmMYB42 in the hierarchical network that controls lignin biosynthesis in maize.
Collapse
Affiliation(s)
- Zhiquan Qiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Honghua Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fanghui Ge
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Changjiang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuwei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100083, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuaisong Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiqing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100083, China
| | | |
Collapse
|
70
|
Qin Y, Li Q, An Q, Li D, Huang S, Zhao Y, Chen W, Zhou J, Liao H. A phenylalanine ammonia lyase from Fritillaria unibracteata promotes drought tolerance by regulating lignin biosynthesis and SA signaling pathway. Int J Biol Macromol 2022; 213:574-588. [PMID: 35643154 DOI: 10.1016/j.ijbiomac.2022.05.161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
Abstract
Drought is one of the key threatening environmental factors for plant and agriculture. Phenylalanine ammonia lyase (PAL) is a key enzyme involved in plant defense against abiotic stress, however, the role of PAL in drought tolerance remains elusive. Here, a PAL member (FuPAL1) containing noncanonical Ala-Ser-Gly triad was isolated from Fritillaria unibracteata, one important alpine pharmaceutical plant. FuPAL1, mainly distributed in cytosol, was more conserved than FuCOMT and FuCHI at both nucleotide and amino acid levels. FuPAL1 was overexpressed in Escherichia coli and the purified recombinant FuPAL1 protein showed catalytic preference on L-Phe than L-Tyr. Homology modeling and site-mutation of FuPAL1 exhibited FuPAL1 took part in the ammonization process by forming MIO-like group, and Phe141, Ser208, Ileu218 and Glu490 played key roles in substrate binding and (or) catalysis. HPLC analysis showed that lignin and salicylic acid levels increased but total flavonoid levels decreased in FuPAL1 transgenic Arabidopsis compared to wild-type plants. Moreover, FuPAL1 transgenic Arabidopsis significantly enhanced its drought tolerance, which suggested that FuPAL1 mediated tolerance to drought by inducing the biosynthesis and accumulation of salicylic acid and lignin. Taken together, our results confirmed that the FuPAL1 played an important role in drought tolerance, and FuPAL1 might be a valuable target for genetic improvement of drought resistance in future.
Collapse
Affiliation(s)
- Yu Qin
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiue Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Dexin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Sipei Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yongyang Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Weijia Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| |
Collapse
|
71
|
Characterization, Expression Profiling, and Biochemical Analyses of the Cinnamoyl-CoA Reductase Gene Family for Lignin Synthesis in Alfalfa Plants. Int J Mol Sci 2022; 23:ijms23147762. [PMID: 35887111 PMCID: PMC9316543 DOI: 10.3390/ijms23147762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Cinnamoyl-CoA reductase (CCR) is a pivotal enzyme in plant lignin synthesis, which has a role in plant secondary cell wall development and environmental stress defense. Alfalfa is a predominant legume forage with excellent quality, but the lignin content negatively affects fodder digestibility. Currently, there is limited information on CCR characteristics, gene expression, and its role in lignin metabolism in alfalfa. In this study, we identified 30 members in the CCR gene family of Medicago sativa. In addition, gene structure, conserved motif, and evolution analysis suggested MsCCR1–7 presumably functioned as CCR, while the 23 MsCCR-likes fell into three categories. The expression patterns of MsCCRs/MsCCR-likes suggested their role in plant development, response to environmental stresses, and phytohormone treatment. These results were consistent with the cis-elements in their promoters. Histochemical staining showed that lignin accumulation gradually deepened with the development, which was consistent with gene expression results. Furthermore, recombinant MsCCR1 and MsCCR-like1 were purified and the kinetic parameters were tested under four substrates. In addition, three-dimensional structure models of MsCCR1 and MsCCR-like1 proteins showed the difference in the substrate-binding motif H212(X)2K215R263. These results will be useful for further application for legume forage quality modification and biofuels industry engineering in the future.
Collapse
|
72
|
Transcriptome of the coralline alga Calliarthron tuberculosum (Corallinales, Rhodophyta) reveals convergent evolution of a partial lignin biosynthesis pathway. PLoS One 2022; 17:e0266892. [PMID: 35834440 PMCID: PMC9282553 DOI: 10.1371/journal.pone.0266892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
The discovery of lignins in the coralline red alga Calliarthron tuberculosum raised new questions about the deep evolution of lignin biosynthesis. Here we present the transcriptome of C. tuberculosum supported with newly generated genomic data to identify gene candidates from the monolignol biosynthetic pathway using a combination of sequence similarity-based methods. We identified candidates in the monolignol biosynthesis pathway for the genes 4CL, CCR, CAD, CCoAOMT, and CSE but did not identify candidates for PAL, CYP450 (F5H, C3H, C4H), HCT, and COMT. In gene tree analysis, we present evidence that these gene candidates evolved independently from their land plant counterparts, suggesting convergent evolution of a complex multistep lignin biosynthetic pathway in this red algal lineage. Additionally, we provide tools to extract metabolic pathways and genes from the newly generated transcriptomic and genomic datasets. Using these methods, we extracted genes related to sucrose metabolism and calcification. Ultimately, this transcriptome will provide a foundation for further genetic and experimental studies of calcifying red algae.
Collapse
|
73
|
Transcriptomic Insight into Viviparous Growth in Water Lily. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8445484. [PMID: 35845943 PMCID: PMC9283058 DOI: 10.1155/2022/8445484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/30/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Water lily is an important ornamental flower plant which is capable of viviparous plantlet development. But no study has been reported on the molecular basis of viviparity in water lily. Hence, we performed a comparative transcriptome study between viviparous water lily Nymphaea micrantha and a nonviviparous species Nymphaea colorata at four developmental stages. The higher expression of highly conserved AUX/IAA, ARF, GH3, and SAUR gene families in N. micrantha compared to N. colorata is predicted to have a major impact on the development and evolution of viviparity in water lily. Likewise, differential regulation of hormone signaling, brassinosteroid, photosynthesis, and energy-related pathways in the two species provide clues of their involvement in viviparity phenomenon. This study revealed the complex mechanism of viviparity trait in water lily. The transcriptomic signatures identified are important basis for future breeding and research of viviparity in water lily and other plant species.
Collapse
|
74
|
Genome-wide analysis of the CAD gene family reveals two bona fide CAD genes in oil palm. 3 Biotech 2022; 12:149. [PMID: 35747504 PMCID: PMC9209623 DOI: 10.1007/s13205-022-03208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 11/01/2022] Open
Abstract
Cinnamyl alcohol dehydrogenase (CAD) is the key enzyme for lignin biosynthesis in plants. In this study, genome-wide analysis was performed to identify CAD genes in oil palm (Elaeis guineensis). Phylogenetic analysis was then conducted to select the bona fide EgCADs. The bona fide EgCAD genes and their respective 5' flanking regions were cloned and analysed. Their expression profiles were evaluated in various organs using RT-PCR. Seven EgCAD genes (EgCAD1-7) were identified and divided into four phylogenetic groups. EgCAD1 and EgCAD2 display high sequence similarities with other bona fide CADs and possess all the signature motifs of the bona fide CAD. They also display similar 3D protein structures. Gene expression analysis showed that EgCAD1 was expressed most abundantly in the root tissues, while EgCAD2 was expressed constitutively in all the tissues studied. EgCAD1 possesses only one transcription start site, while EgCAD2 has five. Interestingly, a TC microsatellite was found in the 5' flanking region of EgCAD2. The 5' flanking regions of EgCAD1 and EgCAD2 contain lignin-associated regulatory elements i.e. AC-elements, and other defence-related motifs, including W-box, GT-1 motif and CGTCA-motif. Altogether, these results imply that EgCAD1 and EgCAD2 are bona fide CAD involved in lignin biosynthesis during the normal development of oil palm and in response to stresses. Our findings shed some light on the roles of the bona fide CAD genes in oil palm and pave the way for manipulating lignin content in oil palm through a genetic approach. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03208-0.
Collapse
|
75
|
Mo F, Li L, Zhang C, Yang C, Chen G, Niu Y, Si J, Liu T, Sun X, Wang S, Wang D, Chen Q, Chen Y. Genome-Wide Analysis and Expression Profiling of the Phenylalanine Ammonia-Lyase Gene Family in Solanum tuberosum. Int J Mol Sci 2022; 23:ijms23126833. [PMID: 35743276 PMCID: PMC9224352 DOI: 10.3390/ijms23126833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Phenylalanine ammonia-lyase is one of the most widely studied enzymes in the plant kingdom. It is a crucial pathway from primary metabolism to significant secondary phenylpropanoid metabolism in plants, and plays an essential role in plant growth, development, and stress defense. Although PAL has been studied in many actual plants, only one report has been reported on potato, one of the five primary staple foods in the world. In this study, 14 StPAL genes were identified in potato for the first time using a genome-wide bioinformatics analysis, and the expression patterns of these genes were further investigated using qRT-PCR. The results showed that the expressions of StPAL1, StPAL6, StPAL8, StPAL12, and StPAL13 were significantly up-regulated under drought and high temperature stress, indicating that they may be involved in the stress defense of potato against high temperature and drought. The expressions of StPAL1, StPAL2, and StPAL6 were significantly up-regulated after MeJa hormone treatment, indicating that these genes are involved in potato chemical defense mechanisms. These three stresses significantly inhibited the expression of StPAL7, StPAL10, and StPAL11, again proving that PAL is a multifunctional gene family, which may give plants resistance to multiple and different stresses. In the future, people may improve critical agronomic traits of crops by introducing other PAL genes. This study aims to deepen the understanding of the versatility of the PAL gene family and provide a valuable reference for further genetic improvement of the potato.
Collapse
Affiliation(s)
- Fangyu Mo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Long Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Chenghui Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Gong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Yang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Jiaxin Si
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Tong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Xinxin Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Shenglan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.C.); (Y.C.)
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (F.M.); (L.L.); (C.Z.); (C.Y.); (G.C.); (Y.N.); (J.S.); (T.L.); (X.S.); (S.W.); (D.W.)
- Correspondence: (Q.C.); (Y.C.)
| |
Collapse
|
76
|
Pyo Y, Moon H, Nugroho ABD, Yang SW, Jung IL, Kim DH. Transcriptome analysis revealed that jasmonic acid biosynthesis/signaling is involved in plant response to Strontium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113552. [PMID: 35483146 DOI: 10.1016/j.ecoenv.2022.113552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Strontium (Sr) has become an increasing global threat for both environment and human health due to its radioactive isotope, Sr-90 which can be found in the nuclear-contaminated soils and water. Although excessive Sr has been known to be toxic to plant growth and development, the molecular mechanisms underlying plant response to Sr stress, especially on the transcription level, remains largely unknown. To date, there is no published genome-wide transcriptome data available for the plant responses to Sr toxicity. Therefore, we aimed to gain insight on the molecular events occurring in plants in Sr toxicity condition by comparing the genome-wide gene expression profiles between control and Sr-treated plants using RNA-seq analysis. A total of 842 differentially expressed genes (DEGs) were identified in response to Sr stress compared to the control. Based on the analysis of DEGs using Gene Ontology (GO), DEGs were significantly enriched in the GO terms of response to salicylic acid (SA), response to jasmonic acid (JA), and defense response to bacterium. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that DEGs were mainly involved in metabolic processes including phenylpropanoid biosynthesis and alpha-linolenic acid metabolism, which is known as a precursor of JA biosynthesis. Furthermore, MapMan analysis revealed that a number of genes related to the biotic stress such as pathogenesis-related protein (PR) genes were highly up-regulated under Sr stress. Taken together, this study revealed that JA biosynthesis and/or signaling might be associated with plant response to Sr stress, and play important roles to maintain proper growth and development under Sr stress.
Collapse
Affiliation(s)
- Youngjae Pyo
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | | | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Il Lae Jung
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea; Department of Radiation Science and Technology, University of Science and Technology (UST), Daejeon 34113, South Korea.
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, South Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
77
|
Li G, Zeng X, Li Y, Li J, Huang X, Zhao D. BRITTLE CULM17, a Novel Allele of TAC4, Affects the Mechanical Properties of Rice Plants. Int J Mol Sci 2022; 23:ijms23105305. [PMID: 35628116 PMCID: PMC9140386 DOI: 10.3390/ijms23105305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Lodging resistance of rice (Oryza sativa L.) has always been a hot issue in agricultural production. A brittle stem mutant, osbc17, was identified by screening an EMS (Ethylmethane sulfonate) mutant library established in our laboratory. The stem segments and leaves of the mutant were obviously brittle and fragile, with low mechanical strength. Examination of paraffin sections of flag leaf and internode samples indicated that the number of cell layers in mechanical tissue of the mutant was decreased compared with the wild type, Pingtangheinuo, and scanning electron microscopy revealed that the mechanical tissue cell walls of the mutant were thinner. Lignin contents of the internodes of mature-stage rice were significantly lower in the mutant than in the wild type. By the MutMap method, we found candidate gene OsBC17, which was located on rice chromosome 2 and had a 2433 bp long coding sequence encoding a protein sequence of 810 amino acid residues with unknown function. According to LC-MS/MS analysis of intermediate products of the lignin synthesis pathway, the accumulation of caffeyl alcohol in the osbc17 mutant was significantly higher than in Pingtangheinuo. Caffeyl alcohol can be polymerized to the catechyl lignin monomer by laccase ChLAC8; however, ChLAC8 and OsBC17 are not homologous proteins, which suggests that the osbc17 gene is involved in this process by regulating laccase expression.
Collapse
Affiliation(s)
- Guangzheng Li
- The State Key Laboratory of Green Pesticide and Agricultural Biological Engineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China;
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Xiaofang Zeng
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Jianrong Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Xiaozhen Huang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Degang Zhao
- The State Key Laboratory of Green Pesticide and Agricultural Biological Engineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China;
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
- Guizhou Plant Conservation Center, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Correspondence:
| |
Collapse
|
78
|
Li X, Huang H, Rizwan HM, Wang N, Jiang J, She W, Zheng G, Pan H, Guo Z, Pan D, Pan T. Transcriptome Analysis Reveals Candidate Lignin-Related Genes and Transcription Factors during Fruit Development in Pomelo ( Citrus maxima). Genes (Basel) 2022; 13:845. [PMID: 35627230 PMCID: PMC9140673 DOI: 10.3390/genes13050845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Juice sac granulation (a physiological disorder) leads to large postharvest losses of pomelo (Citrus maxima). Previous studies have shown that juice sac granulation is closely related to lignin accumulation, while the molecular mechanisms underlying this disorder remain elusive in pomelo. Our results showed that the lignin content in NC (near the core) and FC (far away from the core) juice sacs overall increased from 157 DPA (days post anthesis) to 212 DPA and reached a maximum at 212 DPA. Additionally, the lignin content of NC juice sacs was higher than that of FC juice sacs. In this study, we used transcriptome-based weighted gene co-expression network analysis (WGCNA) to address how lignin formation in NC and FC juice sacs is generated during the development of pomelo. After data assembly and bioinformatic analysis, we found a most correlated module (black module) to the lignin content, then we used the 11 DEGs in this module as hub genes for lignin biosynthesis. Among these DEGs, PAL (phenylalanine ammonia lyase), HCT (hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase), 4CL2 (4-coumarate: CoA ligase), C4H (cinnamate 4-hydroxylase), C3'H (p-coumarate 3-hydroxylase), and CCoAOMT1 (caffeoyl CoA 3-Omethyltransferase) were the most distinct DEGs in granulated juice sacs. Co-expression analysis revealed that the expression patterns of several transcription factors such as MYB, NAC, OFP6, and bHLH130 are highly correlated with lignin formation. In addition, the expression patterns of the DEGs related to lignin biosynthesis and transcription factors were validated by qRT-PCR, and the results were highly concordant with the RNA-seq results. These results would be beneficial for further studies on the molecular mechanism of lignin accumulation in pomelo juice sacs and would help with citrus breeding.
Collapse
Affiliation(s)
- Xiaoting Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing 100083, China;
| | - Hafiz Muhammad Rizwan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Naiyu Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Jingyi Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Wenqin She
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Guohua Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Heli Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Zhixiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Dongming Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| |
Collapse
|
79
|
Peng F, Engel U, Aliyu H, Rudat J. Origin and Evolution of Enzymes with MIO Prosthetic Group: Microbial Coevolution After the Mass Extinction Event. Front Genet 2022; 13:851738. [PMID: 35422843 PMCID: PMC9002059 DOI: 10.3389/fgene.2022.851738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022] Open
Abstract
After major mass extinction events, ancient plants and terrestrial vertebrates were faced with various challenges, especially ultraviolet (UV) light. These stresses probably resulted in changes in the biosynthetic pathways, which employed the MIO (3,5-dihydro-5-methylidene-4H-imidazole-4-one)-dependent enzymes (ammonia-lyase and aminomutase), leading to enhanced accumulation of metabolites for defense against UV radiation, pathogens, and microorganisms. Up to now, the origin and evolution of genes from this superfamily have not been extensively studied. In this report, we perform an analysis of the phylogenetic relations between the members of the aromatic amino acid MIO-dependent enzymes (AAM), which demonstrate that they most probably have a common evolutionary origin from ancient bacteria. In early soil environments, numerous bacterial species with tyrosine ammonia-lyase genes (TAL; EC 4.3.1.23) developed tyrosine aminomutase (TAM; EC 5.4.3.6) activity as a side reaction for competing with their neighbors in the community. These genes also evolved into other TAL-like enzymes, such as histidine ammonia-lyase (HAL, EC 4.3.1.3) and phenylalanine ammonia-lyase (PAL; EC 4.3.1.24), in different bacterial species for metabolite production and accumulation for adaptation to adverse terrestrial environmental conditions. On the other hand, the existence of phenylalanine aminomutase (PAM; EC 5.4.3.10) and phenylalanine/tyrosine ammonia-lyase (PTAL; EC 4.3.1.25) strongly indicates the horizontal gene transfer (HGT) between bacteria, fungi, and plants in symbiotic association after acquiring the PAL gene from their ancestor.
Collapse
Affiliation(s)
- Fei Peng
- Institute of Process Engineering in Life Sciences, II, Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ulrike Engel
- Institute of Process Engineering in Life Sciences, II, Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Habibu Aliyu
- Institute of Process Engineering in Life Sciences, II, Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jens Rudat
- Institute of Process Engineering in Life Sciences, II, Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
80
|
Systematic Analysis and Expression Profiles of the 4-Coumarate: CoA Ligase (4CL) Gene Family in Pomegranate ( Punica granatum L.). Int J Mol Sci 2022; 23:ijms23073509. [PMID: 35408870 PMCID: PMC8999076 DOI: 10.3390/ijms23073509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
4-Coumarate:CoA ligase (4CL, EC6.2.1.12), located at the end of the phenylpropanoid metabolic pathway, regulates the metabolic direction of phenylpropanoid derivatives and plays a pivotal role in the biosynthesis of flavonoids, lignin, and other secondary metabolites. In order to understand the molecular characteristics and potential biological functions of the 4CL gene family in the pomegranate, a bioinformatics analysis was carried out on the identified 4CLs. In this study, 12 Pg4CLs were identified in the pomegranate genome, which contained two conserved amino acid domains: AMP-binding domain Box I (SSGTTGLPKGV) and Box II (GEICIRG). During the identification, it was found that Pg4CL2 was missing Box II. The gene cloning and sequencing verified that this partial amino acid deletion was caused by genome sequencing and splicing errors, and the gene cloning results corrected the Pg4CL2 sequence information in the ‘Taishanhong’ genome. According to the phylogenetic tree, Pg4CLs were divided into three subfamilies, and each subfamily had 1, 1, and 10 members, respectively. Analysis of cis-acting elements found that all the upstream sequences of Pg4CLs contained at least one phytohormone response element. An RNA-seq and protein interaction network analysis suggested that Pg4CL5 was highly expressed in different tissues and may participate in lignin synthesis of pomegranate. The expression of Pg4CL in developing pomegranate fruits was analyzed by quantitative real-time PCR (qRT-PCR), and the expression level of Pg4CL2 demonstrated a decreasing trend, similar to the trend of flavonoid content, indicating Pg4CL2 may involve in flavonoid synthesis and pigment accumulation. Pg4CL3, Pg4CL7, Pg4CL8, and Pg4CL10 were almost not expressed or lowly expressed, the expression level of Pg4CL4 was higher in the later stage of fruit development, suggesting that Pg4CL4 played a crucial role in fruit ripening. The expression levels of 4CL genes were significantly different in various fruit development stages. The results laid the foundation for an in-depth analysis of pomegranate 4CL gene functions.
Collapse
|
81
|
Liu M, Zhang M, Yu S, Li X, Zhang A, Cui Z, Dong X, Fan J, Zhang L, Li C, Ruan Y. A Genome-Wide Association Study Dissects the Genetic Architecture of the Metaxylem Vessel Number in Maize Brace Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:847234. [PMID: 35360304 PMCID: PMC8961028 DOI: 10.3389/fpls.2022.847234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/31/2022] [Indexed: 05/31/2023]
Abstract
Metaxylem vessels in maize brace roots are key tissue, and their number (MVN) affects plant water and inorganic salt transportation and lodging resistance. Dissecting the genetic basis of MVN in maize brace roots can help guide the genetic improvement of maize drought resistance and lodging resistance during late developmental stages. In this study, we used 508 inbred lines with tropical, subtropical, and temperate backgrounds to analyze the genetic architecture of MVN in maize brace roots. The phenotypic variation in MVN in brace roots was evaluated in three environments, which revealed broad natural variation and relative low levels of heritability (h 2 = 0.42). Stiff-stalk lines with a temperate background tended to have higher MVNs than plants in other genetic backgrounds. MVN was significantly positively correlated with plant height, tassel maximum axis length, ear length, and kernel number per row, which indicates that MVN may affect plant morphological development and yield. In addition, MVN was extremely significantly negatively correlated with brace root radius, but significantly positively correlated with brace root angle (BRA), diameter, and number, thus suggesting that the morphological function of some brace root traits may be essentially determined by MVN. Association analysis of MVN in brace roots combined 1,253,814 single nucleotide polymorphisms (SNPs) using FarmCPU revealed a total of nine SNPs significantly associated with MVN at P < 7.96 × 10-7. Five candidate genes for MVN that may participate in secondary wall formation (GRMZM2G168365, GRMZM2G470499, and GRMZM2G028982) and regulate flowering time (GRMZM2G381691 and GRMZM2G449165). These results provide useful information for understanding the genetic basis of MVN in brace root development. Further functional studies of identified candidate genes should help elucidate the molecular pathways that regulate MVN in maize brace roots.
Collapse
Affiliation(s)
- Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Meng Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhenhai Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lijun Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
82
|
Boersma MR, Patrick RM, Jillings SL, Shaipulah NFM, Sun P, Haring MA, Dudareva N, Li Y, Schuurink RC. ODORANT1 targets multiple metabolic networks in petunia flowers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1134-1151. [PMID: 34863006 PMCID: PMC9306810 DOI: 10.1111/tpj.15618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 05/19/2023]
Abstract
Scent bouquets produced by the flowers of Petunia spp. (petunia) are composed of a complex mixture of floral volatile benzenoid and phenylpropanoid compounds (FVBPs), which are specialized metabolites derived from phenylalanine (Phe) through an interconnected network of enzymes. The biosynthesis and emission of high levels of these volatiles requires coordinated transcriptional activation of both primary and specialized metabolic networks. The petunia R2R3-MYB transcription factor ODORANT 1 (ODO1) was identified as a master regulator of FVBP production and emission; however, our knowledge of the direct regulatory targets of ODO1 has remained limited. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq) in petunia flowers, we identify genome-wide ODO1-bound genes that are enriched not only in genes involved in the biosynthesis of the Phe precursor, as previously reported, but also genes associated with the specialized metabolic pathways involved in generating phenylpropanoid intermediates for FVBPs. ODO1-bound genes are also involved in methionine and S-adenosylmethionine metabolism, which could modulate methyl group supplies for certain FVBPs. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and RNA-seq analysis in an ODO1 RNAi knockdown line revealed that ODO1-bound targets are expressed at lower levels when ODO1 is suppressed. A cis-regulatory motif, CACCAACCCC, was identified as a potential binding site for ODO1 in the promoters of genes that are both bound and activated by ODO1, which was validated by in planta promoter reporter assays with wild-type and mutated promoters. Overall, our work presents a mechanistic model for ODO1 controlling an extensive gene regulatory network that contributes to FVBP production to give rise to floral scent.
Collapse
Affiliation(s)
- Maaike R. Boersma
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
- Green BiotechnologyInholland University of Applied SciencesAmsterdam1098 XHthe Netherlands
| | - Ryan M. Patrick
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Sonia L. Jillings
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| | - Nur Fariza M. Shaipulah
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
- Present address:
Faculty of Science and Marine EnvironmentUniversiti Malaysia Terrengganu21030 Kuala NerusTerrenganuMalaysia
| | - Pulu Sun
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| | - Michel A. Haring
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| | - Natalia Dudareva
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
- Department of BiochemistryPurdue UniversityWest LafayetteIN47907USA
| | - Ying Li
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Robert C. Schuurink
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| |
Collapse
|
83
|
Guan M, Li C, Shan X, Chen F, Wang S, Dixon RA, Zhao Q. Dual Mechanisms of Coniferyl Alcohol in Phenylpropanoid Pathway Regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:896540. [PMID: 35599874 PMCID: PMC9121011 DOI: 10.3389/fpls.2022.896540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 05/11/2023]
Abstract
Lignin is a complex phenolic polymer that imparts cell wall strength, facilitates water transport and functions as a physical barrier to pathogens in all vascular plants. Lignin biosynthesis is a carbon-consuming, non-reversible process, which requires tight regulation. Here, we report that a major monomer unit of the lignin polymer can function as a signal molecule to trigger proteolysis of the enzyme L-phenylalanine ammonia-lyase, the entry point into the lignin biosynthetic pathway, and feedback regulate the expression levels of lignin biosynthetic genes. These findings highlight the highly complex regulation of lignin biosynthesis and shed light on the biological importance of monolignols as signaling molecules.
Collapse
Affiliation(s)
- Mengling Guan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Changxuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaotong Shan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fang Chen
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Shufang Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Richard A. Dixon
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Qiao Zhao,
| |
Collapse
|
84
|
Motto M, Sahay S. Energy plants (crops): potential natural and future designer plants. HANDBOOK OF BIOFUELS 2022:73-114. [DOI: 10.1016/b978-0-12-822810-4.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
85
|
Wang X, Chao N, Zhang A, Kang J, Jiang X, Gai Y. Systematic Analysis and Biochemical Characterization of the Caffeoyl Shikimate Esterase Gene Family in Poplar. Int J Mol Sci 2021; 22:ijms222413366. [PMID: 34948162 PMCID: PMC8704367 DOI: 10.3390/ijms222413366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Caffeoyl shikimate esterase (CSE) hydrolyzes caffeoyl shikimate into caffeate and shikimate in the phenylpropanoid pathway. In this study, we performed a systematic analysis of the CSE gene family and investigated the possible roles of CSE and CSE-like genes in Populus. We conducted a genome-wide analysis of the CSE gene family, including functional and phylogenetic analyses of CSE and CSE-like genes, using the poplar (Populus trichocarpa) genome. Eighteen CSE and CSE-like genes were identified in the Populus genome, and five phylogenetic groups were identified from phylogenetic analysis. CSEs in Group Ia, which were proposed as bona fide CSEs, have probably been lost in most monocots except Oryza sativa. Primary functional classification showed that PoptrCSE1 and PoptrCSE2 had putative function in lignin biosynthesis. In addition, PoptrCSE2, along with PoptrCSE12, might also respond to stress with a function in cell wall biosynthesis. Enzymatic assay of PoptoCSE1 (Populus tomentosa), -2 and -12 showed that PoptoCSE1 and -2 maintained CSE activity. PoptoCSE1 and 2 had similar biochemical properties, tissue expression patterns and subcellular localization. Most of the PoptrCSE-like genes are homologs of AtMAGL (monoacylglycerol lipase) genes in Arabidopsis and may function as MAG lipase in poplar. Our study provides a systematic understanding of this novel gene family and suggests the function of CSE in monolignol biosynthesis in Populus.
Collapse
Affiliation(s)
- Xuechun Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Nan Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Aijing Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Jiaqi Kang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-6233-8063
| |
Collapse
|
86
|
Identification of proteins associated with bast fiber growth of ramie by differential proteomic analysis. BMC Genomics 2021; 22:865. [PMID: 34856929 PMCID: PMC8638140 DOI: 10.1186/s12864-021-08195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background Ramie is an important fiber-producing crop in China, and its fibers are widely used as textile materials. Fibers contain specialized secondary cellular walls that are mainly composed of cellulose, hemicelluloses, and lignin. Understanding the mechanism underlying the secondary wall biosynthesis of fibers will benefit the improvement of fiber yield and quality in ramie. Results Here, we performed a proteomic analysis of the bark from the top and middle parts of the stem, where fiber growth is at different stages. We identified 6971 non-redundant proteins from bast bark. Proteomic comparison revealed 983 proteins with differential expression between the two bark types. Of these 983 proteins, 46 were identified as the homolog of known secondary wall biosynthetic proteins of Arabidopsis, indicating that they were potentially associated with fiber growth. Then, we proposed a molecular model for the secondary wall biosynthesis of ramie fiber. Furthermore, interaction analysis of 46 candidate proteins revealed two interacting networks that consisted of eight cellulose biosynthetic enzymes and seven lignin biosynthetic proteins, respectively. Conclusion This study sheds light on the proteomic basis underlying bast fiber growth in ramie, and the identification of many candidates associated with fiber growth provides important basis for understanding the fiber growth in this crop. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08195-9.
Collapse
|
87
|
Lin CY, Sun Y, Song J, Chen HC, Shi R, Yang C, Liu J, Tunlaya-Anukit S, Liu B, Loziuk PL, Williams CM, Muddiman DC, Lin YCJ, Sederoff RR, Wang JP, Chiang VL. Enzyme Complexes of Ptr4CL and PtrHCT Modulate Co-enzyme A Ligation of Hydroxycinnamic Acids for Monolignol Biosynthesis in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2021; 12:727932. [PMID: 34691108 PMCID: PMC8527181 DOI: 10.3389/fpls.2021.727932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Co-enzyme A (CoA) ligation of hydroxycinnamic acids by 4-coumaric acid:CoA ligase (4CL) is a critical step in the biosynthesis of monolignols. Perturbation of 4CL activity significantly impacts the lignin content of diverse plant species. In Populus trichocarpa, two well-studied xylem-specific Ptr4CLs (Ptr4CL3 and Ptr4CL5) catalyze the CoA ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. Subsequently, two 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) mediate the conversion of 4-coumaroyl-CoA to caffeoyl-CoA. Here, we show that the CoA ligation of 4-coumaric and caffeic acids is modulated by Ptr4CL/PtrHCT protein complexes. Downregulation of PtrHCTs reduced Ptr4CL activities in the stem-differentiating xylem (SDX) of transgenic P. trichocarpa. The Ptr4CL/PtrHCT interactions were then validated in vivo using biomolecular fluorescence complementation (BiFC) and protein pull-down assays in P. trichocarpa SDX extracts. Enzyme activity assays using recombinant proteins of Ptr4CL and PtrHCT showed elevated CoA ligation activity for Ptr4CL when supplemented with PtrHCT. Numerical analyses based on an evolutionary computation of the CoA ligation activity estimated the stoichiometry of the protein complex to consist of one Ptr4CL and two PtrHCTs, which was experimentally confirmed by chemical cross-linking using SDX plant protein extracts and recombinant proteins. Based on these results, we propose that Ptr4CL/PtrHCT complexes modulate the metabolic flux of CoA ligation for monolignol biosynthesis during wood formation in P. trichocarpa.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jina Song
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Hsi-Chuan Chen
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Rui Shi
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Chenmin Yang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Sermsawat Tunlaya-Anukit
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Department of Forestry, Beihua University, Jilin, China
| | - Philip L. Loziuk
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Cranos M. Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - David C. Muddiman
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Ying-Chung Jimmy Lin
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Jack P. Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Vincent L. Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
88
|
Kamon E, Noda C, Higaki T, Demura T, Ohtani M. Calcium signaling contributes to xylem vessel cell differentiation via post-transcriptional regulation of VND7 downstream events. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:331-337. [PMID: 34782820 PMCID: PMC8562575 DOI: 10.5511/plantbiotechnology.21.0519a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Secondary cell walls (SCWs) accumulate in specific cell types of vascular plants, notably xylem vessel cells. Previous work has shown that calcium ions (Ca2+) participate in xylem vessel cell differentiation, but whether they function in SCW deposition remains unclear. In this study, we examined the role of Ca2+ in SCW deposition during xylem vessel cell differentiation using Arabidopsis thaliana suspension-cultured cells carrying the VND7-inducible system, in which VND7 activity can be post-translationally upregulated to induce transdifferentiation into protoxylem-type vessel cells. We observed that extracellular Ca2+ concentration was a crucial determinant of differentiation, although it did not have consistent effects on the transcription of VND7-downstream genes as a whole. Increasing the Ca2+ concentration reduced differentiation but the cells could generate the spiral patterning of SCWs. Exposure to a calcium-channel inhibitor partly restored differentiation but resulted in abnormal branched and net-like SCW patterning. These data suggest that Ca2+ signaling participates in xylem vessel cell differentiation via post-transcriptional regulation of VND7-downstream events, such as patterning of SCW deposition.
Collapse
Affiliation(s)
- Eri Kamon
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chihiro Noda
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Kumamoto 860-8555, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
89
|
Chao N, Yu T, Hou C, Liu L, Zhang L. Genome-wide analysis of the lignin toolbox for morus and the roles of lignin related genes in response to zinc stress. PeerJ 2021; 9:e11964. [PMID: 34434666 PMCID: PMC8351576 DOI: 10.7717/peerj.11964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Mulberry (Morus, Moraceae) is an important economic plant with nutritional, medicinal, and ecological values. Lignin in mulberry can affect the quality of forage and the saccharification efficiency of mulberry twigs. The availability of the Morus notabilis genome makes it possible to perform a systematic analysis of the genes encoding the 11 protein families specific to the lignin branch of the phenylpropanoid pathway, providing the core genes for the lignin toolbox in mulberry. We performed genome-wide screening, which was combined with de novo transcriptome data for Morus notabilis and Morus alba variety Fengchi, to identify putative members of the lignin gene families followed by phylogenetic and expression profile analyses. We focused on bona fide clade genes and their response to zinc stress were further distinguished based on expression profiles using RNA-seq and RT-qPCR. We finally identified 31 bona fide genes in Morus notabilis and 25 bona fide genes in Fengchi. The putative function of these bona fide genes was proposed, and a lignin toolbox that comprised 19 genes in mulberry was provided, which will be convenient for researchers to explore and modify the monolignol biosynthesis pathway in mulberry. We also observed changes in the expression of some of these lignin biosynthetic genes in response to stress caused by excess zinc in Fengchi and proposed that the enhanced lignin biosynthesis in lignified organs and inhibition of lignin biosynthesis in leaf is an important response to zinc stress in mulberry.
Collapse
Affiliation(s)
- Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, Jiangsu Province, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Ting Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, Jiangsu Province, China
| | - Chong Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, Jiangsu Province, China
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, Jiangsu Province, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Lin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, Jiangsu Province, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
90
|
Genome Identification and Expression Profiles in Response to Nitrogen Treatment Analysis of the Class I CCoAOMT Gene Family in Populus. Biochem Genet 2021; 60:656-675. [PMID: 34410559 DOI: 10.1007/s10528-021-10112-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Lignin is essential for the characteristics and quality of timber. Nitrogen has significant effects on lignin contents in plants. Nitrogen has been found to affect wood quality in plantations and lignin content in plants. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is an important methyltransferase in lignin biosynthesis. However, the classification of woody plant CCoAOMT gene family members and the regulation mechanism of nitrogen are not clear. Bioinformatics methods were used to predict the members, classification, and transcriptional distribution of the CCoAOMT gene family in Populus trichocarpa. The results showed that there were five PtCCoAOMTs identified, and they could be divided into three sub-groups according to their structural and phylogenetic features. The results of tissue expression specificity analysis showed that: PtCCoAOMT1 was highly expressed in roots and internodes; PtCCoAOMT2 was highly expressed in roots, nodes, and internodes, PtCCoAOMT3 was highly expressed in stems; PtCCoAOMT4 was highly expressed in young leaves, and, PtCCoAOMT5 was highly expressed in roots. Different forms and concentrations of nitrogen had varying effects on the expression patterns of genes in different plant tissue types. The results of real-time PCR showed that the expression levels of PtCCoAOMT1 and PtCCoAOMT2 in stems increased significantly under different forms of nitrogen. PtCCoAOMT3 and PtCCoAOMT4 were induced by nitrate nitrogen in upper stems and lower leaves, respectively. PtCCoAOMT4 and PtCCoAOMT5 were induced by different concentrations of nitrate nitrogen in lower stems and roots, respectively. These results could provide valuable information for revealing the differences between functions and expression patterns of the various CCoAOMT gene family members under different forms and concentrations of exogenous nitrogen in poplar.
Collapse
|
91
|
Wan J, He M, Hou Q, Zou L, Yang Y, Wei Y, Chen X. Cell wall associated immunity in plants. STRESS BIOLOGY 2021; 1:3. [PMID: 37676546 PMCID: PMC10429498 DOI: 10.1007/s44154-021-00003-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/13/2021] [Indexed: 09/08/2023]
Abstract
The plant cell wall is the first physical and defensive barrier against pathogens. The plant cell wall usually undergoes dynamic remodeling as an immune response to prevent infection by pathogens. In this review, we summarize advances on relationship between cell wall and immunity in plants. In particular, we outline current progresses regarding the regulation of the cell wall components, including cellulose, hemicellulose, pectin and lignin, on plant disease resistance. We also discuss the impacts of cell wall-derived cellodextrin, oligogalacturonic acid and xyloglucan/xylan oligosaccharides as potent elicitors or signal molecules to trigger plant immune response. We further propose future studies on dissecting the molecular regulation of cell wall on plant immunity, which have potentials in practical application of crop breeding aiming at improvement of plant disease resistance.
Collapse
Affiliation(s)
- Jiangxue Wan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lijuan Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, Sichuan, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yan Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
92
|
Yao T, Feng K, Xie M, Barros J, Tschaplinski TJ, Tuskan GA, Muchero W, Chen JG. Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:704697. [PMID: 34484267 PMCID: PMC8416159 DOI: 10.3389/fpls.2021.704697] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/19/2021] [Indexed: 05/19/2023]
Abstract
The phenylpropanoid pathway serves as a rich source of metabolites in plants and provides precursors for lignin biosynthesis. Lignin first appeared in tracheophytes and has been hypothesized to have played pivotal roles in land plant colonization. In this review, we summarize recent progress in defining the lignin biosynthetic pathway in lycophytes, monilophytes, gymnosperms, and angiosperms. In particular, we review the key structural genes involved in p-hydroxyphenyl-, guaiacyl-, and syringyl-lignin biosynthesis across plant taxa and consider and integrate new insights on major transcription factors, such as NACs and MYBs. We also review insight regarding a new transcriptional regulator, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, canonically identified as a key enzyme in the shikimate pathway. We use several case studies, including EPSP synthase, to illustrate the evolution processes of gene duplication and neo-functionalization in lignin biosynthesis. This review provides new insights into the genetic engineering of the lignin biosynthetic pathway to overcome biomass recalcitrance in bioenergy crops.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Jaime Barros
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
93
|
Li X, Jiang J, Chen Z, Jackson A. Transcriptomic, Proteomic and Metabolomic Analysis of Flavonoid Biosynthesis During Fruit Maturation in Rubus chingii Hu. FRONTIERS IN PLANT SCIENCE 2021; 12:706667. [PMID: 34447402 PMCID: PMC8384110 DOI: 10.3389/fpls.2021.706667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 05/09/2023]
Abstract
Rubus chingii HU, is a medicinal and nutritious fruit, which is very rich in flavonoids. However, the biosynthesis of its flavonoids is poorly understood. This study examined flavonoids and the genes/proteins at four fruit ripening phases using LC-MS/MS and qPCR. Six major kinds of anthocyanins, primarily consisted of flavanol-anthocyanins, which differed in form or concentration from other Rubus species. In contrast to other known raspberries species, R. chingii had a decline in flavonoids during fruit ripening, which was due to down-regulation of genes and proteins involved in phenylpropanoid and flavonoid biosynthesis. Unexpectedly, anthocyanin also continuously decreased during fruit maturation. This suggests that anthocyanins are not responsible for the fruit's reddish coloration. Flavanol-anthocyanins were derived from the proanthocyanidin pathway, which consumed two flavonoid units both produced through the same upstream pathway. Their presence indicates a reduction in the potential biosynthesis of anthocyanin production. Also, the constantly low expression of RchANS gene resulted in low levels of anthocyanin biosynthesis. The lack of RchF3'5'H gene/protein hindered the production of delphinidin glycosides. Flavonoids primarily comprising of quercetin/kaempferol-glycosides were predominately located at fruit epidermal-hair and placentae. The proportion of receptacle/drupelets changes with the maturity of the fruit and may be related to a decrease in the content of flavonoids per unit mass as the fruit matures. The profile and biosynthesis of R. chingii flavonoids are unique to Rubus. The unique flavonol pathways of R. chingii could be used to broaden the genetic diversity of raspberry cultivars and to improve their fruit quality.
Collapse
Affiliation(s)
- Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Zhen Chen
- College of Life Sciences, Taizhou University, Taizhou, China
| | - Aaron Jackson
- Independent Researcher, Stuttgart, AR, United States
| |
Collapse
|
94
|
Saha P, Lin F, Thibivilliers S, Xiong Y, Pan C, Bartley LE. Phenylpropanoid Biosynthesis Gene Expression Precedes Lignin Accumulation During Shoot Development in Lowland and Upland Switchgrass Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:640930. [PMID: 34434200 PMCID: PMC8380989 DOI: 10.3389/fpls.2021.640930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Efficient conversion of lignocellulosic biomass into biofuels is influenced by biomass composition and structure. Lignin and other cell wall phenylpropanoids, such as para-coumaric acid (pCA) and ferulic acid (FA), reduce cell wall sugar accessibility and hamper biochemical fuel production. Toward identifying the timing and key parameters of cell wall recalcitrance across different switchgrass genotypes, this study measured cell wall composition and lignin biosynthesis gene expression in three switchgrass genotypes, A4 and AP13, representing the lowland ecotype, and VS16, representing the upland ecotype, at three developmental stages [Vegetative 3 (V3), Elongation 4 (E4), and Reproductive 3 (R3)] and three segments (S1-S3) of the E4 stage under greenhouse conditions. A decrease in cell wall digestibility and an increase in phenylpropanoids occur across development. Compared with AP13 and A4, VS16 has significantly less lignin and greater cell wall digestibility at the V3 and E4 stages; however, differences among genotypes diminish by the R3 stage. Gini correlation analysis across all genotypes revealed that lignin and pCA, but also pectin monosaccharide components, show the greatest negative correlations with digestibility. Lignin and pCA accumulation is delayed compared with expression of phenylpropanoid biosynthesis genes, while FA accumulation coincides with expression of these genes. The different cell wall component accumulation profiles and gene expression correlations may have implications for system biology approaches to identify additional gene products with cell wall component synthesis and regulation functions.
Collapse
Affiliation(s)
- Prasenjit Saha
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Fan Lin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Sandra Thibivilliers
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Yi Xiong
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- School of Computer Science, University of Oklahoma, Norman, OK, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Research Institute for the Sustainable Humanosphere, Kyoto University, Kyoto, Japan
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
95
|
Wang Y, Li F, He Q, Bao Z, Zeng Z, An D, Zhang T, Yan L, Wang H, Zhu S, Liu T. Genomic analyses provide comprehensive insights into the domestication of bast fiber crop ramie (Boehmeria nivea). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:787-800. [PMID: 33993558 DOI: 10.1111/tpj.15346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 05/27/2023]
Abstract
Ramie (Boehmeria nivea) is an economically important natural fiber-producing crop that has been cultivated for thousands of years in China; however, the evolution of this crop remains largely unknown. Here, we report a ramie domestication analysis based on genome assembly and resequencing of cultivated and wild accessions. Two chromosome-level genomes representing wild and cultivated ramie were assembled de novo. Numerous structural variations between two assemblies, together with the genetic variations from population resequencing, constituted a comprehensive genomic variation map for ramie. Domestication analysis identified 71 high-confidence selective sweeps comprising 320 predicted genes, and 29 genes from sweeps were associated with fiber growth in the expression. In addition, we identified seven genetic loci associated with the fiber yield trait in the segregated population derived from the crossing of two assembled accessions, and two of which showed an overlap with the selective sweeps. These findings indicated that bast fiber traits were focused on during the domestication history of ramie. This study sheds light on the domestication of ramie and provides a valuable resource for biological and breeding studies of this important crop.
Collapse
Affiliation(s)
- Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Western Road of Xiajiahu, Changsha, 410205, China
| | - Fu Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Western Road of Xiajiahu, Changsha, 410205, China
| | - Qiaoyun He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Western Road of Xiajiahu, Changsha, 410205, China
| | - Zhigui Bao
- Shanghai OE Biotech. Co., Ltd, No. 138, Road of Xinjun, Shanghai, 201100, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Western Road of Xiajiahu, Changsha, 410205, China
| | - Dong An
- Shanghai OE Biotech. Co., Ltd, No. 138, Road of Xinjun, Shanghai, 201100, China
| | - Ting Zhang
- Shanghai OE Biotech. Co., Ltd, No. 138, Road of Xinjun, Shanghai, 201100, China
| | - Li Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Western Road of Xiajiahu, Changsha, 410205, China
| | - Hengyun Wang
- Shanghai OE Biotech. Co., Ltd, No. 138, Road of Xinjun, Shanghai, 201100, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Western Road of Xiajiahu, Changsha, 410205, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Western Road of Xiajiahu, Changsha, 410205, China
| |
Collapse
|
96
|
Yaya Lancheros ML, Rai KM, Balasubramanian VK, Dampanaboina L, Mendu V, Terán W. De novo transcriptome analysis of white teak (Gmelina arborea Roxb) wood reveals critical genes involved in xylem development and secondary metabolism. BMC Genomics 2021; 22:494. [PMID: 34215181 PMCID: PMC8252223 DOI: 10.1186/s12864-021-07777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gmelina arborea Roxb is a fast-growing tree species of commercial importance for tropical countries due to multiple industrial uses of its wood. Wood is primarily composed of thick secondary cell walls of xylem cells which imparts the strength to the wood. Identification of the genes involved in the secondary cell wall biosynthesis as well as their cognate regulators is crucial to understand how the production of wood occurs and serves as a starting point for developing breeding strategies to produce varieties with improved wood quality, better paper pulping or new potential uses such as biofuel production. In order to gain knowledge on the molecular mechanisms and gene regulation related with wood development in white teak, a de novo sequencing and transcriptome assembly approach was used employing secondary cell wall synthesizing cells from young white teak trees. RESULTS For generation of transcriptome, RNA-seq reads were assembled into 110,992 transcripts and 49,364 genes were functionally annotated using plant databases; 5071 GO terms and 25,460 SSR markers were identified within xylem transcripts and 10,256 unigenes were assigned to KEGG database in 130 pathways. Among transcription factor families, C2H2, C3H, bLHLH and MYB were the most represented in xylem. Differential gene expression analysis using leaves as a reference was carried out and a total of 20,954 differentially expressed genes were identified including monolignol biosynthetic pathway genes. The differential expression of selected genes (4CL, COMT, CCoAOMT, CCR and NST1) was validated using qPCR. CONCLUSIONS We report the very first de novo transcriptome of xylem-related genes in this tropical timber species of commercial importance and constitutes a valuable extension of the publicly available transcriptomic resource aimed at fostering both basic and breeding studies.
Collapse
Affiliation(s)
- Mary Luz Yaya Lancheros
- Department of Biology, Pontificia Universidad Javeriana, Carrera 7 N° 43-82, Bogotá, 110231, Colombia
| | - Krishan Mohan Rai
- Department of Plant and Soil Sciences, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Vimal Kumar Balasubramanian
- Department of Plant and Soil Sciences, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lavanya Dampanaboina
- Department of Plant and Soil Sciences, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| | - Venugopal Mendu
- Department of Plant and Soil Sciences, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| | - Wilson Terán
- Department of Biology, Pontificia Universidad Javeriana, Carrera 7 N° 43-82, Bogotá, 110231, Colombia.
| |
Collapse
|
97
|
Chen H, Fang R, Deng R, Li J. The OsmiRNA166b-OsHox32 pair regulates mechanical strength of rice plants by modulating cell wall biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1468-1480. [PMID: 33560572 PMCID: PMC8313131 DOI: 10.1111/pbi.13565] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 05/20/2023]
Abstract
The plant cell wall provides mechanical strength to support plant growth and development and to determine plant architecture. Cellulose and mixed-linkage glucan (MLG) present in primary cell wall, whereas cellulose, lignin and hemicellulose exist in secondary cell wall. Biosynthesis of the cell wall biopolymers needs the coordinated transcriptional regulation of all the biosynthetic genes. The module of OsmiR166b-OsHox32 regulates expression levels of the genes related to biosynthesis of MLG, cellulose and lignin. Transgenic plants knocking down miR166b (STTM166b) by short tandem target mimic (STTM) technology or overexpressing OsHox32 (OEHox32) showed drooping leaves and brittle culms. Due to accumulation of less lignin and cellulose, the cell wall thickness of STTM166b and OEHox32 plants was reduced when compared to that of wild-type plants. Overexpression of miR166b (OE166b) in rice plants or knocking down of OsHox32 by RNA interference (RNAiHox32) led to increased thickness of cell walls and enhanced mechanical strength of culms. Molecular analyses showed that OsmiR166b-OsHox32 pair regulates cell wall-related gene expression. OsHox32 binds to the promoters of OsCAD2 and OsCESA7 to suppress the expression levels of these two genes. The suppression of OsCAD2 is synergistic when OsHox32 is co-expressed with OSH15 (Oryza sativa homeobox 15). OsHox32 interacts with OSH15, and the START domain of OsHox32, harbouring the miR166b cleavage site, is required for the interaction of these two proteins. Our results demonstrate that OsmiR166b-OsHox32 pair plays important roles not only in plant growth and development but also in plant architecture by regulating the cell wall-related gene expression.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruiqiu Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Institute of Maize and Featured Upland CropsZhejiang Academy of Agricultural SciencesDongyangZhejiangChina
| | - Rufang Deng
- Public Laboratory of SciencesSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Jianxiong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of AgricultureGuangxi UniversityNanningChina
| |
Collapse
|
98
|
Qu G, Peng D, Yu Z, Chen X, Cheng X, Yang Y, Ye T, Lv Q, Ji W, Deng X, Zhou B. Advances in the role of auxin for transcriptional regulation of lignin biosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:743-754. [PMID: 33663680 DOI: 10.1071/fp20381] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Lignin is a natural polymer interlaced with cellulose and hemicellulose in secondary cell walls (SCWs). Auxin acts via its signalling transduction to regulate most of plant physiological processes. Lignification responds to auxin signals likewise and affects the development of anther and secondary xylem in plants. In this review, the research advances of AUXIN RESPONSE FACTOR (ARF)-dependent signalling pathways regulating lignin formation are discussed in detail. In an effort to facilitate the understanding of several key regulators in this process, we present a regulatory framework that comprises protein-protein interactions at the top and protein-gene regulation divided into five tiers. This characterises the regulatory roles of auxin in lignin biosynthesis and links auxin signalling transduction to transcriptional cascade of lignin biosynthesis. Our works further point to several of significant problems that need to be resolved in the future to gain a better understanding of the underlying mechanisms through which auxin regulates lignin biosynthesis.
Collapse
Affiliation(s)
- Gaoyi Qu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and Forestry Biotechnology Hunan Key Laboratories, Hunan Changsha, 410004, China
| | - Ziqin Yu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Xinling Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Xinrui Cheng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Youzhen Yang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Tao Ye
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Wenjun Ji
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Xiangwen Deng
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha 410004, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha 410004, Hunan, China; and Forestry Biotechnology Hunan Key Laboratories, Hunan Changsha, 410004, China; and Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410018, Changsha, China; and Corresponding author.
| |
Collapse
|
99
|
Yu H, Li D, Yang D, Xue Z, Li J, Xing B, Yan K, Han R, Liang Z. SmKFB5 protein regulates phenolic acid biosynthesis by controlling the degradation of phenylalanine ammonia-lyase in Salvia miltiorrhiza. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4915-4929. [PMID: 33961691 DOI: 10.1093/jxb/erab172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Phenolic acids are the major secondary metabolites and significant bioactive constituents of the medicinal plant Salvia miltiorrhiza. Many enzyme-encoding genes and transcription factors involved in the biosynthesis of phenolic acids have been identified, but the underlying post-translational regulatory mechanisms are poorly understood. Here, we demonstrate that the S. miltiorrhiza Kelch repeat F-box protein SmKFB5 physically interacts with three phenylalanine ammonia-lyase (PAL) isozymes and mediates their proteolytic turnover via the ubiquitin-26S proteasome pathway. Disturbing the expression of SmKFB5 reciprocally affected the abundance of SmPAL protein and the accumulation of phenolic acids, suggesting that SmKFB5 is a post-translational regulator responsible for the turnover of PAL and negatively controlling phenolic acids. Furthermore, we discovered that treatment of the hairy root of S. miltiorrhiza with methyl jasmonate suppressed the expression of SmKFB5 while inducing the transcription of SmPAL1 and SmPAL3. These data suggested that methyl jasmonate consolidated both transcriptional and post-translational regulation mechanisms to enhance phenolic acid biosynthesis. Taken together, our results provide insights into the molecular mechanisms by which SmKFB5 mediates the regulation of phenolic acid biosynthesis by jasmonic acid, and suggest valuable targets for plant breeders in tailoring new cultivars.
Collapse
Affiliation(s)
- Haizheng Yu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dongyue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dongfeng Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jie Li
- Department of Metabolic Biology, John Innes Centre, Norwich, UK
| | - Bingcong Xing
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Kaijing Yan
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin, China
| | - Ruilian Han
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
100
|
He Q, Zeng Z, Li F, Huang R, Wang Y, Liu T. Ubiquitylome analysis reveals the involvement of ubiquitination in the bast fiber growth of ramie. PLANTA 2021; 254:1. [PMID: 34081200 DOI: 10.1007/s00425-021-03652-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
A total of 249 sites from 197 proteins showed a differential ubiquitination level in the fiber development of ramie barks. The function of two differentially ubiquitinated proteins for fiber growth was demonstrated. Ubiquitination is one of the most common post-translational modifications of proteins, and it plays essential roles in plant growth and development. However, the involvement of ubiquitination in the growth of plant fibers remains largely unknown. We compared the ubiquitylome of the top and middle stems of ramie bark, with different fiber growth stages. We identified 249 differentially ubiquitinated sites in 197 proteins in fiber-developing barks in the stems and found that seven were homologs of Arabidopsis proteins associated with fiber growth. Overexpression of the differentially ubiquitinated proteins, RWA3 homolog whole_GLEAN_10024150 and MYB protein whole_GLEAN_10015497, significantly promoted fiber growth in transgenic Arabidopsis, indicating their involvement in this process. We also found that the abundance of these proteins decreased when their ubiquitination levels increased and vice versa in the fiber-developing bark. These results indicated that the abundance of these two proteins was adjusted through ubiquitin-dependent degradation. Collectively, our findings provide important insights into the involvement of ubiquitination in the growth of ramie fibers.
Collapse
Affiliation(s)
- Qiaoyun He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Fu Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Renyan Huang
- Hunan Institute of Plant Protection, Changsha, 410125, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|