51
|
Dwivedi SL, Stoddard FL, Ortiz R. Genomic-based root plasticity to enhance abiotic stress adaptation and edible yield in grain crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110365. [PMID: 32534611 DOI: 10.1016/j.plantsci.2019.110365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/15/2019] [Accepted: 12/01/2019] [Indexed: 06/11/2023]
Abstract
Phenotypic plasticity refers to changes expressed by a genotype across different environments and is one of the major means by which plants cope with environmental variability. Multi-fold differences in phenotypic plasticity have been noted across crops, with wild ancestors and landraces being more plastic than crops when under stress. Plasticity in response to abiotic stress adaptation, plant architecture, physio-reproductive and quality traits are multi-genic (QTL). Plasticity QTL (pQTL) were either collocated with main effect QTL and QEI (QTL × environment interaction) or located independently from the main effect QTL. For example, variations in root plasticity have been successfully introgressed to enhance abiotic stress adaptation in rice. The independence of genetic control of a trait and of its plasticity suggests that breeders may select for high or low plasticity in combination with high or low performance of economically important traits. Trait plasticity in stressful environments may be harnessed through breeding stress-tolerant crops. There exists a genetic cost associated with plasticity, so a better understanding of the trade-offs between plasticity and productivity is warranted prior to undertaking breeding for plasticity traits together with productivity in stress environments.
Collapse
Affiliation(s)
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Department of Plant Breeding, Sundsvagen, 14 Box 101, SE 23053, Alnarp, Sweden.
| |
Collapse
|
52
|
Schneider HM, Klein SP, Hanlon MT, Nord EA, Kaeppler S, Brown KM, Warry A, Bhosale R, Lynch JP. Genetic control of root architectural plasticity in maize. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3185-3197. [PMID: 32080722 PMCID: PMC7260711 DOI: 10.1093/jxb/eraa084] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/20/2020] [Indexed: 05/05/2023]
Abstract
Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity.
Collapse
Affiliation(s)
- Hannah M Schneider
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Stephanie P Klein
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Meredith T Hanlon
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Eric A Nord
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Shawn Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Andrew Warry
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
| | - Rahul Bhosale
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
53
|
Schneider HM, Lynch JP. Should Root Plasticity Be a Crop Breeding Target? FRONTIERS IN PLANT SCIENCE 2020; 11:546. [PMID: 32499798 PMCID: PMC7243933 DOI: 10.3389/fpls.2020.00546] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 05/18/2023]
Abstract
Root phenotypic plasticity has been proposed as a target for the development of more productive crops in variable environments. However, the plasticity of root anatomical and architectural responses to environmental cues is highly complex, and the consequences of these responses for plant fitness are poorly understood. We propose that root phenotypic plasticity may be beneficial in natural or low-input systems in which the availability of soil resources is spatiotemporally dynamic. Crop ancestors and landraces were selected with multiple stresses, competition, significant root loss and heterogenous resource distribution which favored plasticity in response to resource availability. However, in high-input agroecosystems, the value of phenotypic plasticity is unclear, since human management has removed many of these constraints to root function. Further research is needed to understand the fitness landscape of plastic responses including understanding the value of plasticity in different environments, environmental signals that induce plastic responses, and the genetic architecture of plasticity before it is widely adopted in breeding programs. Phenotypic plasticity has many potential ecological, and physiological benefits, but its costs and adaptive value in high-input agricultural systems is poorly understood and merits further research.
Collapse
Affiliation(s)
| | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
54
|
Deja-Muylle A, Parizot B, Motte H, Beeckman T. Exploiting natural variation in root system architecture via genome-wide association studies. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2379-2389. [PMID: 31957786 DOI: 10.1093/jxb/eraa029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 05/26/2023]
Abstract
Root growth and development has become an important research topic for breeders and researchers based on a growing need to adapt plants to changing and more demanding environmental conditions worldwide. Over the last few years, genome-wide association studies (GWASs) became an important tool to identify the link between traits in the field and their genetic background. Here we give an overview of the current literature concerning GWASs performed on root system architecture (RSA) in plants. We summarize which root traits and approaches have been used for GWAS, mentioning their respective success rate towards a successful gene discovery. Furthermore, we zoom in on the current technical hurdles in root phenotyping and GWAS, and discuss future possibilities in this field of research.
Collapse
Affiliation(s)
- Agnieszka Deja-Muylle
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Boris Parizot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
55
|
Kruijer W, Behrouzi P, Bustos-Korts D, Rodríguez-Álvarez MX, Mahmoudi SM, Yandell B, Wit E, van Eeuwijk FA. Reconstruction of Networks with Direct and Indirect Genetic Effects. Genetics 2020; 214:781-807. [PMID: 32015018 PMCID: PMC7153926 DOI: 10.1534/genetics.119.302949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022] Open
Abstract
Genetic variance of a phenotypic trait can originate from direct genetic effects, or from indirect effects, i.e., through genetic effects on other traits, affecting the trait of interest. This distinction is often of great importance, for example, when trying to improve crop yield and simultaneously control plant height. As suggested by Sewall Wright, assessing contributions of direct and indirect effects requires knowledge of (1) the presence or absence of direct genetic effects on each trait, and (2) the functional relationships between the traits. Because experimental validation of such relationships is often unfeasible, it is increasingly common to reconstruct them using causal inference methods. However, most current methods require all genetic variance to be explained by a small number of quantitative trait loci (QTL) with fixed effects. Only a few authors have considered the "missing heritability" case, where contributions of many undetectable QTL are modeled with random effects. Usually, these are treated as nuisance terms that need to be eliminated by taking residuals from a multi-trait mixed model (MTM). But fitting such an MTM is challenging, and it is impossible to infer the presence of direct genetic effects. Here, we propose an alternative strategy, where genetic effects are formally included in the graph. This has important advantages: (1) genetic effects can be directly incorporated in causal inference, implemented via our PCgen algorithm, which can analyze many more traits; and (2) we can test the existence of direct genetic effects, and improve the orientation of edges between traits. Finally, we show that reconstruction is much more accurate if individual plant or plot data are used, instead of genotypic means. We have implemented the PCgen-algorithm in the R-package pcgen.
Collapse
Affiliation(s)
- Willem Kruijer
- Biometris, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Pariya Behrouzi
- Biometris, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | | | - María Xosé Rodríguez-Álvarez
- BCAM - Basque Center for Applied Mathematics, 48009 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Seyed Mahdi Mahmoudi
- Faculty of Mathematics, Statistics and Computer Science, Semnan University, 35131-19111 Semnan, Iran
| | - Brian Yandell
- University of Wisconsin-Madison, Wisconsin 53706-1510
| | - Ernst Wit
- Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| |
Collapse
|
56
|
Oyiga BC, Palczak J, Wojciechowski T, Lynch JP, Naz AA, Léon J, Ballvora A. Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. PLANT, CELL & ENVIRONMENT 2020; 43:692-711. [PMID: 31734943 DOI: 10.1111/pce.13683] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 05/26/2023]
Abstract
Roots perform vital roles for adaptation and productivity under water-deficit stress, even though their specific functions are poorly understood. In this study, the genetic control of the nodal-root architectural and anatomical response to water deficit were investigated among diverse spring barley accessions. Water deficit induced substantial variations in the nodal root traits. The cortical, stele, and total root cross-sectional areas of the main-shoot nodal roots decreased under water deficit, but increased in the tiller nodal roots. Root xylem density and arrested nodal roots increased under water deficit, with the formation of root suberization/lignification and large cortical aerenchyma. Genome-wide association study implicated 11 QTL intervals in the architectural and anatomical nodal root response to water deficit. Among them, three and four QTL intervals had strong effects across seasons and on both root architectural and anatomical traits, respectively. Genome-wide epistasis analysis revealed 44 epistatically interacting SNP loci. Further analyses showed that these QTL intervals contain important candidate genes, including ZIFL2, MATE, and PPIB, whose functions are shown to be related to the root adaptive response to water deprivation in plants. These results give novel insight into the genetic architectures of barley nodal root response to soil water deficit stress in the fields, and thus offer useful resources for root-targeted marker-assisted selection.
Collapse
Affiliation(s)
| | | | - Tobias Wojciechowski
- Forschungszentrum Jülich, Institute for Bio- and Geosciences (Plant Sciences), Bonn, Germany
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State, State College, Pennsylvania
| | - Ali A Naz
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Jens Léon
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
57
|
Schneider HM, Klein SP, Hanlon MT, Kaeppler S, Brown KM, Lynch JP. Genetic control of root anatomical plasticity in maize. THE PLANT GENOME 2020; 13:e20003. [PMID: 33016634 DOI: 10.1002/tpg2.20003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/01/2019] [Indexed: 05/06/2023]
Abstract
Root anatomical phenes have important roles in soil resource capture and plant performance; however, their phenotypic plasticity and genetic architecture is poorly understood. We hypothesized that (a) the responses of root anatomical phenes to water deficit (stress plasticity) and different environmental conditions (environmental plasticity) are genetically controlled and (b) stress and environmental plasticity are associated with different genetic loci than those controlling the expression of phenes under water-stress and well-watered conditions. Root anatomy was phenotyped in a large maize (Zea mays L.) association panel in the field with and without water deficit stress in Arizona and without water deficit stress in South Africa. Anatomical phenes displayed stress and environmental plasticity; many phenotypic responses to water deficit were adaptive, and the magnitude of response varied by genotype. We identified 57 candidate genes associated with stress and environmental plasticity and 64 candidate genes associated with phenes under well-watered and water-stress conditions in Arizona and under well-watered conditions in South Africa. Four candidate genes co-localized between plasticity groups or for phenes expressed under each condition. The genetic architecture of phenotypic plasticity is highly quantitative, and many distinct genes control plasticity in response to water deficit and different environments, which poses a challenge for breeding programs.
Collapse
Affiliation(s)
- Hannah M Schneider
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Stephanie P Klein
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Meredith T Hanlon
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Shawn Kaeppler
- Dep. of Agronomy, Univ. of Wisconsin, Madison, WI, 53706, USA
| | - Kathleen M Brown
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Jonathan P Lynch
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| |
Collapse
|
58
|
Melandri G, Prashar A, McCouch SR, van der Linden G, Jones HG, Kadam N, Jagadish K, Bouwmeester H, Ruyter-Spira C. Association mapping and genetic dissection of drought-induced canopy temperature differences in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1614-1627. [PMID: 31846000 PMCID: PMC7031080 DOI: 10.1093/jxb/erz527] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/16/2019] [Indexed: 05/07/2023]
Abstract
Drought-stressed plants display reduced stomatal conductance, which results in increased leaf temperature by limiting transpiration. In this study, thermal imaging was used to quantify the differences in canopy temperature under drought in a rice diversity panel consisting of 293 indica accessions. The population was grown under paddy field conditions and drought stress was imposed for 2 weeks at flowering. The canopy temperature of the accessions during stress negatively correlated with grain yield (r= -0.48) and positively with plant height (r=0.56). Temperature values were used to perform a genome-wide association (GWA) analysis using a 45K single nucleotide polynmorphism (SNP) map. A quantitative trait locus (QTL) for canopy temperature under drought was detected on chromosome 3 and fine-mapped using a high-density imputed SNP map. The candidate genes underlying the QTL point towards differences in the regulation of guard cell solute intake for stomatal opening as the possible source of temperature variation. Genetic variation for the significant markers of the QTL was present only within the tall, low-yielding landraces adapted to drought-prone environments. The absence of variation in the shorter genotypes, which showed lower leaf temperature and higher grain yield, suggests that breeding for high grain yield in rice under paddy conditions has reduced genetic variation for stomatal response under drought.
Collapse
Affiliation(s)
- Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Ankush Prashar
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Susan R McCouch
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Gerard van der Linden
- Wageningen UR Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Hamlyn G Jones
- Plant Science Division, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, UK
- School of Plant Biology, University of Western Australia, Perth, Australia
| | - Niteen Kadam
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
- International Rice Research Institute, Los Baños, Philippines
- Department of Plant Biology and Institute of Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Krishna Jagadish
- International Rice Research Institute, Los Baños, Philippines
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
59
|
Calvo P, Gagliano M, Souza GM, Trewavas A. Plants are intelligent, here's how. ANNALS OF BOTANY 2020; 125:11-28. [PMID: 31563953 PMCID: PMC6948212 DOI: 10.1093/aob/mcz155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 05/07/2023]
Abstract
HYPOTHESES The drive to survive is a biological universal. Intelligent behaviour is usually recognized when individual organisms including plants, in the face of fiercely competitive or adverse, real-world circumstances, change their behaviour to improve their probability of survival. SCOPE This article explains the potential relationship of intelligence to adaptability and emphasizes the need to recognize individual variation in intelligence showing it to be goal directed and thus being purposeful. Intelligent behaviour in single cells and microbes is frequently reported. Individual variation might be underpinned by a novel learning mechanism, described here in detail. The requirements for real-world circumstances are outlined, and the relationship to organic selection is indicated together with niche construction as a good example of intentional behaviour that should improve survival. Adaptability is important in crop development but the term may be complex incorporating numerous behavioural traits some of which are indicated. CONCLUSION There is real biological benefit to regarding plants as intelligent both from the fundamental issue of understanding plant life but also from providing a direction for fundamental future research and in crop breeding.
Collapse
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| | - Monica Gagliano
- Biological Intelligence Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Gustavo M Souza
- Laboratory of Plant Cognition and Electrophysiology, Federal University of Pelotas, Pelotas - RS, Brazil
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
60
|
Seck W, Torkamaneh D, Belzile F. Comprehensive Genome-Wide Association Analysis Reveals the Genetic Basis of Root System Architecture in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:590740. [PMID: 33391303 PMCID: PMC7772222 DOI: 10.3389/fpls.2020.590740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/16/2020] [Indexed: 05/17/2023]
Abstract
Increasing the understanding genetic basis of the variability in root system architecture (RSA) is essential to improve resource-use efficiency in agriculture systems and to develop climate-resilient crop cultivars. Roots being underground, their direct observation and detailed characterization are challenging. Here, were characterized twelve RSA-related traits in a panel of 137 early maturing soybean lines (Canadian soybean core collection) using rhizoboxes and two-dimensional imaging. Significant phenotypic variation (P < 0.001) was observed among these lines for different RSA-related traits. This panel was genotyped with 2.18 million genome-wide single-nucleotide polymorphisms (SNPs) using a combination of genotyping-by-sequencing and whole-genome sequencing. A total of 10 quantitative trait locus (QTL) regions were detected for root total length and primary root diameter through a comprehensive genome-wide association study. These QTL regions explained from 15 to 25% of the phenotypic variation and contained two putative candidate genes with homology to genes previously reported to play a role in RSA in other species. These genes can serve to accelerate future efforts aimed to dissect genetic architecture of RSA and breed more resilient varieties.
Collapse
Affiliation(s)
- Waldiodio Seck
- Département de phytologie, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Quebec, QC, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, QC, Canada
| | - Davoud Torkamaneh
- Département de phytologie, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Quebec, QC, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, QC, Canada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - François Belzile
- Département de phytologie, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Quebec, QC, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, QC, Canada
- *Correspondence: François Belzile,
| |
Collapse
|
61
|
Singh J, Fabrizio J, Desnoues E, Silva JP, Busch W, Khan A. Root system traits impact early fire blight susceptibility in apple (Malus × domestica). BMC PLANT BIOLOGY 2019; 19:579. [PMID: 31870310 PMCID: PMC6929320 DOI: 10.1186/s12870-019-2202-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/12/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Although it is known that resistant rootstocks facilitate management of fire blight disease, incited by Erwinia amylovora, the role of rootstock root traits in providing systemic defense against E. amylovora is unclear. In this study, the hypothesis that rootstocks of higher root vigor provide higher tolerance to fire blight infection in apples is tested. Several apple scion genotypes grafted onto a single rootstock genotype and non-grafted 'M.7' rootstocks of varying root vigor are used to assess phenotypic and molecular relationships between root traits of rootstocks and fire blight susceptibility of apple scion cultivars. RESULTS It is observed that different root traits display significant (p < 0.05) negative correlations with fire blight susceptibility. In fact, root surface area partially dictates differential levels of fire blight susceptibility of 'M.7' rootstocks. Furthermore, contrasting changes in gene expression patterns of diverse molecular pathways accompany observed differences in levels of root-driven fire blight susceptibility. It is noted that a singular co-expression gene network consisting of genes from defense, carbohydrate metabolism, protein kinase activity, oxidation-reduction, and stress response pathways modulates root-dependent fire blight susceptibility in apple. In particular, WRKY75 and UDP-glycotransferase are singled-out as hub genes deserving of further detailed analysis. CONCLUSIONS It is proposed that low root mass may incite resource-limiting conditions to activate carbohydrate metabolic pathways, which reciprocally interact with plant immune system genes to elicit differential levels of fire blight susceptibility.
Collapse
Affiliation(s)
- Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Jack Fabrizio
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Elsa Desnoues
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Julliany Pereira Silva
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Wolfgang Busch
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
62
|
Norton GJ, Travis AJ, Talukdar P, Hossain M, Islam MR, Douglas A, Price AH. Genetic loci regulating arsenic content in rice grains when grown flooded or under alternative wetting and drying irrigation. RICE (NEW YORK, N.Y.) 2019; 12:54. [PMID: 31332547 PMCID: PMC6646650 DOI: 10.1186/s12284-019-0307-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/27/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Rice is a global staple crop, being the main calorific component of many people living subsistence livelihoods. Rice can accumulate toxic elements such as arsenic, with the crop water management strongly affecting uptake. This study utilises the Bengal and Assam Aus Panel to conduct genome wide association (GWA) mapping for arsenic in shoots and grains of rice grown over 2 years under continually flooded (CF) and alternate wetting and drying (AWD). The aim was to assess genotype by water management interaction, identify quantitative trait loci (QTL) for arsenic accumulation, and propose candidate genes for lowering grain arsenic. RESULTS AWD significantly reduced grain arsenic across all cultivars on average by 15.7 and 15.1% in year 1 and 2 respectively and shoot arsenic by 27.0% compared to the plants grown under CF. There was a weak cultivar by treatment interaction for grain for arsenic. All traits were strongly influenced by cultivar. GWA mapping identified a large number of 74 individual QTLs for arsenic, with six QTLs showing stability across years and/or water treatments. Three of the loci (one on chromosome 3, one on chromosome 4, and one on chromosome 5) were investigated in detail using an approach of clustering cultivars that had similar haplotypes for the QTL regions and then looking at the phenotypic values across the clusters. Two of the identified QTLs co-localised with known genes involved in arsenic accumulation, including Lsi2 which has not previously been reported to underlie a grain arsenic QTL. CONCLUSIONS This study has identified a number of novel QTLs for arsenic accumulation, as well as cultivars that consistently accumulate less arsenic over multiple field traits. The use of a haplotype clustering approach after GWA mapping has allowed for the effect, in terms of arsenic accumulation, to be determined for cultivars that share similar genomic sequence. Allocating nine high yielding Bangladeshi cultivars to these clusters has identified the potential of utilising these QTLs in breeding programmes; for example, incorporation of the QTL on chromosome 5 should decrease grain arsenic in elite high yielding Bangladeshi cultivars by 10% in all high yielding cultivars studied.
Collapse
Affiliation(s)
- Gareth J Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, Scotland.
| | - Anthony J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, Scotland
| | - Partha Talukdar
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, Scotland
| | - Mahmud Hossain
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Rafiqul Islam
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Alex Douglas
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, Scotland
| | - Adam H Price
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, Scotland.
| |
Collapse
|
63
|
Kadam NN, Jagadish SVK, Struik PC, van der Linden CG, Yin X. Incorporating genome-wide association into eco-physiological simulation to identify markers for improving rice yields. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2575-2586. [PMID: 30882149 PMCID: PMC6487590 DOI: 10.1093/jxb/erz120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/11/2019] [Indexed: 05/22/2023]
Abstract
We explored the use of the eco-physiological crop model GECROS to identify markers for improved rice yield under well-watered (control) and water deficit conditions. Eight model parameters were measured from the control in one season for 267 indica genotypes. The model accounted for 58% of yield variation among genotypes under control and 40% under water deficit conditions. Using 213 randomly selected genotypes as the training set, 90 single nucleotide polymorphism (SNP) loci were identified using a genome-wide association study (GWAS), explaining 42-77% of crop model parameter variation. SNP-based parameter values estimated from the additive loci effects were fed into the model. For the training set, the SNP-based model accounted for 37% (control) and 29% (water deficit) of yield variation, less than the 78% explained by a statistical genomic prediction (GP) model for the control treatment. Both models failed in predicting yields of the 54 testing genotypes. However, compared with the GP model, the SNP-based crop model was advantageous when simulating yields under either control or water stress conditions in an independent season. Crop model sensitivity analysis ranked the SNP loci for their relative importance in accounting for yield variation, and the rank differed greatly between control and water deficit environments. Crop models have the potential to use single-environment information for predicting phenotypes under different environments.
Collapse
Affiliation(s)
- Niteen N Kadam
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
- International Rice Research Institute, Metro Manila, Philippines
| | - S V Krishna Jagadish
- International Rice Research Institute, Metro Manila, Philippines
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - C Gerard van der Linden
- Plant Breeding, Department of Plant Sciences, Wageningen University & Research, AJ Wageningen, The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
- Correspondence:
| |
Collapse
|
64
|
Laitinen RAE, Nikoloski Z. Genetic basis of plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:739-745. [PMID: 30445526 DOI: 10.1093/jxb/ery404] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/06/2018] [Indexed: 05/20/2023]
Abstract
The ability of an organism to change its phenotype in response to different environments, termed plasticity, is a particularly important characteristic to enable sessile plants to adapt to rapid changes in their surroundings. Plasticity is a quantitative trait that can provide a fitness advantage and mitigate negative effects due to environmental perturbations. Yet, its genetic basis is not fully understood. Alongside technological limitations, the main challenge in studying plasticity has been the selection of suitable approaches for quantification of phenotypic plasticity. Here, we propose a categorization of the existing quantitative measures of phenotypic plasticity into nominal and relative approaches. Moreover, we highlight the recent advances in the understanding of the genetic architecture underlying phenotypic plasticity in plants. We identify four pillars for future research to uncover the genetic basis of phenotypic plasticity, with emphasis on development of computational approaches and theories. These developments will allow us to perform specific experiments to validate the causal genes for plasticity and to discover their role in plant fitness and evolution.
Collapse
Affiliation(s)
- Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
- Bioinformatics group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
65
|
Hazman M, Brown KM. Progressive drought alters architectural and anatomical traits of rice roots. RICE (NEW YORK, N.Y.) 2018; 11:62. [PMID: 30511228 PMCID: PMC6277260 DOI: 10.1186/s12284-018-0252-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/24/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Root architectural and anatomical phenotypes are important for adaptation to drought. Many rice-growing regions face increasing water scarcity. This study describes drought responses of 11 Egyptian rice cultivars with emphasis on plastic root responses that may enhance drought adaptation. RESULTS Eleven Egyptian rice cultivars were phenotyped for root architectural and anatomical traits after 6 weeks growth in soil mesocosms under well-watered conditions. Four of these cultivars were more intensively phenotyped under progressive drought stress in mesocosms, using a system where more moisture was available at depth than near the surface. In response to drought stress, all cultivars significantly reduced nodal root number while increasing large lateral root branching density and total lateral root length in the deepest portions of the mesocosm, where moisture was available. Nodal root cross-sectional area, but not stele area, was reduced by drought stress, especially in the basal segments of the root, and the number of late metaxylem vessels was reduced in only one cultivar. Alterations in deposition of lignin were detected by UV illumination from laser ablation tomography, enhanced by digital staining, and confirmed with standard histochemical methods. In well-watered plants, the sclerenchyma and endodermis were heavily lignified, and lignin was also visible throughout the epidermis and cortex. Under drought stress, very little lignin was detected in the outer cell layers and none in the cortex of nodal roots, but lignin deposition was enhanced in the stele. Root anatomical phenes, including cross-section area and metaxylem vessel number and lignin deposition varied dramatically along large lateral root axes under drought stress, with increasing diameter and less lignification of the stele in successive samples taken from the base to the root apex. CONCLUSIONS Root architectural and anatomical traits varied significantly among a set of Egyptian cultivars. Most traits were plastic, i.e. changed significantly with drought treatment, and, in many cases, plasticity was cultivar-dependent. These phenotypic alterations may function to enhance water uptake efficiency. Increased large lateral root branching in the deep soil should maintain water acquisition, while water transport during drought should be secured with a more extensively lignified stele.
Collapse
Affiliation(s)
- Mohamed Hazman
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, University Park, PA, 16802-4200, USA
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), 9 Gamma St., Giza, 12619, Egypt
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, University Park, PA, 16802-4200, USA.
| |
Collapse
|
66
|
|
67
|
Masalia RR, Temme AA, Torralba NDL, Burke JM. Multiple genomic regions influence root morphology and seedling growth in cultivated sunflower (Helianthus annuus L.) under well-watered and water-limited conditions. PLoS One 2018; 13:e0204279. [PMID: 30235309 PMCID: PMC6147562 DOI: 10.1371/journal.pone.0204279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022] Open
Abstract
With climate change and an ever-increasing human population threatening food security, developing a better understanding of the genetic basis of crop performance under stressful conditions has become increasingly important. Here, we used genome-wide association studies to genetically dissect variation in seedling growth traits in cultivated sunflower (Helianthus annuus L.) under well-watered and water-limited (i.e., osmotic stress) conditions, with a particular focus on root morphology. Water limitation reduced seedling size and produced a shift toward deeper rooting. These effects varied across genotypes, and we identified 13 genomic regions that were associated with traits of interest across the two environments. These regions varied in size from a single marker to 186.2 Mbp and harbored numerous genes, some of which are known to be involved in the plant growth/development as well as the response to osmotic stress. In many cases, these associations corresponded to growth traits where the common allele outperformed the rare variant, suggesting that selection for increased vigor during the evolution of cultivated sunflower might be responsible for the relatively high frequency of these alleles. We also found evidence of pleiotropy across multiple traits, as well as numerous environmentally independent genetic effects. Overall, our results indicate the existence of genetic variation in root morphology and allocation and further suggest that the majority of alleles associated with these traits have consistent effects across environments.
Collapse
Affiliation(s)
- Rishi R. Masalia
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Andries A. Temme
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nicole de leon Torralba
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
68
|
Dwivedi SL, Siddique KHM, Farooq M, Thornton PK, Ortiz R. Using Biotechnology-Led Approaches to Uplift Cereal and Food Legume Yields in Dryland Environments. FRONTIERS IN PLANT SCIENCE 2018; 9:1249. [PMID: 30210519 PMCID: PMC6120061 DOI: 10.3389/fpls.2018.01249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/06/2018] [Indexed: 05/29/2023]
Abstract
Drought and heat in dryland agriculture challenge the enhancement of crop productivity and threaten global food security. This review is centered on harnessing genetic variation through biotechnology-led approaches to select for increased productivity and stress tolerance that will enhance crop adaptation in dryland environments. Peer-reviewed literature, mostly from the last decade and involving experiments with at least two seasons' data, form the basis of this review. It begins by highlighting the adverse impact of the increasing intensity and duration of drought and heat stress due to global warming on crop productivity and its impact on food and nutritional security in dryland environments. This is followed by (1) an overview of the physiological and molecular basis of plant adaptation to elevated CO2 (eCO2), drought, and heat stress; (2) the critical role of high-throughput phenotyping platforms to study phenomes and genomes to increase breeding efficiency; (3) opportunities to enhance stress tolerance and productivity in food crops (cereals and grain legumes) by deploying biotechnology-led approaches [pyramiding quantitative trait loci (QTL), genomic selection, marker-assisted recurrent selection, epigenetic variation, genome editing, and transgene) and inducing flowering independent of environmental clues to match the length of growing season; (4) opportunities to increase productivity in C3 crops by harnessing novel variations (genes and network) in crops' (C3, C4) germplasm pools associated with increased photosynthesis; and (5) the adoption, impact, risk assessment, and enabling policy environments to scale up the adoption of seed-technology to enhance food and nutritional security. This synthesis of technological innovations and insights in seed-based technology offers crop genetic enhancers further opportunities to increase crop productivity in dryland environments.
Collapse
Affiliation(s)
| | | | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud, Oman
- University of Agriculture, Faisalabad, Pakistan
| | - Philip K. Thornton
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
69
|
Lammerts van Bueren ET, Struik PC, van Eekeren N, Nuijten E. Towards resilience through systems-based plant breeding. A review. AGRONOMY FOR SUSTAINABLE DEVELOPMENT 2018; 38:42. [PMID: 30956692 PMCID: PMC6417397 DOI: 10.1007/s13593-018-0522-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2018] [Indexed: 05/05/2023]
Abstract
How the growing world population can feed itself is a crucial, multi-dimensional problem that goes beyond sustainable development. Crop production will be affected by many changes in its climatic, agronomic, economic, and societal contexts. Therefore, breeders are challenged to produce cultivars that strengthen both ecological and societal resilience by striving for six international sustainability targets: food security, safety and quality; food and seed sovereignty; social justice; agrobiodiversity; ecosystem services; and climate robustness. Against this background, we review the state of the art in plant breeding by distinguishing four paradigmatic orientations that currently co-exist: community-based breeding, ecosystem-based breeding, trait-based breeding, and corporate-based breeding, analyzing differences among these orientations. Our main findings are: (1) all four orientations have significant value but none alone will achieve all six sustainability targets; (2) therefore, an overarching approach is needed: "systems-based breeding," an orientation with the potential to synergize the strengths of the ways of thinking in the current paradigmatic orientations; (3) achieving that requires specific knowledge development and integration, a multitude of suitable breeding strategies and tools, and entrepreneurship, but also a change in attitude based on corporate responsibility, circular economy and true-cost accounting, and fair and green policies. We conclude that systems-based breeding can create strong interactions between all system components. While seeds are part of the common good and the basis of agrobiodiversity, a diversity in breeding approaches, based on different entrepreneurial approaches, can also be considered part of the required agrobiodiversity. To enable systems-based breeding to play a major role in creating sustainable agriculture, a shared sense of urgency is needed to realize the required changes in breeding approaches, institutions, regulations and protocols. Based on this concept of systems-based breeding, there are opportunities for breeders to play an active role in the development of an ecologically and societally resilient, sustainable agriculture.
Collapse
Affiliation(s)
- Edith T. Lammerts van Bueren
- Louis Bolk Institute, Kosterijland 3-5, 3981 AJ Bunnik, The Netherlands
- Department of Plant Sciences, Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Paul C. Struik
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Nick van Eekeren
- Louis Bolk Institute, Kosterijland 3-5, 3981 AJ Bunnik, The Netherlands
| | - Edwin Nuijten
- Louis Bolk Institute, Kosterijland 3-5, 3981 AJ Bunnik, The Netherlands
| |
Collapse
|
70
|
Kadam NN, Struik PC, Rebolledo MC, Yin X, Jagadish SVK. Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4017-4032. [PMID: 29767744 PMCID: PMC6054195 DOI: 10.1093/jxb/ery186] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/11/2018] [Indexed: 05/04/2023]
Abstract
A diversity panel comprising of 296 indica rice genotypes was phenotyped under non-stress and water-deficit stress conditions during the reproductive stage in the 2013 and 2014 dry seasons (DSs) at IRRI, Philippines. We investigated the genotypic variability for grain yield, yield components, and related traits, and conducted genome-wide association studies (GWAS) using high-density 45K single nucleotide polymorphisms. We detected 38 loci in 2013 and 64 loci in 2014 for non-stress conditions and 69 loci in 2013 and 55 loci in 2014 for water-deficit stress. Desynchronized flowering time confounded grain yield and its components under water-deficit stress in the 2013 experiment. Statistically corrected grain yield and yield component values using days to flowering helped to detect 31 additional genetic loci for grain yield, its components, and the harvest index in 2013. There were few overlaps in the detected loci between years and treatments, and when compared with previous studies using the same panel, indicating the complexity of yield formation under stress. Nevertheless, our analyses provided important insights into the potential links between grain yield with seed set and assimilate partitioning. Our findings demonstrate the complex genetic architecture of yield formation and we propose exploring the genetic basis of less complex component traits as an alternative route for further yield enhancement.
Collapse
Affiliation(s)
- Niteen N Kadam
- International Rice Research Institute, DAPO, Metro Manila, Philippines
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - Maria C Rebolledo
- CIRAD, UMR AGAP, Montpellier, France. AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIAT, Agrobiodiversity, AA, Cali, Colombia
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, AK Wageningen, The Netherlands
| | - S V Krishna Jagadish
- International Rice Research Institute, DAPO, Metro Manila, Philippines
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
71
|
Norton GJ, Travis AJ, Douglas A, Fairley S, Alves EDP, Ruang-areerate P, Naredo MEB, McNally KL, Hossain M, Islam MR, Price AH. Genome Wide Association Mapping of Grain and Straw Biomass Traits in the Rice Bengal and Assam Aus Panel (BAAP) Grown Under Alternate Wetting and Drying and Permanently Flooded Irrigation. FRONTIERS IN PLANT SCIENCE 2018; 9:1223. [PMID: 30233605 PMCID: PMC6129953 DOI: 10.3389/fpls.2018.01223] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Growing demand for staple crops like rice will need to be achieved predominately through agricultural intensification and more efficient use of inputs. To meet this demand it is essential that the genetic diversity within rice is fully utilized. The aus subpopulation is considered an underappreciated resource within that diversity. A new rice panel, the Bengal and Assam Aus Panel (BAAP) of 266 aus accessions was generated with ∼2 million informative SNPs obtained using skim sequencing at ∼4× depth. The BAAP was grown in the field in Bangladesh in the 'boro' season under both continuously flooded and Alternate Wetting and Drying (AWD) irrigation during 2013 and 2014 in Mymensingh and during 2014 in Madhupur. Heading date, grain mass, straw biomass and harvest index were measured. The majority (94%) of BAAP accessions flowered within a relatively small window of 10 days. The AWD irrigation treatment generally caused an increase in grain mass, but no significant genotype by treatment interactions were detected for this trait. Shoot biomass was the only trait that showed evidence of genotype by treatment interaction. The average LD (Linkage Disequilibrium) decay across the genome was 243 Kbp. Genome wide association mapping revealed 115 quantitative trait loci (QTLs). There was little evidence of QTLs specific to the irrigation treatment, and only a few QTLs co-localized with known genes. However, some QTLs were detected across multiple sites and years. These QTLs should be targets for breeding, and include a region around 2.2 Mbp on chromosome 1, a large region in the middle of chromosome 7 and two regions on chromosome 11 (∼10 Mbp and ∼29 Mbp). The BAAP appears to be a valuable addition to the growing collection of GWA mapping populations of rice.
Collapse
Affiliation(s)
- Gareth J. Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Anthony J. Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alex Douglas
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Susan Fairley
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Eduardo De Paiva Alves
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Panthita Ruang-areerate
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | | | - Mahmud Hossain
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Rafiqul Islam
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Adam H. Price
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- *Correspondence: Adam H. Price,
| |
Collapse
|
72
|
Li P, Zhang Y, Yin S, Zhu P, Pan T, Xu Y, Wang J, Hao D, Fang H, Xu C, Yang Z. QTL-By-Environment Interaction in the Response of Maize Root and Shoot Traits to Different Water Regimes. FRONTIERS IN PLANT SCIENCE 2018; 9:229. [PMID: 29527220 PMCID: PMC5829059 DOI: 10.3389/fpls.2018.00229] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/08/2018] [Indexed: 05/19/2023]
Abstract
Drought is a major abiotic stress factor limiting maize production, and elucidating the genetic control of root system architecture and plasticity to water-deficit stress is a crucial problem to improve drought adaptability. In this study, 13 root and shoot traits and genetic plasticity were evaluated in a recombinant inbred line (RIL) population under well-watered (WW) and water stress (WS) conditions. Significant phenotypic variation was observed for all observed traits both under WW and WS conditions. Most of the measured traits showed significant genotype-environment interaction (GEI) in both environments. Strong correlations were observed among traits in the same class. Multi-environment (ME) and multi-trait (MT) QTL analyses were conducted for all observed traits. A total of 48 QTLs were identified by ME, including 15 QTLs associated with 9 traits showing significant QTL-by-Environment interactions (QEI). QTLs associated with crown root angle (CRA2) and crown root length (CRL1) were identified as having antagonistic pleiotropic effects, while 13 other QTLs showed signs of conditional neutrality (CN), including 9 and 4 QTLs detected under WW and WS conditions, respectively. MT analysis identified 14 pleiotropic QTLs for 13 traits, SNP20 (1@79.2 cM) was associated with the length of crown root (CR), primary root (PR), and seminal root (SR) and might contribute to increases in root length under WS condition. Taken together, these findings contribute to our understanding of the phenotypic and genotypic patterns of root plasticity in response to water deficiency, which will be useful to improve drought tolerance in maize.
Collapse
Affiliation(s)
- Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yingying Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Shuangyi Yin
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Pengfei Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Ting Pan
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jieyu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Derong Hao
- Nantong Key Laboratory for Exploitation of Crop Genetic Resources and Molecular Breeding, Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Huimin Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Chenwu Xu
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
- Zefeng Yang
| |
Collapse
|