51
|
Zhang D, Wu S, An X, Xie K, Dong Z, Zhou Y, Xu L, Fang W, Liu S, Liu S, Zhu T, Li J, Rao L, Zhao J, Wan X. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:459-471. [PMID: 28678349 PMCID: PMC5787847 DOI: 10.1111/pbi.12786] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/16/2017] [Accepted: 07/02/2017] [Indexed: 05/19/2023]
Abstract
Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production.
Collapse
Affiliation(s)
- Danfeng Zhang
- College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaChina
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Suowei Wu
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Xueli An
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Ke Xie
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Zhenying Dong
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Yan Zhou
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Liwen Xu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular BreedingMaize Research CenterBeijing Academy of Agriculture & Forestry SciencesBeijingChina
| | - Wen Fang
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Shensi Liu
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Shuangshuang Liu
- College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaChina
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Taotao Zhu
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Liqun Rao
- College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaChina
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular BreedingMaize Research CenterBeijing Academy of Agriculture & Forestry SciencesBeijingChina
| | - Xiangyuan Wan
- College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaChina
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| |
Collapse
|
52
|
Tian Y, Xiao S, Liu J, Somaratne Y, Zhang H, Wang M, Zhang H, Zhao L, Chen H. MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Sci Rep 2017; 7:16736. [PMID: 29196635 PMCID: PMC5711870 DOI: 10.1038/s41598-017-16930-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/21/2017] [Indexed: 11/23/2022] Open
Abstract
The anther cuticle and pollen wall function as physical barriers that protect genetic material from various environmental stresses. The anther cuticle is composed of wax and cutin, the pollen wall includes exine and intine, and the components of the outer exine are collectively called sporopollenin. Other than cuticle wax, cutin and sporopollenin are biopolymers compounds. The precise constituents and developmental mechanism of these biopolymeric are poorly understood. Here, we reported a complete male sterile mutant, male sterile6021, in maize. The mutant displayed a smooth anther surface and irregular pollen wall formation before anthesis, and its tapetum was degraded immaturely. Gas chromatography-mass spectrometry analysis revealed a severe reduction of lipid derivatives in the mutant anther. We cloned the gene by map based cloning. It encoded a fatty acyl carrier protein reductase that was localized in plastids. Expression analysis indicated that MS6021 was mainly expressed in the tapetum and microspore after the microspore was released from the tetrad. Functional complementation of the orthologous Arabidopsis mutant demonstrated that MS6021 is conserved between monocots and dicots and potentially even in flowering plants. MS6021 plays a conserved, essential role in the successful development of anther cuticle and pollen exine in maize.
Collapse
Affiliation(s)
- Youhui Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Senlin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yamuna Somaratne
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingming Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
53
|
Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for Plant Improvement: Status and Prospects. FRONTIERS IN PLANT SCIENCE 2017; 8:1302. [PMID: 28824660 PMCID: PMC5545584 DOI: 10.3389/fpls.2017.01302] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 05/12/2023]
Abstract
Post-genomics era has witnessed the development of cutting-edge technologies that have offered cost-efficient and high-throughput ways for molecular characterization of the function of a cell or organism. Large-scale metabolite profiling assays have allowed researchers to access the global data sets of metabolites and the corresponding metabolic pathways in an unprecedented way. Recent efforts in metabolomics have been directed to improve the quality along with a major focus on yield related traits. Importantly, an integration of metabolomics with other approaches such as quantitative genetics, transcriptomics and genetic modification has established its immense relevance to plant improvement. An effective combination of these modern approaches guides researchers to pinpoint the functional gene(s) and the characterization of massive metabolites, in order to prioritize the candidate genes for downstream analyses and ultimately, offering trait specific markers to improve commercially important traits. This in turn will improve the ability of a plant breeder by allowing him to make more informed decisions. Given this, the present review captures the significant leads gained in the past decade in the field of plant metabolomics accompanied by a brief discussion on the current contribution and the future scope of metabolomics to accelerate plant improvement.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Plant Sciences, University of Hyderabad (UoH)Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Abhishek Bohra
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - Arun K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU)Amarkantak, India
| |
Collapse
|
54
|
Liu Z, Lin S, Shi J, Yu J, Zhu L, Yang X, Zhang D, Liang W. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:263-277. [PMID: 28378445 DOI: 10.1111/tpj.13561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 05/28/2023]
Abstract
Angiosperm male reproductive organs (anthers and pollen grains) have complex and interesting morphological features, but mechanisms that underlie their patterning are poorly understood. Here we report the isolation and characterization of a male sterile mutant of No Pollen 1 (NP1) in rice (Oryza sativa). The np1-4 mutant exhibited smaller anthers with a smooth cuticle surface, abnormal Ubisch bodies, and aborted pollen grains covered with irregular exine. Wild-type exine has two continuous layers; but np1-4 exine showed a discontinuous structure with large granules of varying size. Chemical analysis revealed reduction in most of the cutin monomers in np1-4 anthers, and less cuticular wax. Map-based cloning suggested that NP1 encodes a putative glucose-methanol-choline oxidoreductase; and expression analyses found NP1 preferentially expressed in the tapetal layer from stage 8 to stage 10 of anther development. Additionally, the expression of several genes involved in biosynthesis and in the transport of lipid monomers of sporopollenin and cutin was decreased in np1-4 mutant anthers. Taken together, these observations suggest that NP1 is required for anther cuticle formation, and for patterning of Ubisch bodies and the exine. We propose that products of NP1 are likely important metabolites in the development of Ubisch bodies and pollen exine, necessary for polymerization, assembly, or both.
Collapse
Affiliation(s)
- Ze Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sen Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
55
|
Amasino RM, Cheung AY, Dresselhaus T, Kuhlemeier C. Focus on Flowering and Reproduction. PLANT PHYSIOLOGY 2017; 173:1-4. [PMID: 28049854 PMCID: PMC5210767 DOI: 10.1104/pp.16.01867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Richard M Amasino
- Guest Editor
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Alice Y Cheung
- Associate Editor
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Thomas Dresselhaus
- Guest Editor
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cris Kuhlemeier
- Monitoring Editor
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| |
Collapse
|