51
|
Ishishita K, Higa T, Tanaka H, Inoue SI, Chung A, Ushijima T, Matsushita T, Kinoshita T, Nakai M, Wada M, Suetsugu N, Gotoh E. Phototropin2 Contributes to the Chloroplast Avoidance Response at the Chloroplast-Plasma Membrane Interface. PLANT PHYSIOLOGY 2020; 183:304-316. [PMID: 32193212 PMCID: PMC7210631 DOI: 10.1104/pp.20.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/09/2020] [Indexed: 05/31/2023]
Abstract
Blue-light-induced chloroplast movements play an important role in maximizing light utilization for photosynthesis in plants. Under a weak light condition, chloroplasts accumulate to the cell surface to capture light efficiently (chloroplast accumulation response). Conversely, chloroplasts escape from strong light and move to the side wall to reduce photodamage (chloroplast avoidance response). The blue light receptor phototropin (phot) regulates these chloroplast movements and optimizes leaf photosynthesis by controlling other responses in addition to chloroplast movements. Seed plants such as Arabidopsis (Arabidopsis thaliana) have phot1 and phot2. They redundantly mediate phototropism, stomatal opening, leaf flattening, and the chloroplast accumulation response. However, the chloroplast avoidance response is induced by strong blue light and regulated primarily by phot2. Phots are localized mainly on the plasma membrane. However, a substantial amount of phot2 resides on the chloroplast outer envelope. Therefore, differentially localized phot2 might have different functions. To determine the functions of plasma membrane- and chloroplast envelope-localized phot2, we tethered it to these structures with their respective targeting signals. Plasma membrane-localized phot2 regulated phototropism, leaf flattening, stomatal opening, and chloroplast movements. Chloroplast envelope-localized phot2 failed to mediate phototropism, leaf flattening, and the chloroplast accumulation response but partially regulated the chloroplast avoidance response and stomatal opening. Based on the present and previous findings, we propose that phot2 localized at the interface between the plasma membrane and the chloroplasts is required for the chloroplast avoidance response and possibly for stomatal opening as well.
Collapse
Affiliation(s)
- Kazuhiro Ishishita
- Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takeshi Higa
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Hidekazu Tanaka
- Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Shin-Ichiro Inoue
- Graduate School of Sciences, Nagoya University, Aichi 464-8602, Japan
| | - Aeri Chung
- Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | | | | | | - Masato Nakai
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Masamitsu Wada
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Eiji Gotoh
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
52
|
Li C, Li X, Liu H, Wang X, Li W, Chen MS, Niu LJ. Chromatin Architectures Are Associated with Response to Dark Treatment in the Oil Crop Sesamum indicum, Based on a High-Quality Genome Assembly. PLANT & CELL PHYSIOLOGY 2020; 61:978-987. [PMID: 32154879 DOI: 10.1093/pcp/pcaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/01/2020] [Indexed: 05/21/2023]
Abstract
Eukaryotic chromatin is tightly packed into hierarchical structures, allowing appropriate gene transcription in response to environmental and developmental cues. Here, we provide a chromosome-scale de novo genome assembly of sesame with a total length of 292.3 Mb and a scaffold N50 of 20.5 Mb, containing estimated 28,406 coding genes using Pacific Biosciences long reads combined with a genome-wide chromosome conformation capture (Hi-C) approach. Based on this high-quality reference genome, we detected changes in chromatin architectures between normal growth and dark-treated sesame seedlings. Gene expression level was significantly higher in 'A' compartment and topologically associated domain (TAD) boundary regions than in 'B' compartment and TAD interior regions, which is coincident with the enrichment of H4K3me3 modification in these regions. Moreover, differentially expressed genes (DEGs) induced by dark treated were enriched in the changed TAD-related regions and genomic differential contact regions. Gene Ontology (GO) enrichment analysis of DEGs showed that genes related to 'response to stress' and 'photosynthesis' functional categories were enriched, which corresponds to dark treatment. These results suggested that chromatin organization is associated with gene transcription in response to dark treatment in sesame. Our results will facilitate the understanding of regulatory mechanisms in response to environmental cues in plants.
Collapse
Affiliation(s)
- Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Xiaoli Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Xueqin Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Weifeng Li
- Sesame Experiment Station, Zhoukou Academy of Agricultural Sciences, Zhoukou, Henan 466001, China
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Long-Jian Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Biology, Nankai University, Tianjin 660885, China
| |
Collapse
|
53
|
Lkhamkhuu E, Zikihara K, Katsura H, Tokutomi S, Hosokawa T, Usami Y, Ichihashi M, Yamaguchi J, Monde K. Effect of circularly polarized light on germination, hypocotyl elongation and biomass production of arabidopsis and lettuce: Involvement of phytochrome B. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:57-67. [PMID: 32362749 PMCID: PMC7193831 DOI: 10.5511/plantbiotechnology.19.1219a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Circular dichroism (CD), defined as the differential absorption of left- and right-handed circularly polarized light (CPL), is a useful spectroscopic technique for structural studies of biological systems composed of chiral molecules. The present study evaluated the effects of CPL on germination, hypocotyl elongation and biomass production of Arabidopsis and lettuce. Higher germination rates were observed when Arabidopsis and lettuce seedlings were irradiated with red right-handed CPL (R-CPL) than with red left-handed CPL (L-CPL). Hypocotyl elongation was effectively inhibited when Arabidopsis and lettuce seedlings were irradiated with red R-CPL than with red L-CPL. This difference was not observed when a phytochrome B (phyB) deficient mutant of Arabidopsis was irradiated, suggesting that inhibition of elongation by red R-CPL was mediated by phyB. White R-CPL induced greater biomass production by adult Arabidopsis plants, as determined by their fresh shoot weight, than white L-CPL. To determine the molecular basis of these CPL effects, CD spectra and the effect of CPL on the photoreaction of a sensory module of Arabidopsis phyB were measured. The red light-absorbing form of phyB showed a negative CD in the red light-absorbing region, consistent with the results of germination, inhibition of hypocotyl elongation and biomass production. L-CPL and R-CPL, however, did not differ in their ability to induce the interconversion of the red light-absorbing and far-red light-absorbing forms of phyB. These findings suggest that these CPL effects involve phyB, along with other photoreceptors and the photosynthetic process.
Collapse
Affiliation(s)
- Enkhsukh Lkhamkhuu
- Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kazunori Zikihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531
| | - Hitomi Katsura
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531
- Botanical Gardens, Tohoku University, Sendai, Miyagi 980-0862, Japan
| | - Takafumi Hosokawa
- Research and Development Management Headquarters, Fuji Film Corporation, Kanagawa 258-8577, Japan
| | - Yoshihisa Usami
- Research and Development Management Headquarters, Fuji Film Corporation, Kanagawa 258-8577, Japan
| | - Mitsuyoshi Ichihashi
- Research and Development Management Headquarters, Fuji Film Corporation, Kanagawa 258-8577, Japan
| | - Junji Yamaguchi
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kenji Monde
- Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
54
|
Ptushenko OS, Ptushenko VV, Solovchenko AE. Spectrum of Light as a Determinant of Plant Functioning: A Historical Perspective. Life (Basel) 2020; 10:E25. [PMID: 32192016 PMCID: PMC7151614 DOI: 10.3390/life10030025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022] Open
Abstract
The significance of the spectral composition of light for growth and other physiological functions of plants moved to the focus of "plant science" soon after the discovery of photosynthesis, if not earlier. The research in this field recently intensified due to the explosive development of computer-controlled systems for artificial illumination and documenting photosynthetic activity. The progress is also substantiated by recent insights into the molecular mechanisms of photo-regulation of assorted physiological functions in plants mediated by photoreceptors and other pigment systems. The spectral balance of solar radiation can vary significantly, affecting the functioning and development of plants. Its effects are evident on the macroscale (e.g., in individual plants growing under the forest canopy) as well as on the meso- or microscale (e.g., mutual shading of leaf cell layers and chloroplasts). The diversity of the observable effects of light spectrum variation arises through (i) the triggering of different photoreceptors, (ii) the non-uniform efficiency of spectral components in driving photosynthesis, and (iii) a variable depth of penetration of spectral components into the leaf. We depict the effects of these factors using the spectral dependence of chloroplast photorelocation movements interlinked with the changes in light penetration into (light capture by) the leaf and the photosynthetic capacity. In this review, we unfold the history of the research on the photocontrol effects and put it in the broader context of photosynthesis efficiency and photoprotection under stress caused by a high intensity of light.
Collapse
Affiliation(s)
- Oxana S. Ptushenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily V. Ptushenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| | - Alexei E. Solovchenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Institute of Medicine and Experimental Biology, Pskov State University, 180000 Pskov, Russia
| |
Collapse
|
55
|
Czarnocka W, Rusaczonek A, Willems P, Sujkowska-Rybkowska M, Van Breusegem F, Karpiński S. Novel Role of JAC1 in Influencing Photosynthesis, Stomatal Conductance, and Photooxidative Stress Signalling Pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1124. [PMID: 32849690 PMCID: PMC7403226 DOI: 10.3389/fpls.2020.01124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
Regulation of light absorption under variable light conditions is essential to optimize photosynthetic and acclimatory processes in plants. Light energy absorbed in excess has a damaging effect on chloroplasts and can lead to cell death. Therefore, plants have evolved protective mechanisms against excess excitation energy that include chloroplast accumulation and avoidance responses. One of the proteins involved in facilitating chloroplast movements in Arabidopsis thaliana is the J domain-containing protein required for chloroplast accumulation response 1 (JAC1). The function of JAC1 relates to the chloroplast actin filaments appearance and disappearance. So far, the role of JAC1 was studied mainly in terms of chloroplasts photorelocation. Here, we demonstrate that the function of JAC1 is more complex, since it influences the composition of photosynthetic pigments, the efficiency of photosynthesis, and the CO2 uptake rate. JAC1 has positive effect on water use efficiency (WUE) by reducing stomatal aperture and water vapor conductance. Importantly, we show that the stomatal aperture regulation is genetically coupled with JAC1 activity. In addition, our data demonstrate that JAC1 is involved in the fine-tuning of H2O2 foliar levels, antioxidant enzymes activities and cell death after UV-C photooxidative stress. This work uncovers a novel function for JAC1 in affecting photosynthesis, CO2 uptake, and photooxidative stress responses.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
- *Correspondence: Weronika Czarnocka,
| | - Anna Rusaczonek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center of Plant Systems Biology, VIB, Ghent, Belgium
| | | | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center of Plant Systems Biology, VIB, Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
56
|
Hermanowicz P, Banaś AK, Sztatelman O, Gabryś H, Łabuz J. UV-B Induces Chloroplast Movements in a Phototropin-Dependent Manner. FRONTIERS IN PLANT SCIENCE 2019; 10:1279. [PMID: 31681376 PMCID: PMC6804469 DOI: 10.3389/fpls.2019.01279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/12/2019] [Indexed: 05/07/2023]
Abstract
We examined the impact of UV-B irradiation on chloroplast movements in Arabidopsis leaves. Directional chloroplast movements induced by blue light have been described in multiple plant species. In weak light, chloroplasts accumulate at periclinal cell walls to increase light capture. In strong light, chloroplasts exhibit the avoidance response, as they move towards anticlinal walls to protect the photosynthetic apparatus from light-induced damage. In Arabidopsis, chloroplast movements are triggered by phototropins, phot1 and phot2, which are known as blue/UV-A photoreceptors. We found that irradiation with UV-B of 3.3 µmol·m-2·s-1 induced chloroplast accumulation in wild-type plants. UV-B-triggered accumulation was dependent on the presence of phototropins, especially phot1, but not on UVR8 (the canonical UV-B photoreceptor). Irradiation with strong UV-B of 20 µmol·m-2·s-1 did not induce substantial chloroplast relocations in wild-type leaves. However, in the jac1 mutant, which is defective in chloroplast accumulation, strong UV-B elicited chloroplast avoidance. This indicated that UV-B can also activate signaling to the avoidance response. To assess the possibility of indirect effects of UV-B on chloroplast movements, we examined the impact of UV-B on the actin cytoskeleton, which serves as the motile system for chloroplast movements. While irradiation with UV-B of 3.3 µmol·m-2·s-1 did not affect the actin cytoskeleton, strong UV-B disrupted its structure as shown using an Arabidopsis line expressing Lifeact-green fluorescent protein (GFP). In wild-type plants, pretreatment with strong UV-B attenuated chloroplast responses triggered by subsequent blue light irradiation, further indicating that this UV-B intensity also indirectly affects chloroplast movements. Taken together, our results suggest that the effect of UV-B on chloroplast movement is twofold: it directly induces phototropin-mediated movements; however, at higher intensities, it attenuates the movements in a nonspecific manner.
Collapse
Affiliation(s)
- Paweł Hermanowicz
- Laboratory of Photobiology, Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Łabuz
- Laboratory of Photobiology, Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
57
|
Lin YJ, Chen YC, Tseng KC, Chang WC, Ko SS. Phototropins Mediate Chloroplast Movement in Phalaenopsis aphrodite (Moth Orchid). PLANT & CELL PHYSIOLOGY 2019; 60:2243-2254. [PMID: 31198960 DOI: 10.1093/pcp/pcz116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Chloroplast movement is important for plants to avoid photodamage and to perform efficient photosynthesis. Phototropins are blue light receptors in plants that function in chloroplast movement, phototropism, stomatal opening, and they also affect plant growth and development. In this study, full-length cDNAs of two PHOTOTROPIN genes, PaPHOT1 and PaPHOT2, were cloned from a moth orchid Phalaenopsis aphrodite, and their functions in chloroplast movement were investigated. Phylogenetic analysis showed that PaPHOT1 and PaPHOT2 orthologs were highly similar to PHOT1 and PHOT2 of the close relative Phalaenopsis equestris, respectively, and clustered with monocots PHOT1 and PHOT2 orthologs, respectively. Phalaenopsis aphrodite expressed a moderate level of PaPHOT1 under low blue light of 5 μmol�m-2�s-1 (BL5) and a high levels of PaPHOT1 at >BL100. However, PaPHOT2 was expressed at low levels at <BL50 but expressed at high levels at > BL100. Analysis of light-induced chloroplast movements using the SPAD method indicated that orchid accumulated chloroplasts at <BL10. The chloroplast avoidance response was detectable at >BL25 and significant chloroplast avoidance movement was observed at >BL100. Virus-induced gene silencing of PaPHOTs in orchids showed decreased gene expression of PaPHOTs and reduced both chloroplast accumulation and avoidance responses. Heterologous expression of PaPHOT1 in Arabidopsis phot1phot2 double mutant recovered chloroplast accumulation response at BL5, but neither PaPHOT1 nor PaPHOT2 was able to restore mutant chloroplast avoidance at BL100. Overall, this study showed that phototropins mediate chloroplast movement in Phalaenopsis orchid is blue light-dependent but their function is slightly different from Arabidopsis which might be due to gene evolution.
Collapse
Affiliation(s)
- Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Yu-Chung Chen
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chieh Tseng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
58
|
Sakata M, Kimura S, Fujii Y, Sakai T, Kodama Y. Relationship between relocation of phototropin to the chloroplast periphery and the initiation of chloroplast movement in Marchantia polymorpha. PLANT DIRECT 2019; 3:e00160. [PMID: 31468027 PMCID: PMC6710648 DOI: 10.1002/pld3.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 05/02/2023]
Abstract
The blue-light photoreceptor kinase phototropin (phot) mediates chloroplast movement in response to light and temperature. Phot predominantly localizes at the plasma membrane, but also resides in the cytosol and the chloroplast periphery. Although the phot localized to the chloroplast periphery is thought to mediate chloroplast movement, the localization mechanism is unknown. In this study, we found that chloroplast movement does not occur in 0-day-old gemma cells of the liverwort Marchantia polymorpha but that the movement is induced in 1-day-old gemmaling cells. Along with this physiological change, the subcellular localization of phot also changed: In 0-day-old gemma cells, phot localized at the plasma membrane and the cytosol, but in 1-day-old gemmaling cells, the phot disappeared from the cytosol and appeared at the chloroplast periphery. When the relocalization was tracked using a photoconvertible fluorescent protein, the cytosolic phot relocated to the plasma membrane, and the plasma membrane-resident phot relocated to the chloroplast periphery. The blue-light-dependent activation of phot kinase activity enhanced this relocalization. Mutated phot deficient in blue-light reception or kinase activity had a severely reduced ability to localize at the chloroplast periphery. These findings suggest that photoactivated phot localizes at the chloroplast periphery to initiate chloroplast movement.
Collapse
Affiliation(s)
- Momoko Sakata
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Agricultural ScienceUtsunomiya UniversityTochigiJapan
| | - Shun Kimura
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Agricultural ScienceUtsunomiya UniversityTochigiJapan
| | - Yuta Fujii
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| | - Takamasa Sakai
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Yutaka Kodama
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Agricultural ScienceUtsunomiya UniversityTochigiJapan
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| |
Collapse
|
59
|
Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production. Proc Natl Acad Sci U S A 2019; 116:12550-12557. [PMID: 31160455 PMCID: PMC6589663 DOI: 10.1073/pnas.1902915116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A key challenge for plant molecular biologists is to increase plant yield by altering photosynthetic productivity to secure food, energy, and environmental sustainability. In the model plant Arabidopsis thaliana, the plasma-membrane–associated phototropin kinases, phot1 and phot2, are activated by blue light and play important roles in regulating several responses that optimize photosynthetic efficiency. However, little effort has been made to target these pathways to increase plant growth. Here, we demonstrate that modifying the photocycle of phot1 and phot2 increases their sensitivity to light. Plants with these engineered phototropins exhibit more rapid and robust chloroplast movement responses and improved leaf positioning and expansion, leading to improved biomass accumulation under light-limiting conditions. The ability to enhance photosynthetic capacity remains a recognized bottleneck to improving plant productivity. Phototropin blue light receptors (phot1 and phot2) optimize photosynthetic efficiency in Arabidopsis thaliana by coordinating multiple light-capturing processes. In this study, we explore the potential of using protein engineering to improve photoreceptor performance and thereby plant growth. We demonstrate that targeted mutagenesis can decrease or increase the photocycle lifetime of Arabidopsis phototropins in vitro and show that these variants can be used to reduce or extend the duration of photoreceptor activation in planta. Our findings show that slowing the phototropin photocycle enhanced several light-capturing responses, while accelerating it reduced phototropin’s sensitivity for chloroplast accumulation movement. Moreover, plants engineered to have a slow-photocycling variant of phot1 or phot2 displayed increased biomass production under low-light conditions as a consequence of their improved sensitivity. Together, these findings demonstrate the feasibility of engineering photoreceptors to manipulate plant growth and offer additional opportunities to enhance photosynthetic competence, particularly under suboptimal light regimes.
Collapse
|