51
|
Karve R, Suárez-Román F, Iyer-Pascuzzi AS. The Transcription Factor NIN-LIKE PROTEIN7 Controls Border-Like Cell Release. PLANT PHYSIOLOGY 2016; 171:2101-11. [PMID: 27221617 PMCID: PMC4936578 DOI: 10.1104/pp.16.00453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/19/2016] [Indexed: 05/21/2023]
Abstract
The root cap covers the tip of the root and functions to protect the root from environmental stress. Cells in the last layer of the root cap are known as border cells, or border-like cells (BLCs) in Arabidopsis (Arabidopsis thaliana). These cells separate from the rest of the root cap and are released from its edge as a layer of living cells. BLC release is developmentally regulated, but the mechanism is largely unknown. Here, we show that the transcription factor NIN-LIKE PROTEIN7 (NLP7) is required for the proper release of BLCs in Arabidopsis. Mutations in NLP7 lead to BLCs that are released as single cells instead of an entire layer. NLP7 is highly expressed in BLCs and is activated by exposure to low pH, a condition that causes BLCs to be released as single cells. Mutations in NLP7 lead to decreased levels of cellulose and pectin. Cell wall-loosening enzymes such as CELLULASE5 (CEL5) and a pectin lyase-like gene, as well as the root cap regulators SOMBRERO and BEARSKIN1/2, are activated in nlp7-1 seedlings. Double mutant analysis revealed that the nlp7-1 phenotype depends on the expression level of CEL5 Mutations in NLP7 lead to an increase in susceptibility to a root-infecting fungal pathogen. Together, these data suggest that NLP7 controls the release of BLCs by acting through the cell wall-loosening enzyme CEL5.
Collapse
Affiliation(s)
- Rucha Karve
- Purdue University, Department of Botany and Plant Pathology, West Lafayette, Indiana 47907
| | - Frank Suárez-Román
- Purdue University, Department of Botany and Plant Pathology, West Lafayette, Indiana 47907
| | - Anjali S Iyer-Pascuzzi
- Purdue University, Department of Botany and Plant Pathology, West Lafayette, Indiana 47907
| |
Collapse
|
52
|
Tran TM, MacIntyre A, Hawes M, Allen C. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum. PLoS Pathog 2016; 12:e1005686. [PMID: 27336156 PMCID: PMC4919084 DOI: 10.1371/journal.ppat.1005686] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/18/2016] [Indexed: 12/21/2022] Open
Abstract
Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.
Collapse
Affiliation(s)
- Tuan Minh Tran
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - April MacIntyre
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Martha Hawes
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona, United States of America
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
53
|
Shelden MC, Dias DA, Jayasinghe NS, Bacic A, Roessner U. Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3731-45. [PMID: 26946124 PMCID: PMC4896359 DOI: 10.1093/jxb/erw059] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Barley (Hordeum vulgare L.) is the most salt-tolerant cereal crop and has excellent genetic and genomic resources. It is therefore a good model to study salt-tolerance mechanisms in cereals. We aimed to determine metabolic differences between a cultivated barley, Clipper (tolerant), and a North African landrace, Sahara (susceptible), previously shown to have contrasting root growth phenotypes in response to the early phase of salinity stress. GC-MS was used to determine spatial changes in primary metabolites in barley roots in response to salt stress, by profiling three different regions of the root: root cap/cell division zone (R1), elongation zone (R2), and maturation zone (R3). We identified 76 known metabolites, including 29 amino acids and amines, 20 organic acids and fatty acids, and 19 sugars and sugar phosphates. The maintenance of cell division and root elongation in Clipper in response to short-term salt stress was associated with the synthesis and accumulation of amino acids (i.e. proline), sugars (maltose, sucrose, xylose), and organic acids (gluconate, shikimate), indicating a potential role for these metabolic pathways in salt tolerance and the maintenance of root elongation. The processes involved in root growth adaptation and the underlying coordination of metabolic pathways appear to be controlled in a region-specific manner. This study highlights the importance of utilizing spatial profiling and will provide us with a better understanding of abiotic stress response(s) in plants at the tissue and cellular level.
Collapse
Affiliation(s)
- Megan C Shelden
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Daniel A Dias
- Metabolomics Australia, The University of Melbourne, Parkville VIC 3010, Australia
| | | | - Antony Bacic
- Metabolomics Australia, The University of Melbourne, Parkville VIC 3010, Australia ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Ute Roessner
- Metabolomics Australia, The University of Melbourne, Parkville VIC 3010, Australia School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
| |
Collapse
|
54
|
Tran TM, MacIntyre A, Hawes M, Allen C. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum. PLoS Pathog 2016; 12:e1005686. [PMID: 27336156 DOI: 10.1371/journal.ppat.10056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/18/2016] [Indexed: 05/22/2023] Open
Abstract
Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.
Collapse
Affiliation(s)
- Tuan Minh Tran
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - April MacIntyre
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Martha Hawes
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona, United States of America
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
55
|
Okazaki Y, Saito K. Integrated metabolomics and phytochemical genomics approaches for studies on rice. Gigascience 2016; 5:11. [PMID: 26937280 PMCID: PMC4774183 DOI: 10.1186/s13742-016-0116-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/06/2016] [Indexed: 01/10/2023] Open
Abstract
Metabolomics is widely employed to monitor the cellular metabolic state and assess the quality of plant-derived foodstuffs because it can be used to manage datasets that include a wide range of metabolites in their analytical samples. In this review, we discuss metabolomics research on rice in order to elucidate the overall regulation of the metabolism as it is related to the growth and mechanisms of adaptation to genetic modifications and environmental stresses such as fungal infections, submergence, and oxidative stress. We also focus on phytochemical genomics studies based on a combination of metabolomics and quantitative trait locus (QTL) mapping techniques. In addition to starch, rice produces many metabolites that also serve as nutrients for human consumers. The outcomes of recent phytochemical genomics studies of diverse natural rice resources suggest there is potential for using further effective breeding strategies to improve the quality of ingredients in rice grains.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 Japan ; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813 Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 Japan ; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| |
Collapse
|
56
|
van Dam NM, Bouwmeester HJ. Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. TRENDS IN PLANT SCIENCE 2016; 21:256-265. [PMID: 26832948 DOI: 10.1016/j.tplants.2016.01.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 05/19/2023]
Abstract
The rhizosphere is densely populated with a variety of organisms. Interactions between roots and rhizosphere community members are mostly achieved via chemical communication. Root exudates contain an array of primary and secondary plant metabolites that can attract, deter, or kill belowground insect herbivores, nematodes, and microbes, and inhibit competing plants. Metabolomics of root exudates can potentially help us to better understand this chemical dialogue. The main limitations are the proper sampling of the exudate, the sensitivity of the metabolomics platforms, and the multivariate data analysis to identify causal relations. Novel technologies may help to generate a spatially explicit metabolome of the root and its exudates at a scale that is relevant for the rhizosphere community.
Collapse
Affiliation(s)
- Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany; Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany; Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University, PO Box 9010, Nijmegen, GL 6500, The Netherlands.
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, PB 6708, The Netherlands.
| |
Collapse
|
57
|
Extracellular Trapping of Soil Contaminants by Root Border Cells: New Insights into Plant Defense. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
58
|
|
59
|
Ramalingam A, Kudapa H, Pazhamala LT, Weckwerth W, Varshney RK. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:1116. [PMID: 26734026 PMCID: PMC4689856 DOI: 10.3389/fpls.2015.01116] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/25/2015] [Indexed: 05/19/2023]
Abstract
The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several studies on proteomics and metabolomics in model and crop legumes have been discussed. Additionally, applications of advanced proteomics and metabolomics approaches have also been included in this review for future applications in legume research. The integration of these "omics" approaches will greatly support the identification of accurate biomarkers in legume smart breeding programs.
Collapse
Affiliation(s)
- Abirami Ramalingam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Lekha T Pazhamala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna Vienna, Austria
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India; School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|
60
|
Tohge T, Scossa F, Fernie AR. Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation. PLANT PHYSIOLOGY 2015; 169:1499-511. [PMID: 26371234 PMCID: PMC4634077 DOI: 10.1104/pp.15.01006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/10/2015] [Indexed: 05/05/2023]
Abstract
Huge insight into molecular mechanisms and biological network coordination have been achieved following the application of various profiling technologies. Our knowledge of how the different molecular entities of the cell interact with one another suggests that, nevertheless, integration of data from different techniques could drive a more comprehensive understanding of the data emanating from different techniques. Here, we provide an overview of how such data integration is being used to aid the understanding of metabolic pathway structure and regulation. We choose to focus on the pairwise integration of large-scale metabolite data with that of the transcriptomic, proteomics, whole-genome sequence, growth- and yield-associated phenotypes, and archival functional genomic data sets. In doing so, we attempt to provide an update on approaches that integrate data obtained at different levels to reach a better understanding of either single gene function or metabolic pathway structure and regulation within the context of a broader biological process.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T., A.R.F.); andConsiglio per la Ricerca e Analisi dell'Economia Agraria, Centro di Ricerca per la Frutticoltura, 00134 Rome, Italy (F.S.)
| | - Federico Scossa
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T., A.R.F.); andConsiglio per la Ricerca e Analisi dell'Economia Agraria, Centro di Ricerca per la Frutticoltura, 00134 Rome, Italy (F.S.)
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T., A.R.F.); andConsiglio per la Ricerca e Analisi dell'Economia Agraria, Centro di Ricerca per la Frutticoltura, 00134 Rome, Italy (F.S.)
| |
Collapse
|
61
|
Biazzi E, Carelli M, Tava A, Abbruscato P, Losini I, Avato P, Scotti C, Calderini O. CYP72A67 Catalyzes a Key Oxidative Step in Medicago truncatula Hemolytic Saponin Biosynthesis. MOLECULAR PLANT 2015; 8:1493-506. [PMID: 26079384 DOI: 10.1016/j.molp.2015.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/05/2015] [Accepted: 06/07/2015] [Indexed: 05/23/2023]
Abstract
In the Medicago genus, triterpenic saponins are bioactive secondary metabolites constitutively synthesized in the aerial and subterranean parts of plants via the isoprenoid pathway. Exploitation of saponins as pharmaceutics, agrochemicals and in the food and cosmetic industries has raised interest in identifying the enzymes involved in their synthesis. We have identified a cytochrome P450 (CYP72A67) involved in hemolytic sapogenin biosynthesis by a reverse genetic TILLING approach in a Medicago truncatula ethylmethanesulfonate (EMS) mutagenized collection. Genetic and biochemical analyses, mutant complementation, and expression of the gene in a microsome yeast system showed that CYP72A67 is responsible for hydroxylation at the C-2 position downstream of oleanolic acid synthesis. The affinity of CYP72A67 for substrates with different substitutions at multiple carbon positions was investigated in the same in vitro yeast system, and in relation to two other CYP450s (CYP72A68) responsible for the production of medicagenic acid, the main sapogenin in M. truncatula leaves and roots. Full sib mutant and wild-type plants were compared for their sapogenin profile, expression patterns of the genes involved in sapogenin synthesis, and response to inoculation with Sinorhizobium meliloti. The results obtained allowed us to revise the hemolytic sapogenin pathway in M. truncatula and contribute to highlighting the tissue specificities (leaves/roots) of sapogenin synthesis.
Collapse
Affiliation(s)
- Elisa Biazzi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Centro di Ricerche per le Produzioni Foraggere e Lattiero Casearie, 26900 Lodi, Italy
| | - Maria Carelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Centro di Ricerche per le Produzioni Foraggere e Lattiero Casearie, 26900 Lodi, Italy
| | - Aldo Tava
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Centro di Ricerche per le Produzioni Foraggere e Lattiero Casearie, 26900 Lodi, Italy
| | | | | | - Pinarosa Avato
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Carla Scotti
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Centro di Ricerche per le Produzioni Foraggere e Lattiero Casearie, 26900 Lodi, Italy.
| | - Ornella Calderini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Bioscienze e Biorisorse, 06128 Perugia, Italy
| |
Collapse
|