51
|
Kelner A, Leitão N, Chabaud M, Charpentier M, de Carvalho-Niebel F. Dual Color Sensors for Simultaneous Analysis of Calcium Signal Dynamics in the Nuclear and Cytoplasmic Compartments of Plant Cells. FRONTIERS IN PLANT SCIENCE 2018; 9:245. [PMID: 29535753 PMCID: PMC5835324 DOI: 10.3389/fpls.2018.00245] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/12/2018] [Indexed: 05/17/2023]
Abstract
Spatiotemporal changes in cellular calcium (Ca2+) concentrations are essential for signal transduction in a wide range of plant cellular processes. In legumes, nuclear and perinuclear-localized Ca2+ oscillations have emerged as key signatures preceding downstream symbiotic signaling responses. Förster resonance energy transfer (FRET) yellow-based Ca2+ cameleon probes have been successfully exploited to measure the spatiotemporal dynamics of symbiotic Ca2+ signaling in legumes. Although providing cellular resolution, these sensors were restricted to measuring Ca2+ changes in single subcellular compartments. In this study, we have explored the potential of single fluorescent protein-based Ca2+ sensors, the GECOs, for multicolor and simultaneous imaging of the spatiotemporal dynamics of cytoplasmic and nuclear Ca2+ signaling in root cells. Single and dual fluorescence nuclear and cytoplasmic-localized GECOs expressed in transgenic Medicago truncatula roots and Arabidopsis thaliana were used to successfully monitor Ca2+ responses to microbial biotic and abiotic elicitors. In M. truncatula, we demonstrate that GECOs detect symbiosis-related Ca2+ spiking variations with higher sensitivity than the yellow FRET-based sensors previously used. Additionally, in both M. truncatula and A. thaliana, the dual sensor is now able to resolve in a single root cell the coordinated spatiotemporal dynamics of nuclear and cytoplasmic Ca2+ signaling in vivo. The GECO-based sensors presented here therefore represent powerful tools to monitor Ca2+ signaling dynamics in vivo in response to different stimuli in multi-subcellular compartments of plant cells.
Collapse
Affiliation(s)
- Audrey Kelner
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Nuno Leitão
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Mireille Chabaud
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
- *Correspondence: Myriam Charpentier
| | - Fernanda de Carvalho-Niebel
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
- Fernanda de Carvalho-Niebel
| |
Collapse
|
52
|
De Col V, Fuchs P, Nietzel T, Elsässer M, Voon CP, Candeo A, Seeliger I, Fricker MD, Grefen C, Møller IM, Bassi A, Lim BL, Zancani M, Meyer AJ, Costa A, Wagner S, Schwarzländer M. ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. eLife 2017; 6. [PMID: 28716182 PMCID: PMC5515573 DOI: 10.7554/elife.26770] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022] Open
Abstract
Growth and development of plants is ultimately driven by light energy captured through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes, including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP biochemistry, ATP dynamics in the living plant have been largely elusive. Here, we establish MgATP2- measurement in living plants using the fluorescent protein biosensor ATeam1.03-nD/nA. We generate Arabidopsis sensor lines and investigate the sensor in vitro under conditions appropriate for the plant cytosol. We establish an assay for ATP fluxes in isolated mitochondria, and demonstrate that the sensor responds rapidly and reliably to MgATP2- changes in planta. A MgATP2- map of the Arabidopsis seedling highlights different MgATP2- concentrations between tissues and within individual cell types, such as root hairs. Progression of hypoxia reveals substantial plasticity of ATP homeostasis in seedlings, demonstrating that ATP dynamics can be monitored in the living plant.
Collapse
Affiliation(s)
- Valentina De Col
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Thomas Nietzel
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marlene Elsässer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Chia Pao Voon
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Ingo Seeliger
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Christopher Grefen
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Marco Zancani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Stephan Wagner
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Markus Schwarzländer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
53
|
Szabò I, Spetea C. Impact of the ion transportome of chloroplasts on the optimization of photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3115-3128. [PMID: 28338935 DOI: 10.1093/jxb/erx063] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ions play fundamental roles in all living cells, and their gradients are often essential to fuel transport, regulate enzyme activities, and transduce energy within cells. Regulation of their homeostasis is essential for cell metabolism. Recent results indicate that modulation of ion fluxes might also represent a useful strategy to regulate one of the most important physiological processes taking place in chloroplasts, photosynthesis. Photosynthesis is highly regulated, due to its unique role as a cellular engine for growth in the light. Controlling the balance between ATP and NADPH synthesis is a critical task, and availability of these molecules can limit the overall photosynthetic yield. Photosynthetic organisms optimize photosynthesis in low light, where excitation energy limits CO2 fixation, and minimize photo-oxidative damage in high light by dissipating excess photons. Despite extensive studies of these phenomena, the mechanism governing light utilization in plants is still poorly understood. In this review, we provide an update of the recently identified chloroplast-located ion channels and transporters whose function impacts photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Ildikò Szabò
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
54
|
Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc Natl Acad Sci U S A 2016; 113:E5242-9. [PMID: 27528686 DOI: 10.1073/pnas.1519555113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plants experience hyperosmotic stress when faced with saline soils and possibly with drought stress, but it is currently unclear how plant roots perceive this stress in an environment of dynamic water availabilities. Hyperosmotic stress induces a rapid rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) in plants, and this Ca(2+) response may reflect the activities of osmo-sensory components. Here, we find in the reference plant Arabidopsis thaliana that the rapid hyperosmotic-induced Ca(2+) response exhibited enhanced response magnitudes after preexposure to an intermediate hyperosmotic stress. We term this phenomenon "osmo-sensory potentiation." The initial sensing and potentiation occurred in intact plants as well as in roots. Having established a quantitative understanding of wild-type responses, we investigated effects of pharmacological inhibitors and candidate channel/transporter mutants. Quintuple mechano-sensitive channels of small conductance-like (MSL) plasma membrane-targeted channel mutants as well as double mid1-complementing activity (MCA) channel mutants did not affect the response. Interestingly, however, double mutations in the plastid K(+) exchange antiporter (KEA) transporters kea1kea2 and a single mutation that does not visibly affect chloroplast structure, kea3, impaired the rapid hyperosmotic-induced Ca(2+) responses. These mutations did not significantly affect sensory potentiation of the response. These findings suggest that plastids may play an important role in early steps mediating the response to hyperosmotic stimuli. Together, these findings demonstrate that the plant osmo-sensory components necessary to generate rapid osmotic-induced Ca(2+) responses remain responsive under varying osmolarities, endowing plants with the ability to perceive the dynamic intensities of water limitation imposed by osmotic stress.
Collapse
|