51
|
Devis D, Firth SM, Liang Z, Byrne ME. Dosage Sensitivity of RPL9 and Concerted Evolution of Ribosomal Protein Genes in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1102. [PMID: 26734020 PMCID: PMC4679983 DOI: 10.3389/fpls.2015.01102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/22/2015] [Indexed: 05/19/2023]
Abstract
The ribosome in higher eukaryotes is a large macromolecular complex composed of four rRNAs and eighty different ribosomal proteins. In plants, each ribosomal protein is encoded by multiple genes. Duplicate genes within a family are often necessary to provide a threshold dose of a ribosomal protein but in some instances appear to have non-redundant functions. Here, we addressed whether divergent members of the RPL9 gene family are dosage sensitive or whether these genes have non-overlapping functions. The RPL9 family in Arabidopsis thaliana comprises two nearly identical members, RPL9B and RPL9C, and a more divergent member, RPL9D. Mutations in RPL9C and RPL9D genes lead to delayed growth early in development, and loss of both genes is embryo lethal, indicating that these are dosage-sensitive and redundant genes. Phylogenetic analysis of RPL9 as well as RPL4, RPL5, RPL27a, RPL36a, and RPS6 family genes in the Brassicaceae indicated that multicopy ribosomal protein genes have been largely retained following whole genome duplication. However, these gene families also show instances of tandem duplication, small scale deletion, and evidence of gene conversion. Furthermore, phylogenetic analysis of RPL9 genes in angiosperm species showed that genes within a species are more closely related to each other than to RPL9 genes in other species, suggesting ribosomal protein genes undergo convergent evolution. Our analysis indicates that ribosomal protein gene retention following whole genome duplication contributes to the number of genes in a family. However, small scale rearrangements influence copy number and likely drive concerted evolution of these dosage-sensitive genes.
Collapse
|
52
|
Islas-Flores T, Rahman A, Ullah H, Villanueva MA. The Receptor for Activated C Kinase in Plant Signaling: Tale of a Promiscuous Little Molecule. FRONTIERS IN PLANT SCIENCE 2015; 6:1090. [PMID: 26697044 PMCID: PMC4672068 DOI: 10.3389/fpls.2015.01090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/20/2015] [Indexed: 05/21/2023]
Abstract
Two decades after the first report of the plant homolog of the Receptor for Activated C Kinase 1 (RACK1) in cultured tobacco BY2 cells, a significant advancement has been made in the elucidation of its cellular and molecular role. The protein is now implicated in many biological functions including protein translation, multiple hormonal responses, developmental processes, pathogen infection resistance, environmental stress responses, and miRNA production. Such multiple functional roles are consistent with the scaffolding nature of the plant RACK1 protein. A significant advance was achieved when the β-propeller structure of the Arabidopsis RACK1A isoform was elucidated, thus revealing that its conserved seven WD repeats also assembled into this typical topology. From its crystal structure, it became apparent that it shares the structural platform for the interaction with ligands identified in other systems such as mammals. Although RACK1 proteins maintain conserved Protein Kinase C binding sites, the lack of a bona fide PKC adds complexity and enigma to the nature of the ligand partners with which RACK1 interacts in plants. Nevertheless, ligands recently identified using the split-ubiquitin based and conventional yeast two-hybrid assays, have revealed that plant RACK1 is involved in several processes that include defense response, drought and salt stress, ribosomal function, cell wall biogenesis, and photosynthesis. The information acquired indicates that, in spite of the high degree of conservation of its structure, the functions of the plant RACK1 homolog appear to be distinct and diverse from those in yeast, mammals, insects, etc. In this review, we take a critical look at the novel information regarding the many functions in which plant RACK1 has been reported to participate, with a special emphasis on the information on its currently identified and missing ligand partners.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoPuerto Morelos, México
| | | | - Hemayet Ullah
- Department of Biology, Howard UniversityWashington, DC, USA
| | - Marco A. Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoPuerto Morelos, México
- *Correspondence: Marco A. Villanueva
| |
Collapse
|
53
|
Gamm M, Peviani A, Honsel A, Snel B, Smeekens S, Hanson J. Increased sucrose levels mediate selective mRNA translation in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:306. [PMID: 25403240 PMCID: PMC4252027 DOI: 10.1186/s12870-014-0306-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/27/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Protein synthesis is a highly energy demanding process and is regulated according to cellular energy levels. Light and sugar availability affect mRNA translation in plant cells but the specific roles of these factors remain unclear. In this study, sucrose was applied to Arabidopsis seedlings kept in the light or in the dark, in order to distinguish sucrose and light effects on transcription and translation. These were studied using microarray analysis of steady-state mRNA and mRNA bound to translating ribosomes. RESULTS Steady-state mRNA levels were affected differently by sucrose in the light and in the dark but general translation increased to a similar extent in both conditions. For a majority of the transcripts changes of the transcript levels were followed by changes in polysomal mRNA levels. However, for 243 mRNAs, a change in polysomal occupancy (defined as polysomal levels related to steady-state levels of the mRNA) was observed after sucrose treatment in the light, but not in the dark condition. Many of these mRNAs are annotated as encoding ribosomal proteins, supporting specific translational regulation of this group of transcripts. Unexpectedly, the numbers of ribosomes bound to each mRNA decreased for mRNAs with increased polysomal occupancy. CONCLUSIONS Our results suggest that sucrose regulate translation of these 243 mRNAs specifically in the light, through a novel regulatory mechanism. Our data shows that increased polysomal occupancy is not necessarily leading to more ribosomes per transcript, suggesting a mechanism of translational induction not solely dependent on increased translation initiation rates.
Collapse
Affiliation(s)
- Magdalena Gamm
- />Molecular Plant Physiology, Institute of Environmental
Biology, Utrecht University, Utrecht, The Netherlands
| | - Alessia Peviani
- />Theoretical Biology and Bioinformatics, Department of Biology, Faculty
of Science, Utrecht University, Utrecht, The Netherlands
| | - Anne Honsel
- />Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | - Berend Snel
- />Theoretical Biology and Bioinformatics, Department of Biology, Faculty
of Science, Utrecht University, Utrecht, The Netherlands
| | - Sjef Smeekens
- />Molecular Plant Physiology, Institute of Environmental
Biology, Utrecht University, Utrecht, The Netherlands
| | - Johannes Hanson
- />Molecular Plant Physiology, Institute of Environmental
Biology, Utrecht University, Utrecht, The Netherlands
- />Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
54
|
Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. PLANT PHYSIOLOGY 2014; 166:455-69. [PMID: 24868032 PMCID: PMC4213079 DOI: 10.1104/pp.114.239392] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/26/2014] [Indexed: 05/18/2023]
Abstract
Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato.
Collapse
Affiliation(s)
- Mily Ron
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Kaisa Kajala
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Germain Pauluzzi
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Dongxue Wang
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Mauricio A Reynoso
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Kristina Zumstein
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Jasmine Garcha
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Sonja Winte
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Helen Masson
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Soichi Inagaki
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Fernán Federici
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Neelima Sinha
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Roger B Deal
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Julia Bailey-Serres
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Siobhan M Brady
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| |
Collapse
|
55
|
Wilson-Sánchez D, Rubio-Díaz S, Muñoz-Viana R, Pérez-Pérez JM, Jover-Gil S, Ponce MR, Micol JL. Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:878-91. [PMID: 24946828 DOI: 10.1111/tpj.12595] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 05/10/2023]
Abstract
The study and eventual manipulation of leaf development in plants requires a thorough understanding of the genetic basis of leaf organogenesis. Forward genetic screens have identified hundreds of Arabidopsis mutants with altered leaf development, but the genome has not yet been saturated. To identify genes required for leaf development we are screening the Arabidopsis Salk Unimutant collection. We have identified 608 lines that exhibit a leaf phenotype with full penetrance and almost constant expressivity and 98 additional lines with segregating mutant phenotypes. To allow indexing and integration with other mutants, the mutant phenotypes were described using a custom leaf phenotype ontology. We found that the indexed mutation is present in the annotated locus for 78% of the 553 mutants genotyped, and that in half of these the annotated T-DNA is responsible for the phenotype. To quickly map non-annotated T-DNA insertions, we developed a reliable, cost-effective and easy method based on whole-genome sequencing. To enable comprehensive access to our data, we implemented a public web application named PhenoLeaf (http://genetics.umh.es/phenoleaf) that allows researchers to query the results of our screen, including text and visual phenotype information. We demonstrated how this new resource can facilitate gene function discovery by identifying and characterizing At1g77600, which we found to be required for proximal-distal cell cycle-driven leaf growth, and At3g62870, which encodes a ribosomal protein needed for cell proliferation and chloroplast function. This collection provides a valuable tool for the study of leaf development, characterization of biomass feedstocks and examination of other traits in this fundamental photosynthetic organ.
Collapse
Affiliation(s)
- David Wilson-Sánchez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | | | | | | | | | | | | |
Collapse
|
56
|
Jeyaraj A, Chandran V, Gajjeraman P. Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]. PLANT CELL REPORTS 2014; 33:1053-69. [PMID: 24658841 DOI: 10.1007/s00299-014-1589-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/25/2014] [Accepted: 02/10/2014] [Indexed: 05/02/2023]
Abstract
Expression analysis of miRNAs and understanding their target genes function in dormant tea bud might be used to identify molecular network panel and novel approaches for modulating dormancy in tea. Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is an important commercial beverage crop manufactured from the apical bud and two leaves immediately below the bud. The yield and quality of tea depend on the vegetative growth of shoots and bud dormancy. The dormancy of bud is being regulated by many factors, such as mechanical, environmental and molecular mechanisms. MicroRNAs (miRNAs) are a newly identified class of small non-protein coding regulatory RNAs in both plants and animals which regulates gene expression at post-transcriptional level either by cleavage or translational inhibition of targeted mRNA transcripts. With these importances, the expression pattern of tea miRNAs was analyzed in active and dormant bud using stem-loop pulse RT-qPCR method. The results demonstrated the following expression pattern for highly up-regulated miRNAs, cs-miR 414[csmiR 408[cs-miR782[cs-miR169, and down-regulated miRNAs, cs-miR828[cs-miR1864[cs-miR852[csmiR1425 in dormant bud of tea. Furthermore, the role of target transcripts regulated by these miRNAs in relation to bud dormancy was discussed in detail. Therefore, the present study on the miRNA expression in tea will provide basis and considerably broaden the scope of understanding the function of miRNAs within the bud tissues and can serve as an initial point for RNA interference-based controlling strategies of bud dormancy in tea.
Collapse
|
57
|
Wang B, Yu J, Zhu D, Chang Y, Zhao Q. Maize ZmRACK1 is involved in the plant response to fungal phytopathogens. Int J Mol Sci 2014; 15:9343-59. [PMID: 24865494 PMCID: PMC4100098 DOI: 10.3390/ijms15069343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 04/25/2014] [Accepted: 05/13/2014] [Indexed: 01/17/2023] Open
Abstract
The receptor for activated C kinase 1 (RACK1) belongs to a protein subfamily containing a tryptophan-aspartic acid-domain (WD) repeat structure. Compelling evidence indicates that RACK1 can interact with many signal molecules and affect different signal transduction pathways. In this study, we cloned a maize RACK1 gene (ZmRACK1) by RT-PCR. The amino acid sequence of ZmRACK1 had seven WD repeats in which there were typical GH (glycine-histidine) and WD dipeptides. Comparison with OsRACK1 from rice revealed 89% identity at the amino acid level. Expression pattern analysis by RT-PCR showed that ZmRACK1 was expressed in all analyzed tissues of maize and that its transcription in leaves was induced by abscisic acid and jasmonate at a high concentration. Overexpression of ZmRACK1 in maize led to a reduction in symptoms caused by Exserohilum turcicum (Pass.) on maize leaves. The expression levels of the pathogenesis-related protein genes, PR-1 and PR-5, increased 2.5-3 times in transgenic maize, and reactive oxygen species production was more active than in the wild-type. Yeast two-hybrid assays showed that ZmRACK1 could interact with RAC1, RAR1 and SGT1. This study and previous work leads us to believe that ZmRACK1 may form a complex with regulators of plant disease resistance to coordinate maize reactions to pathogens.
Collapse
Affiliation(s)
- Baosheng Wang
- State Key Laboratory of Agribiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jingjuan Yu
- State Key Laboratory of Agribiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Dengyun Zhu
- State Key Laboratory of Agribiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yujie Chang
- State Key Laboratory of Agribiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qian Zhao
- State Key Laboratory of Agribiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
58
|
Casanova-Sáez R, Candela H, Micol JL. Combined haploinsufficiency and purifying selection drive retention of RPL36a paralogs in Arabidopsis. Sci Rep 2014; 4:4122. [PMID: 24535089 PMCID: PMC3927210 DOI: 10.1038/srep04122] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/31/2014] [Indexed: 12/19/2022] Open
Abstract
Whole-genome duplication events have driven to a large degree the evolution of angiosperm genomes. Although the majority of redundant gene copies after a genome duplication are lost, subfunctionalization or gene balance account for the retention of gene copies. The Arabidopsis 80S ribosome represents an excellent model to test the gene balance hypothesis as it consists of 80 ribosomal proteins, all of them encoded by genes belonging to small gene families. Here, we present the isolation of mutant alleles of the APICULATA2 (API2) and RPL36aA paralogous genes, which encode identical ribosomal proteins but share a similarity of 89% in their coding sequences. RPL36aA was found expressed at a higher level than API2 in the wild type. The loss-of-function api2 and rpl36aa mutations are recessive and affect leaf development in a similar way. Their double mutant combinations with asymmetric leaves2-1 (as2-1) caused leaf polarity defects that were stronger in rpl36aa as2-1 than in api2 as2-1. Our results highlight the role of combined haploinsufficiency and purifying selection in the retention of these paralogous genes in the Arabidopsis genome.
Collapse
Affiliation(s)
- Rubén Casanova-Sáez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
59
|
Ito J, Parsons HT, Heazlewood JL. The Arabidopsis cytosolic proteome: the metabolic heart of the cell. FRONTIERS IN PLANT SCIENCE 2014; 5:21. [PMID: 24550929 PMCID: PMC3914213 DOI: 10.3389/fpls.2014.00021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/19/2014] [Indexed: 05/09/2023]
Abstract
The plant cytosol is the major intracellular fluid that acts as the medium for inter-organellar crosstalk and where a plethora of important biological reactions take place. These include its involvement in protein synthesis and degradation, stress response signaling, carbon metabolism, biosynthesis of secondary metabolites, and accumulation of enzymes for defense and detoxification. This central role is highlighted by estimates indicating that the majority of eukaryotic proteins are cytosolic. Arabidopsis thaliana has been the subject of numerous proteomic studies on its different subcellular compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted proteomic characterizations of complexes is included. Despite this, few groups are currently applying advanced proteomic approaches to this important metabolic space. This review will highlight the current state of the Arabidopsis cytosolic proteome since its initial characterization a few years ago.
Collapse
Affiliation(s)
- Jun Ito
- Joint BioEnergy Institute, Emeryville, CAUSA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CAUSA
| | - Harriet T. Parsons
- Joint BioEnergy Institute, Emeryville, CAUSA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CAUSA
- Department of Plant and Environmental Sciences, University of Copenhagen, CopenhagenDenmark
| | - Joshua L. Heazlewood
- Joint BioEnergy Institute, Emeryville, CAUSA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CAUSA
| |
Collapse
|
60
|
Pitkänen L, Tuomainen P, Eskelin K. Analysis of plant ribosomes with asymmetric flow field-flow fractionation. Anal Bioanal Chem 2014; 406:1629-37. [PMID: 24281322 DOI: 10.1007/s00216-013-7454-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 11/30/2022]
Abstract
Ribosome profiling is a technique used to separate ribosomal subunits, 80S ribosomes (monosomes), and polyribosomes (polysomes) from other RNA-protein complexes. It is traditionally performed in sucrose gradients. In this study, we used asymmetric flow field-flow fractionation (AsFlFFF) to characterize ribosome profiles of Nicotiana benthamiana plants. With the optimized running conditions, we were able to separate free molecules from ribosomal subunits and intact ribosomes. We used various chemical and enzymatic treatments to validate the positions of subunits, monosomes, and polysomes in the AsFlFFF fractograms. We also characterized the protein and RNA content of AsFlFFF fractions by gel electrophoresis and western blotting. The reverse transcription polymerase chain reaction (RT-PCR) analysis showed that ribosomes remained bound to messenger RNAs (mRNAs) during the analysis. Therefore, we conclude that AsFlFFF can be used for ribosome profiling to study the mRNAs that are being translated. It can also be used to study the protein composition of ribosomes that are active in translation at that particular moment.
Collapse
Affiliation(s)
- Leena Pitkänen
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| | | | | |
Collapse
|
61
|
Kwok CK, Ding Y, Tang Y, Assmann SM, Bevilacqua PC. Determination of in vivo RNA structure in low-abundance transcripts. Nat Commun 2013; 4:2971. [DOI: 10.1038/ncomms3971] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/19/2013] [Indexed: 01/19/2023] Open
|
62
|
Wang J, Lan P, Gao H, Zheng L, Li W, Schmidt W. Expression changes of ribosomal proteins in phosphate- and iron-deficient Arabidopsis roots predict stress-specific alterations in ribosome composition. BMC Genomics 2013; 14:783. [PMID: 24225185 PMCID: PMC3830539 DOI: 10.1186/1471-2164-14-783] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background Ribosomes are essential ribonucleoprotein complexes that are engaged in translation and thus indispensable for growth. Arabidopsis thaliana ribosomes are composed of 80 distinct ribosomal proteins (RPs), each of which is encoded by two to seven highly similar paralogous genes. Little information is available on how RP genes respond to a shortage of essential mineral nutrients such as phosphate (Pi) or iron (Fe). In the present study, the expression of RP genes and the differential accumulation of RPs upon Pi or Fe deficiency in Arabidopsis roots were comprehensively analyzed. Results Comparison of 3,106 Pi-responsive genes with 3,296 Fe-responsive genes revealed an overlap of 579 genes that were differentially expressed under both conditions in Arabidopsis roots. Gene ontology (GO) analysis revealed that these 579 genes were mainly associated with abiotic stress responses. Among the 247 RP genes retrieved from the TAIR10 release of the Arabidopsis genome (98 small subunit RP genes, 143 large subunit RP genes and six ribosome-related genes), seven RP genes were not detected in Arabidopsis roots by RNA sequencing under control conditions. Transcripts from 20 and 100 RP genes showed low and medium abundance, respectively; 120 RP genes were highly expressed in Arabidopsis roots. As anticipated, gene ontology (GO) analysis indicated that most RP genes were related to translation and ribosome assembly, but some of the highly expressed RP genes were also involved in the responses to cold, UV-B, and salt stress. Only three RP genes derived from three ‘sets’ of paralogous genes were differentially expressed between Pi-sufficient and Pi-deficient roots, all of which were induced by Pi starvation. In Fe-deficient plants, 81 RP genes from 51 ’sets’ of paralagous RP genes were significantly down-regulated in response to Fe deficiency. The biological processes ’translation’ (GO: 0006412), ’ribosome biogenesis (GO: 0042254), and ’response to salt (GO: 0009651), cold (GO: 0009409), and UV-B stresses (GO: 0071493)’ were enriched in this subset of RP genes. At the protein level, 21 and two RPs accumulated differentially under Pi- and Fe-deficient conditions, respectively. Neither the differentially expressed RP genes nor the differentially expressed RPs showed any overlap between the two growth types. Conclusions In the present study three and 81 differentially expressed RP genes were identified under Pi and Fe deficiency, respectively. At protein level, 21 and two RP proteins were differentially accumulated under Pi- and Fe-deficient conditions. Our study shows that the expression of paralogous genes encoding RPs was regulated in a stress-specific manner in Arabidopsis roots, presumably resulting in an altered composition of ribosomes and biased translation. These findings may aid in uncovering an unexplored mechanism by which plants adapt to changing environmental conditions.
Collapse
Affiliation(s)
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China.
| | | | | | | | | |
Collapse
|
63
|
Ge XH, Ding L, Li ZY. Nucleolar dominance and different genome behaviors in hybrids and allopolyploids. PLANT CELL REPORTS 2013; 32:1661-73. [PMID: 23864197 DOI: 10.1007/s00299-013-1475-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 05/05/2023]
Abstract
Many plants are allopolyploids with different nuclear genomes from two or more progenitors, but cytoplasmic genomes typically inherited from the female parent. The importance of this speciation mechanism has stimulated the extensive investigations of genetic consequences of genome mergers in several experimental systems during last 20 years. The dynamic nature of polyploid genomes is recognized, and widespread changes to gene expression are revealed by transcriptomic analysis. These progresses show different stabilities of parental genomes and their unequal contributions to the transcriptome, proteome, and phenotype. We review the results in systems where extensive genetic analyses have been conducted and propose possible mechanisms for biased behavior of parental genomes in allopolyploids, including the role of nucleolar dominance. It is hypothesized that the novel ribosomes with rRNAs from uniparental genome and the ribosomal proteins of biparental origins have some impacts on the biased cellular and genetic behaviors of parental genomes in hybrids and allopolyploids.
Collapse
Affiliation(s)
- Xian-Hong Ge
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | |
Collapse
|
64
|
Falcone Ferreyra ML, Casadevall R, Luciani MD, Pezza A, Casati P. New evidence for differential roles of l10 ribosomal proteins from Arabidopsis. PLANT PHYSIOLOGY 2013; 163:378-91. [PMID: 23886624 PMCID: PMC3762657 DOI: 10.1104/pp.113.223222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 05/19/2023]
Abstract
The RIBOSOMAL PROTEIN L10 (RPL10) is an integral component of the eukaryotic ribosome large subunit. Besides being a constituent of ribosomes and participating in protein translation, additional extraribosomal functions in the nucleus have been described for RPL10 in different organisms. Previously, we demonstrated that Arabidopsis (Arabidopsis thaliana) RPL10 genes are involved in development and translation under ultraviolet B (UV-B) stress. In this work, transgenic plants expressing ProRPL10:β-glucuronidase fusions show that, while AtRPL10A and AtRPL10B are expressed both in the female and male reproductive organs, AtRPL10C expression is restricted to pollen grains. Moreover, the characterization of double rpl10 mutants indicates that the three AtRPL10s differentially contribute to the total RPL10 activity in the male gametophyte. All three AtRPL10 proteins mainly accumulate in the cytosol but also in the nucleus, suggesting extraribosomal functions. After UV-B treatment, only AtRPL10B localization increases in the nuclei. We also here demonstrate that the three AtRPL10 genes can complement a yeast RPL10 mutant. Finally, the involvement of RPL10B and RPL10C in UV-B responses was analyzed by two-dimensional gels followed by mass spectrometry. Overall, our data provide new evidence about the nonredundant roles of RPL10 proteins in Arabidopsis.
Collapse
|
65
|
Boex-Fontvieille E, Daventure M, Jossier M, Zivy M, Hodges M, Tcherkez G. Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation. PLoS One 2013; 8:e70692. [PMID: 23894680 PMCID: PMC3722150 DOI: 10.1371/journal.pone.0070692] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/20/2013] [Indexed: 01/26/2023] Open
Abstract
Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed to be translation initiation, which involves multiple phosphorylation events in Eukaryotes. We took advantage of phosphoproteomic methods applied to Arabidopsis thaliana rosettes harvested under controlled photosynthetic gas-exchange conditions to characterize the phosphorylation pattern of ribosomal proteins (RPs) and eukaryotic initiation factors (eIFs). The analyses detected 14 and 11 new RP and eIF phosphorylation sites, respectively, revealed significant CO2-dependent and/or light/dark phosphorylation patterns and showed concerted changes in 13 eIF phosphorylation sites and 9 ribosomal phosphorylation sites. In addition to the well-recognized role of the ribosomal small subunit protein RPS6, our data indicate the involvement of eIF3, eIF4A, eIF4B, eIF4G and eIF5 phosphorylation in controlling translation initiation when photosynthesis varies. The response of protein biosynthesis to the photosynthetic input thus appears to be the result of a complex regulation network involving both stimulating (e.g. RPS6, eIF4B phosphorylation) and inhibiting (e.g. eIF4G phosphorylation) molecular events.
Collapse
Affiliation(s)
- Edouard Boex-Fontvieille
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
| | - Marlène Daventure
- Plateforme PAPPSO, UMR de Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | - Mathieu Jossier
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
| | - Michel Zivy
- Plateforme PAPPSO, UMR de Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | - Michael Hodges
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
| | - Guillaume Tcherkez
- Institut de Biologie des Plantes, CNRS UMR 8618, Saclay Plant Sciences, Université Paris-Sud, Orsay, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
66
|
Roy B, von Arnim AG. Translational Regulation of Cytoplasmic mRNAs. THE ARABIDOPSIS BOOK 2013; 11:e0165. [PMID: 23908601 PMCID: PMC3727577 DOI: 10.1199/tab.0165] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Translation of the coding potential of a messenger RNA into a protein molecule is a fundamental process in all living cells and consumes a large fraction of metabolites and energy resources in growing cells. Moreover, translation has emerged as an important control point in the regulation of gene expression. At the level of gene regulation, translational control is utilized to support the specific life histories of plants, in particular their responses to the abiotic environment and to metabolites. This review summarizes the diversity of translational control mechanisms in the plant cytoplasm, focusing on specific cases where mechanisms of translational control have evolved to complement or eclipse other levels of gene regulation. We begin by introducing essential features of the translation apparatus. We summarize early evidence for translational control from the pre-Arabidopsis era. Next, we review evidence for translation control in response to stress, to metabolites, and in development. The following section emphasizes RNA sequence elements and biochemical processes that regulate translation. We close with a chapter on the role of signaling pathways that impinge on translation.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Current address: University of Massachussetts Medical School, Worcester, MA 01655-0122, USA
| | - Albrecht G. von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
67
|
Zhang H, Zhou H, Berke L, Heck AJR, Mohammed S, Scheres B, Menke FLH. Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth. Mol Cell Proteomics 2013; 12:1158-69. [PMID: 23328941 DOI: 10.1074/mcp.m112.021220] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is instrumental to early signaling events. Studying system-wide phosphorylation in relation to processes under investigation requires a quantitative proteomics approach. In Arabidopsis, auxin application can induce pericycle cell divisions and lateral root formation. Initiation of lateral root formation requires transcriptional reprogramming following auxin-mediated degradation of transcriptional repressors. The immediate early signaling events prior to this derepression are virtually uncharacterized. To identify the signal molecules responding to auxin application, we used a lateral root-inducible system that was previously developed to trigger synchronous division of pericycle cells. To identify and quantify the early signaling events following this induction, we combined (15)N-based metabolic labeling and phosphopeptide enrichment and applied a mass spectrometry-based approach. In total, 3068 phosphopeptides were identified from auxin-treated root tissue. This root proteome dataset contains largely phosphopeptides not previously reported and represents one of the largest quantitative phosphoprotein datasets from Arabidopsis to date. Key proteins responding to auxin treatment included the multidrug resistance-like and PIN2 auxin carriers, auxin response factor2 (ARF2), suppressor of auxin resistance 3 (SAR3), and sorting nexin1 (SNX1). Mutational analysis of serine 16 of SNX1 showed that overexpression of the mutated forms of SNX1 led to retarded growth and reduction of lateral root formation due to the reduced outgrowth of the primordium, showing proof of principle for our approach.
Collapse
Affiliation(s)
- Hongtao Zhang
- Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
68
|
Carroll AJ. The Arabidopsis Cytosolic Ribosomal Proteome: From form to Function. FRONTIERS IN PLANT SCIENCE 2013; 4:32. [PMID: 23459595 PMCID: PMC3585428 DOI: 10.3389/fpls.2013.00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/10/2013] [Indexed: 05/20/2023]
Abstract
The cytosolic ribosomal proteome of Arabidopsis thaliana has been studied intensively by a range of proteomics approaches and is now one of the most well characterized eukaryotic ribosomal proteomes. Plant cytosolic ribosomes are distinguished from other eukaryotic ribosomes by unique proteins, unique post-translational modifications and an abundance of ribosomal proteins for which multiple divergent paralogs are expressed and incorporated. Study of the A. thaliana ribosome has now progressed well beyond a simple cataloging of protein parts and is focused strongly on elucidating the functions of specific ribosomal proteins, their paralogous isoforms and covalent modifications. This review summarises current knowledge concerning the Arabidopsis cytosolic ribosomal proteome and highlights potentially fruitful areas of future research in this fast moving and important area.
Collapse
Affiliation(s)
- Adam J. Carroll
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National UniversityCanberra, ACT, Australia
- *Correspondence: Adam J. Carroll, Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, ACT 0200, Canberra, Australia. e-mail:
| |
Collapse
|
69
|
Hummel M, Cordewener JHG, de Groot JCM, Smeekens S, America AHP, Hanson J. Dynamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE proteomics. Proteomics 2012; 12:1024-38. [PMID: 22522809 DOI: 10.1002/pmic.201100413] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cytosolic ribosomes are among the largest multisubunit cellular complexes. Arabidopsis thaliana ribosomes consist of 79 different ribosomal proteins (r-proteins) that each are encoded by two to six (paralogous) genes. It is unknown whether the paralogs are incorporated into the ribosome and whether the relative incorporation of r-protein paralogs varies in response to environmental cues. Immunopurified ribosomes were isolated from A. thaliana rosette leaves fed with sucrose. Trypsin digested samples were analyzed by qTOF-LC-MS using both MS(E) and classical MS/MS. Peptide features obtained by using these two methods were identified using MASCOT and Proteinlynx Global Server searching the theoretical sequences of A. thaliana proteins. The A. thaliana genome encodes 237 r-proteins and 69% of these were identified with proteotypic peptides for most of the identified proteins. These r-proteins were identified with average protein sequence coverage of 32% observed by MS(E) . Interestingly, the analysis shows that the abundance of r-protein paralogs in the ribosome changes in response to sucrose feeding. This is particularly evident for paralogous RPS3aA, RPS5A, RPL8B, and RACK1 proteins. These results show that protein synthesis in the A. thaliana cytosol involves a heterogeneous ribosomal population. The implications of these findings in the regulation of translation are discussed.
Collapse
Affiliation(s)
- Maureen Hummel
- Molecular Plant Physiology, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
70
|
Horiguchi G, Van Lijsebettens M, Candela H, Micol JL, Tsukaya H. Ribosomes and translation in plant developmental control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:24-34. [PMID: 22682562 DOI: 10.1016/j.plantsci.2012.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 05/06/2023]
Abstract
Ribosomes play a basic housekeeping role in global translation. However, a number of ribosomal-protein-defective mutants show common and rare developmental phenotypes including growth defects, changes in leaf development, and auxin-related phenotypes. This suggests that translational regulation may be occurring during development. In addition, proteomic and bioinformatic analyses have demonstrated a high heterogeneity in ribosome composition. Although this might be a sign of unequal roles of individual ribosomal proteins, it does not explain every ribosomal-protein-defective phenotype. Moreover, comprehensive interpretations concerning the relationship between ribosomal-protein-defective phenotypes and molecular changes in ribosome status are lacking. In this review, we address these phenotypes based on three models, ribosome insufficiency, heterogeneity, and aberrancy, to consider how ribosomes play developmental roles. We propose that the three models are not mutually exclusive, and ribosomal-protein-defective phenotypes can be explained with one or more of these models. The three models with reference to genetic, biochemical, and bioinformatic knowledge will serve as a foundation for future studies of translational regulation.
Collapse
Affiliation(s)
- Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | | | | | |
Collapse
|
71
|
Chang IF, Hsu JL, Hsu PH, Sheng WA, Lai SJ, Lee C, Chen CW, Hsu JC, Wang SY, Wang LY, Chen CC. Comparative phosphoproteomic analysis of microsomal fractions of Arabidopsis thaliana and Oryza sativa subjected to high salinity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:131-42. [PMID: 22325874 DOI: 10.1016/j.plantsci.2011.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 05/20/2023]
Abstract
Plants respond to salt stress by initiating phosphorylation cascades in their cells. Many key phosphorylation events take place at membranes. Microsomal fractions from 400 mM salt-treated Arabidopsis suspension plants were isolated, followed by trypsin shaving, enrichment using Zirconium ion-charged or TiO(2) magnetic beads, and tandem mass spectrometry analyses for site mapping. A total of 27 phosphorylation sites from 20 Arabidopsis proteins including photosystem II reaction center protein H PsbH were identified. In addition to Arabidopsis, microsomal fractions from shoots of 200 mM salt-treated rice was carried out, followed by trypsin digestion using shaving or tube-gel, and enrichment using Zirconium ion-charged or TiO(2) magnetic beads. This yielded identification of 13 phosphorylation sites from 8 proteins including photosystem II reaction center protein H PsbH. Label-free quantitative analysis suggests that the phosphorylation sites of PsbH were regulated by salt stress in Arabidopsis and rice. Sequence alignment of PsbH phosphorylation sites indicates that Thr-2 and Thr-4 are evolutionarily conserved in plants. Four conserved phosphorylation motifs were predicted, and these suggest that a specific unknown kinase or phosphatase is involved in high-salt stress responses in plants.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Muench DG, Zhang C, Dahodwala M. Control of cytoplasmic translation in plants. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:178-94. [DOI: 10.1002/wrna.1104] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
73
|
Islas-Flores T, Guillén G, Sánchez F, Villanueva MA. Changes in RACK1 expression induce defects in nodulation and development in Phaseolus vulgaris. PLANT SIGNALING & BEHAVIOR 2012; 7:132-4. [PMID: 22301979 PMCID: PMC3357353 DOI: 10.4161/psb.7.1.18485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RACK1 is a scaffold protein with the ability to interact in a regulated manner with a diverse number of ligands from distinct signal-transduction pathways. This assessment allowed us to infer that it may be involved in different processes such as nodulation. In a recent study we showed by silencing, that PvRACK1 has a pivotal role in cell expansion and in symbiosome and bacteroid integrity during nodule development in Phaseolus vulgaris. On the other hand, we have also observed that its over-expression provokes a dramatic phenotype in: (a) seedlings that have been exposed to heat, in which systemic necrosis is induced; and (b) in Agrobacterium rhizogenes-transformed roots, where nodulation is strongly inhibited and nodules show early senescent symptoms. These findings indicate that PvRACK1 may be an integrator of diverse signal-transduction pathways in processes as varied as nodulation, cell expansion, heat stress responses, and systemic activation of necrosis.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de México; U.N.A.M.; Morelos, México
| | - Gabriel Guillén
- Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de México; U.N.A.M.; Morelos, México
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas Instituto de Biotecnología Universidad Nacional Autónoma de México; U.N.A.M.; Morelos, México
| | - Marco A. Villanueva
- Instituto de Ciencias del Mar y Limnología Unidad Académica de Sistemas Arrecifales Universidad Nacional Autónoma de México, U. N. A. M. Prolongación Avenida Niños Héroes S/N Puerto Morelos; Quintana Roo, México
- Correspondence to: Marco A. Villanueva,
| |
Collapse
|
74
|
Sormani R, Masclaux-Daubresse C, Daniele-Vedele F, Chardon F. Transcriptional regulation of ribosome components are determined by stress according to cellular compartments in Arabidopsis thaliana. PLoS One 2011; 6:e28070. [PMID: 22164228 PMCID: PMC3229498 DOI: 10.1371/journal.pone.0028070] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/31/2011] [Indexed: 12/30/2022] Open
Abstract
Plants have to coordinate eukaryotic ribosomes (cytoribosomes) and prokaryotic ribosomes (plastoribosomes and mitoribosomes) production to balance cellular protein synthesis in response to environmental variations. We identified 429 genes encoding potential ribosomal proteins (RP) in Arabidopsis thaliana. Because cytoribosome proteins are encoded by small nuclear gene families, plastid RP by nuclear and plastid genes and mitochondrial RP by nuclear and mitochondrial genes, several transcriptional pathways were attempted to control ribosome amounts. Examining two independent genomic expression datasets, we found two groups of RP genes showing very different and specific expression patterns in response to environmental stress. The first group represents the nuclear genes coding for plastid RP whereas the second group is composed of a subset of cytoribosome genes coding for RP isoforms. By contrast, the other cytoribosome genes and mitochondrial RP genes show less constraint in their response to stress conditions. The two subsets of cytoribosome genes code for different RP isoforms. During stress, the response of the intensively regulated subset leads to dramatic variation in ribosome diversity. Most of RP genes have same promoter structure with two motifs at conserved positions. The stress-response of the nuclear genes coding plastid RP is related with the absence of an interstitial telomere motif known as telo box in their promoters. We proposed a model for the "ribosome code" that influences the ribosome biogenesis by three main transcriptional pathways. The first pathway controls the basal program of cytoribosome and mitoribosome biogenesis. The second pathway involves a subset of cytoRP genes that are co-regulated under stress condition. The third independent pathway is devoted to the control of plastoribosome biosynthesis by regulating both nuclear and plastid genes.
Collapse
Affiliation(s)
- Rodnay Sormani
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Saclay Plant Sciences, Versailles, France
| | | | - Françoise Daniele-Vedele
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Saclay Plant Sciences, Versailles, France
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Saclay Plant Sciences, Versailles, France
- * E-mail:
| |
Collapse
|
75
|
Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal 2011; 9:22. [PMID: 21978545 PMCID: PMC3195729 DOI: 10.1186/1478-811x-9-22] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022] Open
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.
Collapse
Affiliation(s)
- David R Adams
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
76
|
Jiménez-López S, Mancera-Martínez E, Donayre-Torres A, Rangel C, Uribe L, March S, Jiménez-Sánchez G, Sánchez de Jiménez E. Expression profile of maize (Zea mays L.) embryonic axes during germination: translational regulation of ribosomal protein mRNAs. PLANT & CELL PHYSIOLOGY 2011; 52:1719-33. [PMID: 21880676 DOI: 10.1093/pcp/pcr114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Seed germination is a critical developmental period for plant propagation. Information regarding gene expression within this important period is relevant for understanding the main biochemical processes required for successful germination, particularly in maize, one of the most important cereals in the world. The present research focuses on the global microarray analysis of differential gene expression between quiescent and germinated maize embryo stages. This analysis revealed that a large number of mRNAs stored in the quiescent embryonic axes (QEAs) were differentially regulated during germination in the 24 h germinated embryonic axes (GEAs). These genes belong to 14 different functional categories and most of them correspond to metabolic processes, followed by transport, transcription and translation. Interestingly, the expression of mRNAs encoding ribosomal proteins [(r)-proteins], required for new ribosome formation during this fast-growing period, remains mostly unchanged throughout the germination process, suggesting that these genes are not regulated at the transcriptional level during this developmental period. To investigate this issue further, comparative microarray analyses on polysomal mRNAs from growth-stimulated and non-stimulated GEAs were performed. The results revealed that (r)-protein mRNAs accumulate to high levels in polysomes of the growth-stimulated tissues, indicating a translational control mechanism to account for the rapid (r)-protein synthesis observed within this period. Bioinformatic analysis of (r)-protein mRNAs showed that 5' TOP (tract of pyrimidines)-like sequences are present only in the 5'-untranslated region set of up-regulated (r)-protein mRNAs. This overall approach to the germination process allows an in-depth view of molecular changes, enabling a broader understanding of the regulatory mechanisms that occur during this process.
Collapse
Affiliation(s)
- Sara Jiménez-López
- Biochemistry Department, Faculty of Chemistry, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad Universitaria, 04510 Mexico, D.F. México
| | | | | | | | | | | | | | | |
Collapse
|
77
|
McIntosh KB, Degenhardt RF, Bonham-Smith PC. Sequence context for transcription and translation of the Arabidopsis RPL23aA and RPL23aB paralogs. Genome 2011; 54:738-51. [PMID: 21883051 DOI: 10.1139/g11-029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 80S cytoplasmic ribosome is responsible for translating the transcriptome into the proteome. Demand for ribosome production depends on growth rate, and both the ribosomal RNA (rRNA) and ribosomal protein (RP) components must respond coordinately and rapidly to positive and negative growth stimuli to prevent deleterious effects of excess or insufficient subunits. The 81 RPs of the Arabidopsis 80S ribosome are encoded by multigene families that often exhibit overlapping patterns of transcript accumulation; however, only one isoform of each RP family (with the exception of a small number of acidic RPs) assembles into a single ribosome. Here we dissected the regulatory regions (RRs) of both members of the RPL23a family (RPL23aA and RPL23aB) to identify salient cis-acting elements involved in transcriptional, posttranscriptional, and translational regulation of expression. Full length and truncated RRs of RPL23a paralogs were cloned upstream of a GUS reporter gene and expressed in Arabidopsis transgenic plants. High level expression in mitotically active tissues, driven by RPL23aA and RPL23aB RRs, required TATA-box, telo-box, and site II motif elements. First and second introns were found to play a minor role in posttranscriptional regulation of paralogs, and conserved transcript features (e.g., UTR base composition) may be involved in enhancing translational efficiency. Overall, our results indicate that RPL23a expression is governed by a complex network of multiple regulatory layers.
Collapse
Affiliation(s)
- Kerri B McIntosh
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
78
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Shi MZ, Xie DY. Engineering of red cells of Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells. PLANTA 2011; 233:787-805. [PMID: 21210143 DOI: 10.1007/s00425-010-1335-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/15/2010] [Indexed: 05/30/2023]
Abstract
We report metabolic engineering of Arabidopsis red cells and genome-wide gene expression analysis associated with anthocyanin biosynthesis and other metabolic pathways between red cells and wild-type (WT) cells. Red cells of A. thaliana were engineered for the first time from the leaves of production of anthocyanin pigment 1-Dominant (pap1-D). These red cells produced seven anthocyanin molecules including a new one that was characterized by LC-MS analysis. Wild-type cells established as a control did not produce anthocyanins. A genome-wide microarray analysis revealed that nearly 66 and 65% of genes in the genome were expressed in the red cells and wild-type cells, respectively. In comparison with the WT cells, 3.2% of expressed genes in the red cells were differentially expressed. The expression levels of 14 genes involved in the biosynthetic pathway of anthocyanin were significantly higher in the red cells than in the WT cells. Microarray and RT-PCR analyses demonstrated that the TTG1-GL3/TT8-PAP1 complex regulated the biosynthesis of anthocyanins. Furthermore, most of the genes with significant differential expression levels in the red cells versus the WT cells were characterized with diverse biochemical functions, many of which were mapped to different metabolic pathways (e.g., ribosomal protein biosynthesis, photosynthesis, glycolysis, glyoxylate metabolism, and plant secondary metabolisms) or organelles (e.g., chloroplast). We suggest that the difference in gene expression profiles between the two cell lines likely results from cell types, the overexpression of PAP1, and the high metabolic flux toward anthocyanins.
Collapse
Affiliation(s)
- Ming-Zhu Shi
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
80
|
Gilbert WV. Functional specialization of ribosomes? Trends Biochem Sci 2011; 36:127-32. [PMID: 21242088 DOI: 10.1016/j.tibs.2010.12.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/29/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
Ribosomes are highly conserved macromolecular machines that are responsible for protein synthesis in all living organisms. Work published in the past year has shown that changes to the ribosome core can affect the mechanism of translation initiation that is favored in the cell, which potentially leads to specific changes in the relative efficiencies with which different proteins are made. Here, I examine recent data from expression and proteomic studies that suggest that cells make slightly different ribosomes under different growth conditions, and discuss genetic evidence that such differences are functional. In particular, I argue that eukaryotic cells probably produce ribosomes that lack one or more core ribosomal proteins (RPs) under some conditions, and that core RPs contribute differentially to translation of distinct subpopulations of mRNAs.
Collapse
Affiliation(s)
- Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
81
|
Abstract
Proteomics of chloroplast ribosomes in spinach and Chlamydomonas revealed unique protein composition and structures of plastid ribosomes. These studies have suggested the presence of some ribosomal proteins unique to plastid ribosomes which may be involved in plastid-unique translation regulation. Considering the strong background of genetic analysis and molecular biology in Arabidopsis, the in-depth proteomic characterization of Arabidopsis plastid ribosomes would facilitate further understanding of plastid translation in higher plants. Here, I describe simple and rapid methods for the preparation of plastid ribosomes from Chlamydomonas and Arabidopsis using sucrose gradients. I also describe purity criteria and methods for yield estimation of the purified plastid ribosomes and subunits, methods for the preparation of plastid ribosomal proteins, as well as the identification of some Arabidopsis plastid ribosomal proteins by matrix-assisted laser desorption/ionization mass spectrometry.
Collapse
|
82
|
Guo J, Wang S, Valerius O, Hall H, Zeng Q, Li JF, Weston DJ, Ellis BE, Chen JG. Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. PLANT PHYSIOLOGY 2011; 155:370-83. [PMID: 21098678 PMCID: PMC3075769 DOI: 10.1104/pp.110.160663] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/18/2010] [Indexed: 05/20/2023]
Abstract
Earlier studies have shown that RACK1 functions as a negative regulator of abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana), but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, coexpression analysis revealed that more than 80% of the genes coexpressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1's function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and Saccharomyces cerevisiae RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B, and RACK1C, complemented the growth defects of the S. cerevisiae cross pathway control2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor6 (eIF6), whose mammalian homolog is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.
Collapse
|
83
|
Chen T, Nayak N, Majee SM, Lowenson J, Schäfermeyer KR, Eliopoulos AC, Lloyd TD, Dinkins R, Perry SE, Forsthoefel NR, Clarke SG, Vernon DM, Zhou ZS, Rejtar T, Downie AB. Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferase 1 identified using phage display and biopanning. J Biol Chem 2010; 285:37281-92. [PMID: 20870712 DOI: 10.1074/jbc.m110.157008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when PIMT protein binding was poisoned with S-adenosyl homocysteine. After four rounds, phage titer plateaued in AdoMet-containing pans, whereas titer declined in both controls. This strategy identified 17 in-frame PIMT target proteins, including a cupin-family protein similar to those identified previously using on-blot methylation. All recovered phage had at least one susceptible Asp or Asn residue. Five targets were recovered independently. Two in-frame targets were produced in Escherichia coli as recombinant proteins and shown by on-blot methylation to acquire isoAsp, becoming a PIMT target. Both gained isoAsp rapidly in solution upon thermal insult. Mutant analysis of plants deficient in any of three in-frame PIMT targets resulted in demonstrable phenotypes. An over-representation of clones encoding proteins involved in protein production suggests that the translational apparatus comprises a subgroup for which PIMT-mediated repair is vital for orthodox seed longevity. Impaired PIMT activity would hinder protein function in these targets, possibly resulting in poor seed performance.
Collapse
Affiliation(s)
- Tingsu Chen
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Ferreyra MLF, Pezza A, Biarc J, Burlingame AL, Casati P. Plant L10 ribosomal proteins have different roles during development and translation under ultraviolet-B stress. PLANT PHYSIOLOGY 2010; 153:1878-94. [PMID: 20516338 PMCID: PMC2923885 DOI: 10.1104/pp.110.157057] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/30/2010] [Indexed: 05/19/2023]
Abstract
Ribosomal protein L10 (RPL10) proteins are ubiquitous in the plant kingdom. Arabidopsis (Arabidopsis thaliana) has three RPL10 genes encoding RPL10A to RPL10C proteins, while two genes are present in the maize (Zea mays) genome (rpl10-1 and rpl10-2). Maize and Arabidopsis RPL10s are tissue-specific and developmentally regulated, showing high levels of expression in tissues with active cell division. Coimmunoprecipitation experiments indicate that RPL10s in Arabidopsis associate with translation proteins, demonstrating that it is a component of the 80S ribosome. Previously, ultraviolet-B (UV-B) exposure was shown to increase the expression of a number of maize ribosomal protein genes, including rpl10. In this work, we demonstrate that maize rpl10 genes are induced by UV-B while Arabidopsis RPL10s are differentially regulated by this radiation: RPL10A is not UV-B regulated, RPL10B is down-regulated, while RPL10C is up-regulated by UV-B in all organs studied. Characterization of Arabidopsis T-DNA insertional mutants indicates that RPL10 genes are not functionally equivalent. rpl10A and rpl10B mutant plants show different phenotypes: knockout rpl10A mutants are lethal, rpl10A heterozygous plants are deficient in translation under UV-B conditions, and knockdown homozygous rpl10B mutants show abnormal growth. Based on the results described here, RPL10 genes are not redundant and participate in development and translation under UV-B stress.
Collapse
Affiliation(s)
| | | | | | | | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina (M.L.F.F., A.P., P.C.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158–2517 (J.B., A.L.B.)
| |
Collapse
|
85
|
|
86
|
Creff A, Sormani R, Desnos T. The two Arabidopsis RPS6 genes, encoding for cytoplasmic ribosomal proteins S6, are functionally equivalent. PLANT MOLECULAR BIOLOGY 2010; 73:533-546. [PMID: 20437080 DOI: 10.1007/s11103-010-9639-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/15/2010] [Indexed: 05/26/2023]
Abstract
Many eukaryotic genomes have experienced ancient whole-genome duplication (WGD) followed by massive gene loss. These eliminations were not random since some gene families were preferentially retained as duplicates. The gene balance hypothesis suggests that those genes with dosage reduction can imbalance their interacting partners or complex, resulting in decreased fitness. In Arabidopsis, the cytoplasmic ribosomal proteins (RP) are encoded by gene families with at least two members. We have focused our study on the two RPS6 genes in an attempt to understand why they have been retained as duplicates. We demonstrate that RPS6 function is vital for the plant. We also show that reducing the level of RPS6 accumulation (in the knock-out rps6a or rps6b single mutants, or in the double heterozygous RPS6A/rps6a,RPS6B/rps6b), confers a slow growth phenotype (haplodeficiency). Importantly, we demonstrate that the functions of two RPS6 genes are redundant and interchangeable. Finally, like in most other described Arabidopsis rp mutants, we observed that a reduced RPS6 level slightly alters the dorsoventral leaf patterning. Our results support the idea that the Arabidopsis RPS6 gene duplicates were evolutionarily retained in order to maintain an expression level necessary to sustain the translational demand of the cell, in agreement with the gene balance hypothesis.
Collapse
Affiliation(s)
- Audrey Creff
- Laboratoire de Biologie du Développement des Plantes (LBDP), SBVME/IBEB/DSV/CEA/CNRS/Université Aix-Marseille-II, 13108 St. Paul-lez-Durance, France
| | | | | |
Collapse
|
87
|
Monaghan J, Li X. The HEAT Repeat Protein ILITYHIA is Required for Plant Immunity. ACTA ACUST UNITED AC 2010; 51:742-53. [DOI: 10.1093/pcp/pcq038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
88
|
Baena-González E. Energy signaling in the regulation of gene expression during stress. MOLECULAR PLANT 2010; 3:300-13. [PMID: 20080814 DOI: 10.1093/mp/ssp113] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprogramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.
Collapse
Affiliation(s)
- Elena Baena-González
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
89
|
Liu CC, Lu TC, Li HH, Wang HX, Liu GF, Ma L, Yang CP, Wang BC. Phosphoproteomic identification and phylogenetic analysis of ribosomal P-proteins in Populus dormant terminal buds. PLANTA 2010; 231:571-581. [PMID: 20072825 DOI: 10.1007/s00425-009-1037-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 10/02/2009] [Indexed: 05/28/2023]
Abstract
To better understand the role that reversible phosphorylation plays in woody plant ribosomal P-protein function, we initiated a phosphoproteomic investigation of P-proteins from Populus dormant terminal buds. Using gel-free (in-solution) protein digestion and phosphopeptide enrichment combined with a nanoUPLC-ESI-MS/MS strategy, we identified six phosphorylation sites on eight P-proteins from Populus dormant terminal buds. Among these, six Ser sites and one Thr site were identified in the highly conserved C-terminal region of eight P-proteins of various P-protein subfamilies, including two P0, two P1, three P2 and one P3 protein. Among these, the Thr site was shown to be novel and has not been identified in any other organisms. Sequence analysis indicated that the phosphothreonine sites identified in the C-terminus of Ptr RPP2A exclusively occurred in woody species of Populus, etc. The identified phosphopeptides shared a common phosphorylation motif of (S/T)XX(D/E) and may be phosphorylated in vivo by casein kinase 2 as suggested by using Scansite analysis. Furthermore, phylogenetic analysis suggested that divergence of P2 also occurred in Populus, including type I and type II. To the best of our knowledge, this is the first systematic phosphoproteomic and phylogenetic analysis of P-proteins in woody plants, the results of which will provide a wealth of resources for future understanding and unraveling of the regulatory mechanisms of Populus P-protein phosphorylation during the maintenance of dormancy.
Collapse
Affiliation(s)
- Chang-Cai Liu
- Education Ministry Key Laboratory of Forest Tree Genetic Improvement and Biotechnology, Northeast Forestry University, 26 Hexing Road, 150040 Harbin, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Whittle CA, Malik MR, Li R, Krochko JE. Comparative transcript analyses of the ovule, microspore, and mature pollen in Brassica napus. PLANT MOLECULAR BIOLOGY 2010; 72:279-99. [PMID: 19949835 DOI: 10.1007/s11103-009-9567-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 10/26/2009] [Indexed: 05/20/2023]
Abstract
Transcriptome data for plant reproductive organs/cells currently is very limited as compared to sporophytic tissues. Here, we constructed cDNA libraries and obtained ESTs for Brassica napus pollen (4,864 ESTs), microspores (i.e., early stage pollen development; 6,539 ESTs) and ovules (10,468 ESTs). Clustering and assembly of the 21,871 ESTs yielded a total of 10,782 unigenes, with 3,362 contigs and 7,420 singletons. The pollen transcriptome contained high levels of polygalacturonases and pectinesterases, which are involved in cell wall synthesis and expansion, and very few transcription factors or transcripts related to protein synthesis. The set of genes expressed in mature pollen showed little overlap with genes expressed in ovules or in microspores, suggesting in the latter case that a marked differentiation had occurred from the early microspore stages through to pollen development. Remarkably, the microspores and ovules exhibited a high number of co-expressed genes (N = 1,283) and very similar EST functional profiles, including high transcript numbers for transcriptional and translational processing genes, protein modification genes and unannotated genes. In addition, examination of expression values for genes co-expressed among microspores and ovules revealed a highly statistically significant correlation among these two tissues (R = 0.360, P = 1.2 x 10(-40)) as well as a lack of differentially expressed genes. Overall, the results provide new insights into the transcriptional profile of rarely studied ovules, the transcript changes during pollen development, transcriptional regulation of pollen tube growth and germination, and describe the parallels in the transcript populations of microspore and ovules which could have implications for understanding the molecular foundation of microspore totipotency in B. napus.
Collapse
Affiliation(s)
- Carrie A Whittle
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | | | | | | |
Collapse
|
91
|
Rosado A, Sohn EJ, Drakakaki G, Pan S, Swidergal A, Xiong Y, Kang BH, Bressan RA, Raikhel NV. Auxin-mediated ribosomal biogenesis regulates vacuolar trafficking in Arabidopsis. THE PLANT CELL 2010; 22:143-58. [PMID: 20061553 PMCID: PMC2828701 DOI: 10.1105/tpc.109.068320] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 12/07/2009] [Accepted: 12/19/2009] [Indexed: 05/19/2023]
Abstract
In plants, the mechanisms that regulate the transit of vacuolar soluble proteins containing C-terminal and N-terminal vacuolar sorting determinants (VSDs) to the vacuole are largely unknown. In a screen for Arabidopsis thaliana mutants affected in the trafficking of C-terminal VSD containing proteins, we isolated the ribosomal biogenesis mutant rpl4a characterized by its partial secretion of vacuolar targeted proteins and a plethora of developmental phenotypes derived from its aberrant auxin responses. In this study, we show that ribosomal biogenesis can be directly regulated by auxins and that the exogenous application of auxins to wild-type plants results in vacuolar trafficking defects similar to those observed in rpl4a mutants. We propose that the influence of auxin on ribosomal biogenesis acts as a regulatory mechanism for auxin-mediated developmental processes, and we demonstrate the involvement of this regulatory mechanism in the sorting of vacuolar targeted proteins in Arabidopsis.
Collapse
Affiliation(s)
- Abel Rosado
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Eun Ju Sohn
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Georgia Drakakaki
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Songqin Pan
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Alexandra Swidergal
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Yuqing Xiong
- Electron Microscopy and Bioimaging Lab, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32611
| | - Byung-Ho Kang
- Electron Microscopy and Bioimaging Lab, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32611
| | - Ray A. Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Natasha V. Raikhel
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521
- Address correspondence to
| |
Collapse
|
92
|
Islas-Flores T, Guillén G, Islas-Flores I, Román-Roque CS, Sánchez F, Loza-Tavera H, Bearer EL, Villanueva MA. Germination behavior, biochemical features and sequence analysis of the RACK1/arcA homolog from Phaseolus vulgaris. PHYSIOLOGIA PLANTARUM 2009; 137:264-80. [PMID: 19832940 PMCID: PMC3376080 DOI: 10.1111/j.1399-3054.2009.01280.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Partial peptide sequence of a 36 kDa protein from common bean embryo axes showed 100% identity with a reported beta-subunit of a heterotrimeric G protein from soybean. Analysis of the full sequence showed 96.6% identity with the reported soybean G(beta)-subunit, 86% with RACK1B and C from Arabidopsis and 66% with human and mouse RACK1, at the amino acid level. In addition, it showed 85.5, 85 and 83% identities with arcA from Solanum lycopersicum, Arabidopsis (RACK1A) and Nicotiana tabacum, respectively. The amino acid sequence displayed seven WD40 domains and two sites for activated protein kinase C binding. The protein showed a constant expression level but the mRNA had a maximum at 32 h post-imbibition. Western immunoblotting showed the protein in vegetative plant tissues, and in both microsomal and soluble fractions from embryo axes. Synthetic auxin treatment during germination delayed the peak of RACK1 mRNA expression to 48 h but did not affect the protein expression level while the polar auxin transport inhibitor, naphtylphtalamic acid had no effect on either mRNA or protein expression levels. Southern blot and genomic DNA amplification revealed a small gene family with at least one member without introns in the genome. Thus, the RACK1/arcA homolog from common bean has the following features: (1) it is highly conserved; (2) it is both soluble and insoluble within the embryo axis; (3) it is encoded by a small gene family; (4) its mRNA has a peak of expression at the time point of germination stop and (5) its expression is only slightly affected by auxin but unaffected by an auxin transport blocker.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Departamento de Biología Molecular de Plantas, Instituto de
Biotecnología, Universidad Nacional Autónoma de México,
UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Gabriel Guillén
- Departamento de Biología Molecular de Plantas, Instituto de
Biotecnología, Universidad Nacional Autónoma de México,
UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Ignacio Islas-Flores
- Centro de Investigacion Científica de Yucatán,
A.C., Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43
No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97200,
Mexico
| | - Carolina San Román-Roque
- Departamento de Biología Molecular de Plantas, Instituto de
Biotecnología, Universidad Nacional Autónoma de México,
UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de
Biotecnología, Universidad Nacional Autónoma de México,
UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Herminia Loza-Tavera
- Facultad de Química, Departamento de Bioquímica,
Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria,
04510 DF, Mexico
| | - Elaine L. Bearer
- Department of Pathology and Laboratory Medicine, Brown University,
Providence, RI 02912, USA
| | - Marco A. Villanueva
- Departamento de Biología Molecular de Plantas, Instituto de
Biotecnología, Universidad Nacional Autónoma de México,
UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
- Corresponding author,
| |
Collapse
|
93
|
Guo J, Wang S, Wang J, Huang WD, Liang J, Chen JG. Dissection of the Relationship Between RACK1 and Heterotrimeric G-Proteins in Arabidopsis. ACTA ACUST UNITED AC 2009; 50:1681-94. [DOI: 10.1093/pcp/pcp113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
94
|
Whittle CA, Krochko JE. Transcript profiling provides evidence of functional divergence and expression networks among ribosomal protein gene paralogs in Brassica napus. THE PLANT CELL 2009; 21:2203-19. [PMID: 19706795 PMCID: PMC2751962 DOI: 10.1105/tpc.109.068411] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/14/2009] [Accepted: 07/15/2009] [Indexed: 05/19/2023]
Abstract
The plant ribosome is composed of 80 distinct ribosomal (r)-proteins. In Arabidopsis thaliana, each r-protein is encoded by two or more highly similar paralogous genes, although only one copy of each r-protein is incorporated into the ribosome. Brassica napus is especially suited to the comparative study of r-protein gene paralogs due to its documented history of genome duplication as well as the recent availability of large EST data sets. We have identified 996 putative r-protein genes spanning 79 distinct r-proteins in B. napus using EST data from 16 tissue collections. A total of 23,408 tissue-specific r-protein ESTs are associated with this gene set. Comparative analysis of the transcript levels for these unigenes reveals that a large fraction of r-protein genes are differentially expressed and that the number of paralogs expressed for each r-protein varies extensively with tissue type in B. napus. In addition, in many cases the paralogous genes for a specific r-protein are not transcribed in concert and have highly contrasting expression patterns among tissues. Thus, each tissue examined has a novel r-protein transcript population. Furthermore, hierarchical clustering reveals that particular paralogs for nonhomologous r-protein genes cluster together, suggesting that r-protein paralog combinations are associated with specific tissues in B. napus and, thus, may contribute to tissue differentiation and/or specialization. Altogether, the data suggest that duplicated r-protein genes undergo functional divergence into highly specialized paralogs and coexpression networks and that, similar to recent reports for yeast, these are likely actively involved in differentiation, development, and/or tissue-specific processes.
Collapse
|
95
|
Bailey-Serres J, Sorenson R, Juntawong P. Getting the message across: cytoplasmic ribonucleoprotein complexes. TRENDS IN PLANT SCIENCE 2009; 14:443-53. [PMID: 19616989 DOI: 10.1016/j.tplants.2009.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 05/20/2023]
Abstract
mRNA-ribonucleoprotein (mRNP) complexes mediate post-transcriptional control mechanisms in the cell nucleus and cytoplasm. Transcriptional control is paramount to gene expression but is followed by regulated nuclear pre-mRNA maturation and quality control processes that culminate in the export of a functional transcript to the cytoplasm. Once in the cytosol, mRNPs determine the activity of individual mRNAs through regulation of localization, translation, sequestration and turnover. Here, we review how quantitative assessment of mRNAs in distinct cytoplasmic mRNPs, such as polyribosomes (polysomes), has provided new perspectives on post-transcriptional regulation from the global to gene-specific level. In addition, we explore recent genetic and biochemical studies of cytoplasmic mRNPs that have begun to expose RNA-binding proteins in an integrated network that fine-tunes gene expression.
Collapse
Affiliation(s)
- J Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
| | | | | |
Collapse
|
96
|
Yang C, Zhang C, Dittman JD, Whitham SA. Differential requirement of ribosomal protein S6 by plant RNA viruses with different translation initiation strategies. Virology 2009; 390:163-73. [PMID: 19524993 DOI: 10.1016/j.virol.2009.05.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/20/2008] [Accepted: 05/10/2009] [Indexed: 11/18/2022]
Abstract
Potyvirus infection has been reported to cause an increase in the mRNA transcripts of many plant ribosomal proteins (r-proteins). In this study, increased expression of r-protein mRNA transcripts was determined to occur in Nicotiana benthamiana during infection by potyviruses as well as a tobamovirus demonstrating that this response is not unique to potyviruses. Five r-protein genes, RPS6, RPL19, RPL13, RPL7, and RPS2, were silenced in N. benthamiana to test their roles in viral infection. The accumulation of both Turnip mosaic virus (TuMV), a potyvirus, and Tobacco mosaic virus (TMV), a tobamovirus, was dependent on RPL19, RPL13, RPL7, and RPS2. However, TMV was able to accumulate in RPS6-silenced plants while accumulation of TuMV and Tomato bushy stunt virus (TBSV) was abolished. These results demonstrate that cap-independent TuMV and TBSV require RPS6 for their accumulation, whereas accumulation of TMV is independent of RPS6.
Collapse
Affiliation(s)
- Chunling Yang
- Department of Plant Pathology, Iowa State University, 351 Bessey Hall, Ames, IA 50011-1020, USA
| | | | | | | |
Collapse
|
97
|
Baginsky S. Plant proteomics: concepts, applications, and novel strategies for data interpretation. MASS SPECTROMETRY REVIEWS 2009; 28:93-120. [PMID: 18618656 DOI: 10.1002/mas.20183] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteomics is an essential source of information about biological systems because it generates knowledge about the concentrations, interactions, functions, and catalytic activities of proteins, which are the major structural and functional determinants of cells. In the last few years significant technology development has taken place both at the level of data analysis software and mass spectrometry hardware. Conceptual progress in proteomics has made possible the analysis of entire proteomes at previously unprecedented density and accuracy. New concepts have emerged that comprise quantitative analyses of full proteomes, database-independent protein identification strategies, targeted quantitative proteomics approaches with proteotypic peptides and the systematic analysis of an increasing number of posttranslational modifications at high temporal and spatial resolution. Although plant proteomics is making progress, there are still several analytical challenges that await experimental and conceptual solutions. With this review I will highlight the current status of plant proteomics and put it into the context of the aforementioned conceptual progress in the field, illustrate some of the plant-specific challenges and present my view on the great opportunities for plant systems biology offered by proteomics.
Collapse
Affiliation(s)
- Sacha Baginsky
- Institute of Plant Sciences, Swiss Federal Institute of Technology, Universitätsstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
98
|
Guo J, Wang J, Xi L, Huang WD, Liang J, Chen JG. RACK1 is a negative regulator of ABA responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3819-33. [PMID: 19584117 PMCID: PMC2736894 DOI: 10.1093/jxb/erp221] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/11/2009] [Accepted: 06/22/2009] [Indexed: 05/18/2023]
Abstract
Receptor for Activated C Kinase 1 (RACK1) is viewed as a versatile scaffold protein in mammals. The protein sequence of RACK1 is highly conserved in eukaryotes. However, the function of RACK1 in plants remains poorly understood. Accumulating evidence suggested that RACK1 may be involved in hormone responses, but the precise role of RACK1 in any hormone signalling pathway remains elusive. Molecular and genetic evidence that Arabidopsis RACK1 is a negative regulator of ABA responses is provided here. It is shown that three RACK1 genes act redundantly to regulate ABA responses in seed germination, cotyledon greening and root growth, because rack1a single and double mutants are hypersensitive to ABA in each of these processes. On the other hand, plants overexpressing RACK1A displayed ABA insensitivity. Consistent with their proposed roles in seed germination and early seedling development, all three RACK1 genes were expressed in imbibed, germinating and germinated seeds. It was found that the ABA-responsive marker genes, RD29B and RAB18, were up-regulated in rack1a mutants. Furthermore, the expression of all three RACK1 genes themselves was down-regulated by ABA. Consistent with the view that RACK1 negatively regulates ABA responses, rack1a mutants lose water significantly more slowly from the rosettes and are hypersensitive to high concentrations of NaCl during seed germination. In addition, the expression of some putative RACK1-interacting, ABA-, or abiotic stress-regulated genes was mis-regulated in rack1a rack1b double mutants in response to ABA. Taken together, these findings provide compelling evidence that RACK1 is a critical, negative regulator of ABA responses.
Collapse
Affiliation(s)
- Jianjun Guo
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
| | - Junbi Wang
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Li Xi
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
| | - Wei-Dong Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiansheng Liang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jin-Gui Chen
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
99
|
Phillips MA, D’Auria JC, Luck K, Gershenzon J. Evaluation of Candidate Reference Genes for Real-Time Quantitative PCR of Plant Samples Using Purified cDNA as Template. PLANT MOLECULAR BIOLOGY REPORTER 2009; 27:407-416. [PMID: 24489433 PMCID: PMC3906740 DOI: 10.1007/s11105-008-0072-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is a precise method to measure changes in gene transcript level. Accurate quantification requires careful RNA quality assessment, determination of primer efficiency, and selection of an appropriate reference gene. While many experimental procedures for these purposes have been described for mammalian samples, the direct application of these methods to plant samples often introduces unexpected experimental errors due to the complex and variable nature of the ribosomal RNA species present in typical plant extracts. In this paper, we report a simple procedure for the purification and quantification of complementary DNA (cDNA) after reverse transcriptase reactions by microcapillary electrophoresis. The use of purified cDNA allows template concentrations to be more accurately standardized for SYBR Green PCR reactions and increases amplification efficiencies so that these closely resemble those determined by the standard curve method. These advantages facilitate a more precise evaluation of the transcript levels of candidate reference genes under various experimental conditions without bias from differences in reverse transcriptase efficiency, template loading, or the presence of PCR inhibitors following reverse transcription. Using samples from Arabidopsis thaliana and Picea abies (Norway spruce), we demonstrate the value of this approach for selecting reference genes.
Collapse
Affiliation(s)
- Michael A. Phillips
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, 07745 Jena, Germany
- Present Address: Center for Research in Agricultural Genomics (CRAG-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - John C. D’Auria
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, 07745 Jena, Germany
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, 07745 Jena, Germany
| |
Collapse
|
100
|
Guo J, Chen JG. RACK1 genes regulate plant development with unequal genetic redundancy in Arabidopsis. BMC PLANT BIOLOGY 2008; 8:108. [PMID: 18947417 PMCID: PMC2577656 DOI: 10.1186/1471-2229-8-108] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/23/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND RACK1 is a versatile scaffold protein in mammals, regulating diverse developmental processes. Unlike in non-plant organisms where RACK1 is encoded by a single gene, Arabidopsis genome contains three RACK1 homologous genes, designated as RACK1A, RACK1B and RACK1C, respectively. Previous studies indicated that the loss-of-function alleles of RACK1A displayed multiple defects in plant development. However, the functions of RACK1B and RACK1C remain elusive. Further, the relationships between three RACK1 homologous genes are unknown. RESULTS We isolated mutant alleles with loss-of-function mutations in RACK1B and RACK1C, and examined the impact of these mutations on plant development. We found that unlike in RACK1A, loss-of-function mutations in RACK1B or RACK1C do not confer apparent defects in plant development, including rosette leaf production and root development. Analyses of rack1a, rack1b and rack1c double and triple mutants, however, revealed that rack1b and rack1c can enhance the rack1a mutant's developmental defects, and an extreme developmental defect and lethality were observed in rack1a rack1b rack1c triple mutant. Complementation studies indicated that RACK1B and RACK1C are in principle functionally equivalent to RACK1A. Gene expression studies indicated that three RACK1 genes display similar expression patterns but are expressed at different levels. Further, RACK1 genes positively regulate each other's expression. CONCLUSION These results suggested that RACK1 genes are critical regulators of plant development and that RACK1 genes function in an unequally redundant manner. Both the difference in RACK1 gene expression level and the cross-regulation are likely the molecular determinants of their unequal genetic redundancy.
Collapse
Affiliation(s)
- Jianjun Guo
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jin-Gui Chen
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|