51
|
Buono RA, Leier A, Paez-Valencia J, Pennington J, Goodman K, Miller N, Ahlquist P, Marquez-Lago TT, Otegui MS. ESCRT-mediated vesicle concatenation in plant endosomes. J Cell Biol 2017; 216:2167-2177. [PMID: 28592443 PMCID: PMC5496621 DOI: 10.1083/jcb.201612040] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/06/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022] Open
Abstract
ESCRT proteins play essential functions by remodeling cellular membranes. Buono et al. report on a novel ESCRT-dependent mechanism in plant endosomes that leads to sequential concatenation of vesicle buds by temporally uncoupling membrane constriction from membrane fission. During this process, ESCRT-III proteins remain inside endosomes after intralumenal vesicle release. Ubiquitinated plasma membrane proteins (cargo) are delivered to endosomes and sorted by endosomal sorting complex required for transport (ESCRT) machinery into endosome intralumenal vesicles (ILVs) for degradation. In contrast to the current model that postulates that ILVs form individually from inward budding of the endosomal limiting membrane, plant ILVs form as networks of concatenated vesicle buds by a novel vesiculation mechanism. We ran computational simulations based on experimentally derived diffusion coefficients of an ESCRT cargo protein and electron tomograms of Arabidopsis thaliana endosomes to measure cargo escape from budding ILVs. We found that 50% of the ESCRT cargo would escape from a single budding profile in 5–20 ms and from three concatenated ILVs in 80–200 ms. These short cargo escape times predict the need for strong diffusion barriers in ILVs. Consistent with a potential role as a diffusion barrier, we find that the ESCRT-III protein SNF7 remains associated with ILVs and is delivered to the vacuole for degradation.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Botany, University of Wisconsin-Madison, Madison, WI.,R.M. Bock Laboratories of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| | - André Leier
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Julio Paez-Valencia
- Department of Botany, University of Wisconsin-Madison, Madison, WI.,R.M. Bock Laboratories of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| | | | - Kaija Goodman
- Department of Botany, University of Wisconsin-Madison, Madison, WI.,R.M. Bock Laboratories of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| | - Nathan Miller
- Department of Botany, University of Wisconsin-Madison, Madison, WI
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI.,Departments of Oncology, University of Wisconsin-Madison, Madison, WI.,Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI.,Howard Hughes Medical Institute, Chevy Chase, MD.,Morgridge Institute for Research, Madison, WI
| | - Tatiana T Marquez-Lago
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI .,R.M. Bock Laboratories of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI.,Department of Genetics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
52
|
Gupta S, Bhar A, Chatterjee M, Ghosh A, Das S. Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack. PLoS One 2017; 12:e0178164. [PMID: 28542579 PMCID: PMC5460890 DOI: 10.1371/journal.pone.0178164] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Plants' reaction to underground microorganisms is complex as sessile nature of plants compels them to prioritize their responses to diverse microorganisms both pathogenic and symbiotic. Roots of important crops are directly exposed to diverse microorganisms, but investigations involving root pathogens are significantly less. Thus, more studies involving root pathogens and their target crops are necessitated to enrich the understanding of underground interactions. Present study reported the molecular complexities in chickpea during Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) infection. Transcriptomic dissections using RNA-seq showed significantly differential expression of molecular transcripts between infected and control plants of both susceptible and resistant genotypes. Radar plot analyses showed maximum expressional undulations after infection in both susceptible and resistant plants. Gene ontology and functional clustering showed large number of transcripts controlling basic metabolism of plants. Network analyses demonstrated defense components like peptidyl cis/trans isomerase, MAP kinase, beta 1,3 glucanase, serine threonine kinase, patatin like protein, lactolylglutathione lyase, coproporphyrinogen III oxidase, sulfotransferases; reactive oxygen species regulating components like respiratory burst oxidase, superoxide dismutases, cytochrome b5 reductase, glutathione reductase, thioredoxin reductase, ATPase; metabolism regulating components, myo inositol phosphate, carboxylate synthase; transport related gamma tonoplast intrinsic protein, and structural component, ubiquitins to serve as important nodals of defense signaling network. These nodal molecules probably served as hub controllers of defense signaling. Functional characterization of these hub molecules would not only help in developing better understanding of chickpea-Foc1 interaction but also place them as promising candidates for resistance management programs against vascular wilt of legumes.
Collapse
Affiliation(s)
- Sumanti Gupta
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Anirban Bhar
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Moniya Chatterjee
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Amartya Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| |
Collapse
|
53
|
Steffens A, Jakoby M, Hülskamp M. Physical, Functional and Genetic Interactions between the BEACH Domain Protein SPIRRIG and LIP5 and SKD1 and Its Role in Endosomal Trafficking to the Vacuole in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1969. [PMID: 29209342 PMCID: PMC5701936 DOI: 10.3389/fpls.2017.01969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/01/2017] [Indexed: 05/19/2023]
Abstract
Beige and Chediak Higashi (BEACH) domain-containing proteins (BDCPs) are facilitators of membrane-dependent cellular processes in eukaryotes. Mutations in BDCPs cause malfunctions of endosomal compartments in various cell types. Recently, the molecular analysis of the BDCP homolog gene SPIRRIG (SPI) has revealed a molecular function in P-bodies and the regulation of RNA stability. We therefore aimed to analyze, whether SPI has also a role in membrane-dependent processes. In this study, we show that SPI physically interacts with endosomal sorting complex required for transport associated ATPase Suppressor of K+-transport growth defect1 (SKD1) and its positive regulator, LYST Interacting Protein 5 (LIP5) and report genetic interactions between SPI and SKD1 and LIP5. We further show that the endosomal transport route of soluble proteins to the lytic vacuole is disturbed in spi lip5 double mutants but not in the single mutants. These vacuolar transport defects were suppressed by additional expression of SKD1. Our results indicate that the BEACH domain protein SPI has in addition to a role in P-bodies a function in endosomal transport routes.
Collapse
|
54
|
Kawa D, Julkowska MM, Sommerfeld HM, Ter Horst A, Haring MA, Testerink C. Phosphate-Dependent Root System Architecture Responses to Salt Stress. PLANT PHYSIOLOGY 2016; 172:690-706. [PMID: 27208277 PMCID: PMC5047085 DOI: 10.1104/pp.16.00712] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 05/19/2023]
Abstract
Nutrient availability and salinity of the soil affect the growth and development of plant roots. Here, we describe how inorganic phosphate (Pi) availability affects the root system architecture (RSA) of Arabidopsis (Arabidopsis thaliana) and how Pi levels modulate responses of the root to salt stress. Pi starvation reduced main root length and increased the number of lateral roots of Arabidopsis Columbia-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75 mm) on all measured RSA components. At higher salt concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid signaling compared with the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general, lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied, and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By genome-wide association mapping, 12 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.
Collapse
Affiliation(s)
- Dorota Kawa
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| | - Magdalena M Julkowska
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| | - Hector Montero Sommerfeld
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| | - Anneliek Ter Horst
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| | - Michel A Haring
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| | - Christa Testerink
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| |
Collapse
|