51
|
Wang Z, Wang Y, Du Q, Yan P, Yu B, Li WX, Zou CQ. The auxin signaling pathway contributes to phosphorus-mediated zinc homeostasis in maize. BMC PLANT BIOLOGY 2023; 23:20. [PMID: 36627574 PMCID: PMC9830811 DOI: 10.1186/s12870-023-04039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Although the interaction between P and Zn has long been recognized in plants, the physiological and molecular mechanisms underlying P and Zn interactions are poorly understood. We show here that P supply decreases the Zn concentration in maize shoots and roots. Compared to +P + Zn (addition of both P and Zn), +P-Zn reduced and -P-Zn increased the total length of 1° lateral roots (LRs). Under +P + Zn, both P and Zn concentrations were lower in the sl1 mutant roots than in wild-type (WT) maize roots, and P accumulation did not reduce the Zn concentration in ll1 mutant roots. Transcriptome profiling showed that the auxin signaling pathway contributed to P-mediated Zn homeostasis in maize. Auxin production and distribution were altered by changes in P and Zn supply. Cytosolic Zn co-localized with auxin accumulation under +P + Zn. Exogenous application of 1-NAA and L-Kyn altered the P-mediated root system architecture (RSA) under Zn deficiency. -P-Zn repressed the expression of miR167. Overexpression of ZmMIR167b increased the lengths of 1° LRs and the concentrations of P and Zn in maize. These results indicate that auxin-dependent RSA is important for P-mediated Zn homeostasis in maize.HighlightAuxin-dependent RSA is important for P-mediated Zn homeostasis in maize.
Collapse
Affiliation(s)
- Zhonghua Wang
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Yafei Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Pengshuai Yan
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Baogang Yu
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chun-Qin Zou
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
52
|
Li Y, Jin F, Wu X, Teixeira da Silva JA, Xiong Y, Zhang X, Ma G. Identification and function of miRNA-mRNA interaction pairs during lateral root development of hemi-parasitic Santalum album L. seedlings. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153866. [PMID: 36399836 DOI: 10.1016/j.jplph.2022.153866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Sandalwood (Santalum album L.) is a hemi-parasitic tree species famous for its santalol and santalene, which are extracted from its heartwood and roots. The ability to understand root functionality within its branched root system would benefit the regulation of sandalwood growth and enhance the commercial value of sandalwood. Phenotypic and anatomical evidence in this study indicated that seed germination stage 4 (SG4) seemed pivotal for lateral root (LR) morphogenesis. Small RNA (sRNA) high-throughput sequencing of root tissues at three sub-stages of SG4 (lateral root primordia initiation (LRPI), lateral root primordia development (LRPD), and lateral root primordia emergence (LRPE)) was performed to identify microRNAs (miRNAs) associated with LR development. A total of 135 miRNAs, including 70 differentially expressed miRNAs (DEMs), were screened. Ten DEMs were selected to investigate transcript abundance in different organs or developmental stages. Among 100 negative DEM-mRNA interaction pairs, four targets (Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8) were selected for studying cleavage sites by 5' RLM-RACE validation. The expression mode of the four miRNA-mRNA pairs was investigated after indole-3-acetic acid (IAA) treatment. IAA enhanced the abundance of homeobox-leucine-zipper protein 32 (HOX32), laccase 12 (LAC12), myeloblastosis86 (MYB86), and pectin methylesterase inhibitor6 (PMEI6) target transcripts by reducing the expression of Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8 in the first 10 min. A schematic model of miRNA-regulated LR development is proposed for this hemi-parasitic species. This novel genetic information for improving sandalwood root growth and development may allow for the cultivation of fast-growing and high-yielding plantations.
Collapse
Affiliation(s)
- Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Feng Jin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xiuju Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150040, China.
| | | | - Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
53
|
Teh OK, Singh P, Ren J, Huang LT, Ariyarathne M, Salamon BP, Wang Y, Kotake T, Fujita T. Surface-localized glycoproteins act through class C ARFs to fine-tune gametophore initiation in Physcomitrium patens. Development 2022; 149:282110. [PMID: 36520083 DOI: 10.1242/dev.200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/17/2022] [Indexed: 12/23/2022]
Abstract
Arabinogalactan proteins are functionally diverse cell wall structural glycoproteins that have been implicated in cell wall remodeling, although the mechanistic actions remain elusive. Here, we identify and characterize two AGP glycoproteins, SLEEPING BEAUTY (SB) and SB-like (SBL), that negatively regulate the gametophore bud initiation in Physcomitrium patens by dampening cell wall loosening/softening. Disruption of SB and SBL led to accelerated gametophore formation and altered cell wall compositions. The function of SB is glycosylation dependent and genetically connected with the class C auxin response factor (ARF) transcription factors PpARFC1B and PpARFC2. Transcriptomics profiling showed that SB upregulates PpARFC2, which in turn suppresses a range of cell wall-modifying genes that are required for cell wall loosening/softening. We further show that PpARFC2 binds directly to multiple AuxRE motifs on the cis-regulatory sequences of PECTIN METHYLESTERASE to suppress its expression. Hence, our results demonstrate a mechanism by which the SB modulates the strength of intracellular auxin signaling output, which is necessary to fine-tune the timing of gametophore initials formation.
Collapse
Affiliation(s)
- Ooi Kock Teh
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Prerna Singh
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Junling Ren
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Lin Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Menaka Ariyarathne
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Benjamin Prethiviraj Salamon
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Yu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
54
|
Shin SY, Choi Y, Kim SG, Park SJ, Park JS, Moon KB, Kim HS, Jeon JH, Cho HS, Lee HJ. Submergence promotes auxin-induced callus formation through ethylene-mediated post-transcriptional control of auxin receptors. MOLECULAR PLANT 2022; 15:1947-1961. [PMID: 36333910 DOI: 10.1016/j.molp.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Plant cells in damaged tissue can be reprogrammed to acquire pluripotency and induce callus formation. However, in the aboveground organs of many species, somatic cells that are distal to the wound site become less sensitive to auxin-induced callus formation, suggesting the existence of repressive regulatory mechanisms that are largely unknown. Here we reveal that submergence-induced ethylene signals promote callus formation by releasing post-transcriptional silencing of auxin receptor transcripts in non-wounded regions. We determined that short-term submergence of intact seedlings induces auxin-mediated cell dedifferentiation across the entirety of Arabidopsis thaliana explants. The constitutive triple response 1-1 (ctr1-1) mutation induced callus formation in explants without submergence, suggesting that ethylene facilitates cell dedifferentiation. We show that ETHYLENE-INSENSITIVE 2 (EIN2) post-transcriptionally regulates the abundance of transcripts for auxin receptor genes by facilitating microRNA393 degradation. Submergence-induced calli in non-wounded regions were suitable for shoot regeneration, similar to those near the wound site. We also observed submergence-promoted callus formation in Chinese cabbage (Brassica rapa), indicating that this may be a conserved mechanism in other species. Our study identifies previously unknown regulatory mechanisms by which ethylene promotes cell dedifferentiation and provides a new approach for boosting callus induction efficiency in shoot explants.
Collapse
Affiliation(s)
- Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Yuri Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Su-Jin Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
55
|
Comparative phylogenomic analysis of 5’is-regulatory elements (CREs) of miR160 gene family in diploid and allopolyploid cotton (Gossypium) species. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
56
|
Chen W, Dong T, Chen Y, Lin P, Wang C, Chen K, Tang Y, Wang M, Liu J, Yu H. Combined analysis of mRNA and miRNA reveals the banana potassium absorption regulatory network and validation of miRNA160a. PLANT MOLECULAR BIOLOGY 2022; 110:531-543. [PMID: 35962899 DOI: 10.1007/s11103-022-01304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Potassium (K) has an important effect on the growth and development of plants. Banana contains higher K content than many other fruits, and its plant requires more K nutrient in soil. However, the soil in the banana-producing areas in China is generally deficient in K. Therefore, understanding the mechanism of banana K absorption may assist in providing effective strategy to solve this problem. This study used two banana varieties with contrasting K tolerance, 'Guijiao No. 1' (low-K tolerant), and 'Brazilian banana' (low-K sensitive)to investigate K absorption mechanisms in response to low-K stress through miRNA and mRNA sequencing analysis. Under low-K condition, 'Guijiao No.1' showed higher plant height, dry weight, tissue K content and ATPase activity. Analysis of transcription factors showed that they were mainly in the types or classes of MYB, AP-EREBP, bHLH, etc. The sequencing results showed that 'Guijiao No. 1' had 776 differentially expressed genes (DEGs) and 27 differentially expressed miRNAs (DEMs), and 'Brazilian banana' had 71 DEGs and 14 DEMs between normal and low K treatments. RT-qPCR results showed that all miRNAs and mRNAs showed similar expression patterns with RNA-Seq and transcriptome. miRNA regulatory network was constructed by integrated analysis of miRNA-mRNA data. miR160a was screened out as a key miRNA, and preliminary functional validation was performed. Arabidopsis overexpressing miR160a showed reduced tolerance to low K, and inhibited phenotypic traits such as shorter root length, and reduced K accumulation. The overexpressed miR160a had a targeting relationship with ARF10 and ARF16 in Arabidopsis. These results indicate that miR160a may regulate K absorption in bananas through the auxin pathway. This study provides a theoretical basis for further study on the molecular mechanism of banana response to low potassium stress.
Collapse
Affiliation(s)
- Wenliang Chen
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Tao Dong
- Institute of Fruit Tree ResearchKey Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yinglong Chen
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009 WA, Australia
| | - Ping Lin
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Chuqiao Wang
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Kelin Chen
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yi Tang
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Mingyuan Wang
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Jianfu Liu
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Hailing Yu
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
57
|
Kawamoto N, Morita MT. Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. THE NEW PHYTOLOGIST 2022; 236:1637-1654. [PMID: 36089891 PMCID: PMC9828789 DOI: 10.1111/nph.18474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity-sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti-gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity-sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| | - Miyo Terao Morita
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| |
Collapse
|
58
|
Nair MM, Kumar SHK, Jyothsna S, Sundaram KT, Manjunatha C, Sivasamy M, Alagu M. Stem and leaf rust-induced miRNAome in bread wheat near-isogenic lines and their comparative analysis. Appl Microbiol Biotechnol 2022; 106:8211-8232. [PMID: 36385566 DOI: 10.1007/s00253-022-12268-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Wheat rusts remain a major threat to global wheat production and food security. The R-gene-mediated resistance has been employed as an efficient approach to develop rust-resistant varieties. However, evolution of new fungal races and infection strategies put forward the urgency of unravelling novel molecular players, including non-coding RNAs for plant response. This study identified microRNAs associated with Sr36 and Lr45 disease resistance genes in response to stem and leaf rust, respectively. Here, small RNA sequencing was performed on susceptible and resistant wheat near-isogenic lines inoculated with stem and leaf rust pathotypes. microRNA mining in stem rust-inoculated cultivars revealed a total of distinct 26 known and 7 novel miRNAs, and leaf rust libraries culminated with 22 known and 4 novel miRNAs. The comparative analysis between two disease sets provides a better understanding of altered miRNA profiles associated with respective R-genes and infections. Temporal differential expression pattern of miRNAs pinpoints their role during the progress of infection. Differential expression pattern of miRNAs among various treatments as well as time-course expression of miRNAs revealed stem and leaf rust-responsive miRNAs and their possible role in balancing disease resistance/susceptibility. Disclosure of guide strand, passenger strand and a variant of novel-Tae-miR02 from different subgenome origins might serve as a potential link between stem and leaf rust defence mechanisms downstream to respective R-genes. The outcome from the analysis of microRNA dynamics among two rust diseases and further characterization of identified microRNAs can contribute to significant novel insights on wheat-rust interactions and rust management. KEY POINTS: • Identification and comparative analysis of stem and leaf rust-responsive miRNAs. • Chromosomal location and functional prediction of miRNAs. • Time-course expression analysis of pathogen-responsive miRNAs.
Collapse
Affiliation(s)
- Minu M Nair
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - S Hari Krishna Kumar
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - S Jyothsna
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Krishna T Sundaram
- International Rice Research Institute (IRRI), South Asia Hub, Patancheru, 502324, Telangana, India
| | - C Manjunatha
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, Karnataka, India
| | - M Sivasamy
- ICAR-Indian Agricultural, Research Institute, Regional Station, Wellington, 643231, Tamil Nadu, India
| | - Manickavelu Alagu
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India.
| |
Collapse
|
59
|
Stu-miR827-Targeted StWRKY48 Transcription Factor Negatively Regulates Drought Tolerance of Potato by Increasing Leaf Stomatal Density. Int J Mol Sci 2022; 23:ijms232314805. [PMID: 36499135 PMCID: PMC9741430 DOI: 10.3390/ijms232314805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Stomata are specialized portals in plant leaves to modulate water loss from plants to the atmosphere by control of the transpiration, thereby determining the water-use efficiency and drought resistance of plants. Despite that the stomata developmental progression is well-understood at the molecular level, the experimental evidence that miRNA regulates stomata development is still lacking, and the underlying mechanism remains elusive. This study demonstrates the involvement of stu-miR827 in regulating the drought tolerance of potato due to its control over the leaf stomatal density. The expression analysis showed that stu-miR827 was obviously repressed by drought stresses and then rapidly increased after rewatering. Suppressing the expression of stu-miR827 transgenic potato lines showed an increase in stomatal density, correlating with a weaker drought resistance compared with wildtype potato lines. In addition, StWRKY48 was identified as the target gene of stu-miR827, and the expression of StWRKY48 was obviously induced by drought stresses and was greatly upregulated in stu-miR827 knockdown transgenic potato lines, suggesting its involvement in the drought stress response. Importantly, the expression of genes associated with stomata development, such as SDD (stomatal density and distribution) and TMM (too many mouths), was seriously suppressed in transgenic lines. Altogether, these observations demonstrated that suppression of stu-miR827 might lead to overexpression of StWRKY48, which may contribute to negatively regulating the drought adaptation of potato by increasing the stomatal density. The results may facilitate functional studies of miRNAs in the process of drought tolerance in plants.
Collapse
|
60
|
Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nat Commun 2022; 13:6960. [PMID: 36379956 PMCID: PMC9666636 DOI: 10.1038/s41467-022-34723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Germline determination is essential for species survival and evolution in multicellular organisms. In most flowering plants, formation of the female germline is initiated with specification of one megaspore mother cell (MMC) in each ovule; however, the molecular mechanism underlying this key event remains unclear. Here we report that spatially restricted auxin signaling promotes MMC fate in Arabidopsis. Our results show that the microRNA160 (miR160) targeted gene ARF17 (AUXIN RESPONSE FACTOR17) is required for promoting MMC specification by genetically interacting with the SPL/NZZ (SPOROCYTELESS/NOZZLE) gene. Alterations of auxin signaling cause formation of supernumerary MMCs in an ARF17- and SPL/NZZ-dependent manner. Furthermore, miR160 and ARF17 are indispensable for attaining a normal auxin maximum at the ovule apex via modulating the expression domain of PIN1 (PIN-FORMED1) auxin transporter. Our findings elucidate the mechanism by which auxin signaling promotes the acquisition of female germline cell fate in plants.
Collapse
|
61
|
Wu Q, Yang L, Liang H, Yin L, Chen D, Shen P. Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome. BMC PLANT BIOLOGY 2022; 22:524. [PMID: 36372886 PMCID: PMC9661748 DOI: 10.1186/s12870-022-03867-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorus (P) is one of the most essential macronutrients for crops. The growth and yield of peanut (Arachis hypogaea L.) are always limited by P deficiency. However, the transcriptional and metabolic regulatory mechanisms were less studied. In this study, valuable phenotype, transcriptome and metabolome data were analyzed to illustrate the regulatory mechanisms of peanut under P deficiency stress. RESULT In present study, two treatments of P level in deficiency with no P application (-P) and in sufficiency with 0.6 mM P application (+ P) were used to investigate the response of peanut on morphology, physiology, transcriptome, microRNAs (miRNAs), and metabolome characterizations. The growth and development of plants were significantly inhibited under -P treatment. A total of 6088 differentially expressed genes (DEGs) were identified including several transcription factor family genes, phosphate transporter genes, hormone metabolism related genes and antioxidant enzyme related genes that highly related to P deficiency stress. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that 117 genes were annotated in the phenylpropanoid biosynthesis pathway under P deficiency stress. A total of 6 miRNAs have been identified significantly differential expression between + P and -P group by high-throughput sequencing of miRNAs, including two up-regulated miRNAs (ahy-miR160-5p and ahy-miR3518) and four down-regulated miRNAs (ahy-miR408-5p, ahy-miR408-3p, ahy-miR398, and ahy-miR3515). Further, the predicted 22 target genes for 6 miRNAs and cis-elements in 2000 bp promoter region of miRNA genes were analyzed. A total of 439 differentially accumulated metabolites (DAMs) showed obviously differences in two experimental conditions. CONCLUSIONS According to the result of transcripome and metabolome analyses, we can draw a conclusion that by increasing the content of lignin, amino acids, and levan combining with decreasing the content of LPC, cell reduced permeability, maintained stability, raised the antioxidant capacity, and increased the P uptake in struggling for survival under P deficiency stress.
Collapse
Affiliation(s)
- Qi Wu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Haiyan Liang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liang Yin
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Dianxu Chen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Pu Shen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| |
Collapse
|
62
|
Li J, Wang C, Zhou T, Jin H, Liu X. Identification and characterization of miRNAome and target genes in Pseudostellaria heterophylla. PLoS One 2022; 17:e0275566. [PMID: 36197881 PMCID: PMC9534447 DOI: 10.1371/journal.pone.0275566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
miRNAs play a crucial role in the development and growth of plants by inhibiting the function of targeted genes at the post-transcription level. However, no miRNAs in Pseudostellaria heterophylla have been reported and their function in the morphogenesis of organs is still unclear. In this study, a total of 159 conserved miRNAs (belonging to 64 families) and 303 level miRNAs were identified from P. heterophylla. Some of them showed specifically up or down-regulated expression in different tissues and numbers of unigenes involved in Plant-pathogen interaction and MAPK signaling pathway-plant were targeted. The significant negative correlation of expression profiles between 30 miRNAs and their target genes (37 unigenes) was observed, respectively. Further, a large number of genes involved with signal transduction of auxin, zeatin, abscisic acid and, jasmonic acid were targeted. Predicated targets of two miRNAs were validated by 5'RLM-RACE, respectively. A large number of mRNAs from four pathogens were targeted by miRNAs from P. heterophylla and some of them were targeted by miR414. In summary, we reported a population of miRNAs from four different vegetative tissues of P. heterophylla by high throughput sequencing, which was analyzed by combining with the constructed transcriptome. These results may help to explain the function of miRNAs in the morphogenesis of organs and defense of pathogens, and may provide theoretical basis for breeding and genetic improvement of P. heterophylla.
Collapse
Affiliation(s)
- Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- * E-mail:
| | - Chongmin Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Haijun Jin
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoqing Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
63
|
Islam W, Naveed H, Idress A, Ishaq DU, Kurfi BG, Zeng F. Plant responses to metals stress: microRNAs in focus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69197-69212. [PMID: 35951237 DOI: 10.1007/s11356-022-22451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Metal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying amounts of metals. One approach involves utilization of microRNAs (miRNAs) that are known for cleaving transcripts or inhibiting translation to mediate post-transcriptional control. Use of transcription factors (TFs) or gene regulation in metal detoxification largely depends on metal-responsive miRNAs. Moreover, systemic signals and physiological processes for plants response to metal toxicities are likewise controlled by miRNAs. Therefore, it is necessary to understand miRNAs and their regulatory networks in relation to metal stress. The miRNA-based approach can be important to produce metal-tolerant plant species. Here, we have reviewed the importance of plant miRNAs and their role in mitigating metal toxicities. The current review also discusses the specific advances that have occurred as a result of the identification and validation of several metal stress-responsive miRNAs.
Collapse
Affiliation(s)
- Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Hassan Naveed
- College of Life Sciences, Leshan Normal University, Sichuan, 614004, China
| | - Atif Idress
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Daha Umar Ishaq
- Centre of Mitochondrial Biology & Medicine, Xian Joiotong University, Xi'An, 710049, China
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Binta G Kurfi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| |
Collapse
|
64
|
Estrella-Maldonado H, Chan-León A, Fuentes G, Girón-Ramírez A, Desjardins Y, Santamaría JM. The interaction between exogenous IBA with sucrose, light and ventilation alters the expression of ARFs and Aux/IAA genes in Carica papaya plantlets. PLANT MOLECULAR BIOLOGY 2022; 110:107-130. [PMID: 35725838 DOI: 10.1007/s11103-022-01289-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The interaction between exogenous IBA with sucrose, light and ventilation, alters the expression of ARFs and Aux/IAA genes in in vitro grown Carica papaya plantlets. In vitro papaya plantlets normally show low rooting percentages during their ex vitro establishment that eventually leads to high mortality when transferred to field conditions. Indole-3-butyric acid (IBA) auxin is normally added to culture medium, to achieve adventitious root formation on in vitro papaya plantlets. However, the molecular mechanisms occurring when IBA is added to the medium under varying external conditions of sugar, light and ventilation have not been studied. Auxin response factors (ARF) are auxin-transcription activators, while auxin/indole-3-acetic acid (Aux/IAA) are auxin-transcription repressors, that modulate key components involved in auxin signaling in plants. In the present study, we identified 12 CpARF and 18 CpAux/IAA sequences in the papaya genome. The cis-acting regulatory elements associated to those CpARFs and CpAux/IAA gene families were associated with stress and hormone responses. Furthermore, a comprehensive characterization and expression profiling analysis was performed on 6 genes involved in rhizogenesis formation (CpARF5, 6, 7 and CpAux/IAA11, 13, 14) from in vitro papaya plantlets exposed to different rhizogenesis-inducing treatments. In general, intact in vitro plantlets were not able to produce adventitious roots, when IBA (2 mg L-1) was added to the culture medium; they became capable to produce roots and increased their ex-vitro survival. However, the best rooting and survival % were obtained when IBA was added in combination with adequate sucrose supply (20 g L-1), increased light intensity (750 µmol photon m-2 s-1) and ventilation systems within the culture vessel. Interestingly, it was precisely under those conditions that promoted high rooting and survival %, where the highest expression of CpARFs, but the lowest expression of CpAux/IAAs occurred. One interesting case occurred when in vitro plantlets were exposed to high levels of light in the absence of added IBA, as high rooting and survival occurred, even though no exogenous auxin was added. In fact, plantlets from this treatment showed the right expression profile between auxin activators/repressors genes, in both stem base and root tissues.
Collapse
Affiliation(s)
- Humberto Estrella-Maldonado
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México.
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, C.P. 93600, Tlapacoyan, Veracruz, México.
| | - Arianna Chan-León
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Gabriela Fuentes
- Independent Researcher, Calle 6a 279 a, Jardines de Vista Alegre, Mérida, Yucatán, México
| | - Amaranta Girón-Ramírez
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Quebec City, QC, G1V 0A6, Canada
| | - Jorge M Santamaría
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México.
| |
Collapse
|
65
|
Verma PK, Verma S, Pandey N. Root system architecture in rice: impacts of genes, phytohormones and root microbiota. 3 Biotech 2022; 12:239. [PMID: 36016841 PMCID: PMC9395555 DOI: 10.1007/s13205-022-03299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
To feed the continuously expanding world's population, new crop varieties have been generated, which significantly contribute to the world's food security. However, the growth of these improved plant varieties relies primarily on synthetic fertilizers, which negatively affect the environment and human health; therefore, continuous improvement is needed for sustainable agriculture. Several plants, including cereal crops, have the adaptive capability to combat adverse environmental changes by altering physiological and molecular mechanisms and modifying their root system to improve nutrient uptake efficiency. These plants operate distinct pathways at various developmental stages to optimally establish their root system. These processes include changes in the expression profile of genes, changes in phytohormone level, and microbiome-induced root system architecture (RSA) modification. Several studies have been performed to understand microbial colonization and their involvement in RSA improvement through changes in phytohormone and transcriptomic levels. This review highlights the impact of genes, phytohormones, and particularly root microbiota in influencing RSA and provides new insights resulting from recent studies on rice root as a model system and summarizes the current knowledge about biochemical and central molecular mechanisms.
Collapse
Affiliation(s)
- Pankaj Kumar Verma
- Department of Botany, University of Lucknow, Lucknow, India
- Present Address: French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Shikha Verma
- Present Address: French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Nalini Pandey
- Department of Botany, University of Lucknow, Lucknow, India
| |
Collapse
|
66
|
Wu C, Wang X, Zhen W, Nie Y, Li Y, Yuan P, Liu Q, Guo S, Shen Z, Zheng B, Hu Z. SICKLE modulates lateral root development by promoting degradation of lariat intronic RNA. PLANT PHYSIOLOGY 2022; 190:548-561. [PMID: 35788403 PMCID: PMC9434198 DOI: 10.1093/plphys/kiac301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Plant lateral roots (LRs) play vital roles in anchorage and uptake of water and nutrients. Here, we reveal that degradation of lariat intronic RNAs (lariRNAs) modulated by SICKLE (SIC) is required for LR development in Arabidopsis (Arabidopsis thaliana). Loss of SIC results in hyper-accumulation of lariRNAs and restricts the outgrowth of LR primordia, thereby reducing the number of emerged LRs. Decreasing accumulation of lariRNAs by over-expressing RNA debranching enzyme 1 (DBR1), a rate-limiting enzyme of lariRNA decay, restored LR defects in SIC-deficient plants. Mechanistically, SIC interacts with DBR1 and facilitates its nuclear accumulation, which is achieved through two functionally redundant regions (SIC1-244 and SIC252-319) for nuclear localization. Of the remaining amino acids in this region, six (SIC245-251) comprise a DBR1-interacting region while two (SICM246 and SICW251) are essential for DBR1-SIC interaction. Reducing lariRNAs restored microRNA (miRNA) levels and LR development in lariRNA hyper-accumulating plants, suggesting that these well-known regulators of LR development mainly function downstream of lariRNAs. Taken together, we propose that SIC acts as an enhancer of DBR1 nuclear accumulation by driving nuclear localization through direct interaction, thereby promoting lariRNA decay to fine-tune miRNA biogenesis and modulating LR development.
Collapse
Affiliation(s)
- Chengyun Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Xiaoqing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Weibo Zhen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yaqing Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Penglai Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaoqiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | | |
Collapse
|
67
|
Liu J, Li H, Zhang L, Song Y, He J, Xu W, Ma C, Ren Y, Liu H. Integrative Investigation of Root-Related mRNAs, lncRNAs and circRNAs of “Muscat Hamburg” (Vitis vinifera L.) Grapevine in Response to Root Restriction through Transcriptomic Analyses. Genes (Basel) 2022; 13:genes13091547. [PMID: 36140715 PMCID: PMC9498474 DOI: 10.3390/genes13091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
Root restriction is a physical and ecological cultivation mode which restricts plant roots into a limited container to regulate vegetative and reproduction growth by reshaping root architecture. However, little is known about related molecular mechanisms. To uncover the root-related regulatory network of endogenous RNAs under root restriction cultivation (referred to RR), transcriptome-wide analyses of mRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) involved in root development were performed. During root development, RR treatment had a positive effect on root weight, typically, young roots were significantly higher than conventional cultivation (referred to NR) treatment, suggesting that root architecture reconstruction under RR was attributed to the vigorous induction into lateral roots. Furthermore, a total of 26,588 mRNAs, 1971 lncRNAs, and 2615 circRNAs were identified in root of annual “Muscat Hamburg” grapevine by the transcriptomic analyses. The expression profile of mRNAs, lncRNAs and circRNA were further confirmed by the quantitative real-time PCR (RT-qPCR). Gene ontology enrichment analysis showed that a majority of the differentially expressed mRNAs, lncRNAs and circRNAs were enriched into the categories of cellular process, metabolic process, cell part, binding, and catalytic activity. In addition, the regulatory network of endogenous RNAs was then constructed by the prediction of lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA network, implying that these RNAs play significant regulatory roles for root architecture shaping in response to root restriction. Our results, for the first time, the regulatory network of competitive endogenous RNAs (ceRNAs) functions of lncRNA and circRNA was integrated, and a basis for studying the potential functions of non-coding RNAs (ncRNAs) during root development of grapevine was provided.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Hui Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lipeng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Yue Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan He
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Ren
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (Y.R.); (H.L.)
| | - Huaifeng Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
- Correspondence: (Y.R.); (H.L.)
| |
Collapse
|
68
|
Wang H, Huang H, Shang Y, Song M, Ma H. Identification and characterization of auxin response factor (ARF) family members involved in fig ( Ficus carica L.) fruit development. PeerJ 2022; 10:e13798. [PMID: 35898939 PMCID: PMC9310797 DOI: 10.7717/peerj.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
The auxin response factor (ARF) combines with AuxREs cis-acting elements in response to auxin to regulate plant development. To date, no comprehensive analysis of ARF genes expressed during fruit development has been conducted for common fig (Ficus carica L.). In this study, members of the FcARF gene family were screened, identified in the fig genome database and their features characterized using bioinformatics. Twenty FcARF genes were clustered into three classes, with almost similar highly conserved DBD (B3-like DNA binding domain), AUX/IAA (auxin/indole-3-acetic acid gene family) and MR domain structure among class members. Analysis of amino acid species in MR domain revealed 10 potential transcription activators and 10 transcription inhibitors, and 17 FcARF members were predicted to be located in the nucleus. DNA sequence analysis showed that the ARF gene family consisted of 4-25 exons, and the promoter region contained 16 cis-acting elements involved in stress response, hormone response and flavonoid biosynthesis. ARF genes were expressed in most tissues of fig, especially flower and peel. Transcriptomics analysis results showed that FcARF2, FcARF11 and FcARF12, belonging to class-Ia, were stably and highly expressed in the early development stage of flower and peel of 'Purple peel' fig. However, their expression levels decreased after maturity. Expression of class-Ic member FcARF3 conformed to the regularity of fig fruit development. These four potential transcription inhibitors may regulate fruit growth and development of 'Purple Peel' fig. This study provides comprehensive information on the fig ARF gene family, including gene structure, chromosome position, phylogenetic relationship and expression pattern. Our work provides a foundation for further research on auxin-mediated fig fruit development.
Collapse
Affiliation(s)
- Haomiao Wang
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Yongkai Shang
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, Beijing, China
| |
Collapse
|
69
|
Key regulatory pathways, microRNAs, and target genes participate in adventitious root formation of Acer rubrum L. Sci Rep 2022; 12:12057. [PMID: 35835811 PMCID: PMC9283533 DOI: 10.1038/s41598-022-16255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Red maple (Acer rubrum L.) is a type of colorful ornamental tree with great economic value. Because this tree is difficult to root under natural conditions and the seedling survival rate is low, vegetative propagation methods are often used. Because the formation of adventitious roots (ARs) is essential for the asexual propagation of A. rubrum, it is necessary to investigate the molecular regulatory mechanisms of AR formation in A. rubrum. To address this knowledge gap, we sequenced the transcriptome and small RNAs (sRNAs) of the A. rubrum variety ‘Autumn Fantasy’ using high-throughput sequencing and explored changes in gene and microRNA (miRNA) expression in response to exogenous auxin treatment. We identified 82,468 differentially expressed genes (DEGs) between the treated and untreated ARs, as well as 48 known and 95 novel miRNAs. We also identified 172 target genes of the known miRNAs using degradome sequencing. Two key regulatory pathways (ubiquitin mediated proteolysis and plant hormone signal transduction), Ar-miR160a and the target gene auxin response factor 10 (ArARF10) were selected based on KEGG pathway and cluster analyses. We further investigated the expression patterns and regulatory roles of ArARF10 through subcellular localization, transcriptional activation, plant transformation, qRT-PCR analysis, and GUS staining. Experiments overexpressing ArARF10 and Ar-miR160a, indicated that ArARF10 promoted AR formation, while Ar-miR160a inhibited AR formation. Transcription factors (TFs) and miRNAs related to auxin regulation that promote AR formation in A. rubrum were identified. Differential expression patterns indicated the Ar-miR160a-ArARF10 interaction might play a significant role in the regulation of AR formation in A. rubrum. Our study provided new insights into mechanisms underlying the regulation of AR formation in A. rubrum.
Collapse
|
70
|
Systematic Identification and Expression Analysis of the Auxin Response Factor (ARF) Gene Family in Ginkgo biloba L. Int J Mol Sci 2022; 23:ijms23126754. [PMID: 35743196 PMCID: PMC9223646 DOI: 10.3390/ijms23126754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Auxin participates in various physiological and molecular response-related developmental processes and is a pivotal hormone that regulates phenotypic formation in plants. Auxin response factors (ARFs) are vital transcription factors that mediate downstream auxin signaling by explicitly binding to auxin-responsive genes' promoters. Here, to investigate the possible developmental regulatory functions of ARFs in Ginkgo biloba, through employing comprehensive bioinformatics, we recognized 15 putative GbARF members. Conserved domains and motifs, gene and protein structure, gene duplication, GO enrichment, transcriptome expression profiles, and qRT-PCR all showed that Group I and III members were highly conserved. Among them, GbARF10b and GbARF10a were revealed as transcriptional activators in the auxin response for the development of Ginkgo male flowers through sequences alignment, cis-elements analysis and GO annotation; the results were corroborated for the treatment of exogenous SA. Moreover, the GbARFs expansion occurred predominantly by segmental duplication, and most GbARFs have undergone purifying selection. The Ka/Ks ratio test identified the functional consistence of GbARF2a and GbARF2c, GbARF10b, and GbARF10a in tissue expression profiles and male flower development. In summary, our study established a new research basis for exploring Ginkgo GbARF members' roles in floral organ development and hormone response.
Collapse
|
71
|
Bose R, Sengupta M, Basu D, Jha S. The rolB-transgenic Nicotiana tabacum plants exhibit upregulated ARF7 and ARF19 gene expression. PLANT DIRECT 2022; 6:e414. [PMID: 35774625 PMCID: PMC9219009 DOI: 10.1002/pld3.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Agrobacterium rhizogenes root oncogenic locus B (rolB) is known to induce hairy roots along with triggering several physiological and morphological changes when present as a transgene. However, it is still unknown how this gene triggers these changes within the plant system. In this study, the effect of rolB in-planta, when present as a transgene, was assessed on the gene expression levels of auxin response factors (ARFs)-transcription factors which are key players in auxin-mediated responses. The goal was to uncover Auxin/ARF-driven transcriptional networks potentially active and working selectively, if any, in rolB transgenic background, which might potentially be associated with hairy root development. Hence, the approach involved establishing rolB-transgenic Nicotiana tabacum plants, selecting ARFs (NtARFs) for context-relevance using bioinformatics followed by gene expression profiling. It was observed that out of the chosen NtARFs, NtARF7 and NtARF19 exhibited a consistent pattern of gene upregulation across organ types. In order to understand the significance of these selective gene upregulation, ontology-based transcriptional network maps of the differentially and nondifferentially expressed ARFs were constructed, guided by co-expression databases. The network maps suggested that NtARF7-NtARF19 might have major deterministic, underappreciated roles to play in root development in a rolB-transgenic background-as observed by higher number of "root-related" biological processes present as nodes compared to network maps for similarly constructed other non-differentially expressed ARFs. Based on the inferences drawn, it is hypothesized that rolB, when present as a transgene, might drive hairy root development by selective induction of NtARF7 and NtARF19, suggesting a functional link between the two, leading to the specialized and characteristic rolB-associated traits.
Collapse
Affiliation(s)
- Rahul Bose
- Department of GeneticsUniversity of CalcuttaKolkataWest BengalIndia
| | - Mainak Sengupta
- Department of GeneticsUniversity of CalcuttaKolkataWest BengalIndia
| | - Debabrata Basu
- Division of Plant BiologyBose InstituteKolkataWest BengalIndia
| | - Sumita Jha
- Department of BotanyUniversity of CalcuttaKolkataWest BengalIndia
| |
Collapse
|
72
|
Genome-Wide Identification of Auxin Response Factors in Peanut ( Arachis hypogaea L.) and Functional Analysis in Root Morphology. Int J Mol Sci 2022; 23:ijms23105309. [PMID: 35628135 PMCID: PMC9141974 DOI: 10.3390/ijms23105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022] Open
Abstract
Auxin response factors (ARFs) play important roles in plant growth and development; however, research in peanut (Arachis hypogaea L.) is still lacking. Here, 63, 30, and 30 AhARF genes were identified from an allotetraploid peanut cultivar and two diploid ancestors (A. duranensis and A. ipaensis). Phylogenetic tree and gene structure analysis showed that most AhARFs were highly similar to those in the ancestors. By scanning the whole-genome for ARF-recognized cis-elements, we obtained a potential target gene pool of AhARFs, and the further cluster analysis and comparative analysis showed that numerous members were closely related to root development. Furthermore, we comprehensively analyzed the relationship between the root morphology and the expression levels of AhARFs in 11 peanut varieties. The results showed that the expression levels of AhARF14/26/45 were positively correlated with root length, root surface area, and root tip number, suggesting an important regulatory role of these genes in root architecture and potential application values in peanut breeding.
Collapse
|
73
|
Ding C, Shen T, Ran N, Zhang H, Pan H, Su X, Xu M. Integrated Degradome and Srna Sequencing Revealed miRNA-mRNA Regulatory Networks between the Phloem and Developing Xylem of Poplar. Int J Mol Sci 2022; 23:ijms23094537. [PMID: 35562928 PMCID: PMC9100975 DOI: 10.3390/ijms23094537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Lignin and cellulose are the most abundant natural organic polymers in nature. MiRNAs are a class of regulatory RNAs discovered in mammals, plants, viruses, and bacteria. Studies have shown that miRNAs play a role in lignin and cellulose biosynthesis by targeting key enzymes. However, the specific miRNAs functioning in the phloem and developing xylem of Populus deltoides are still unknown. In this study, a total of 134 miRNAs were identified via high-throughput small RNA sequencing, including 132 known and two novel miRNAs, six of which were only expressed in the phloem. A total of 58 differentially expressed miRNAs (DEmiRNAs) were identified between the developing xylem and the phloem. Among these miRNAs, 21 were significantly upregulated in the developing xylem in contrast to the phloem and 37 were significantly downregulated. A total of 2431 target genes of 134 miRNAs were obtained via high-throughput degradome sequencing. Most target genes of these miRNAs were transcription factors, including AP2, ARF, bHLH, bZIP, GRAS, GRF, MYB, NAC, TCP, and WRKY genes. Furthermore, 13 and nine miRNAs were involved in lignin and cellulose biosynthesis, respectively, and we validated the miRNAs via qRT-PCR. Our study explores these miRNAs and their regulatory networks in the phloem and developing xylem of P.deltoides and provides new insight into wood formation.
Collapse
Affiliation(s)
- Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Tengfei Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Na Ran
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Heng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Huixin Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (X.S.); (M.X.); Tel.: +86-136-4130-7199 (X.S.); +86-150-9430-7586 (M.X.)
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
- Correspondence: (X.S.); (M.X.); Tel.: +86-136-4130-7199 (X.S.); +86-150-9430-7586 (M.X.)
| |
Collapse
|
74
|
Ivanova Z, Minkov G, Gisel A, Yahubyan G, Minkov I, Toneva V, Baev V. The Multiverse of Plant Small RNAs: How Can We Explore It?
. Int J Mol Sci 2022; 23:ijms23073979. [PMID: 35409340 PMCID: PMC8999349 DOI: 10.3390/ijms23073979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Plant small RNAs (sRNAs) are a heterogeneous group of noncoding RNAs with a length of 20–24 nucleotides that are widely studied due to their importance as major regulators in various biological processes. sRNAs are divided into two main classes—microRNAs (miRNAs) and small interfering RNAs (siRNAs)—which differ in their biogenesis and functional pathways. Their identification and enrichment with new structural variants would not be possible without the use of various high-throughput sequencing (NGS) techniques, allowing for the detection of the total population of sRNAs in plants. Classifying sRNAs and predicting their functional role based on such high-performance datasets is a nontrivial bioinformatics task, as plants can generate millions of sRNAs from a variety of biosynthetic pathways. Over the years, many computing tools have been developed to meet this challenge. Here, we review more than 35 tools developed specifically for plant sRNAs over the past few years and explore some of their basic algorithms for performing tasks related to predicting, identifying, categorizing, and quantifying individual sRNAs in plant samples, as well as visualizing the results of these analyzes. We believe that this review will be practical for biologists who want to analyze their plant sRNA datasets but are overwhelmed by the number of tools available, thus answering the basic question of how to choose the right one for a particular study.
Collapse
Affiliation(s)
- Zdravka Ivanova
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
| | - Georgi Minkov
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Andreas Gisel
- Institute of Biomedical Technologies (ITB), CNR, 70126 Bari, Italy;
| | - Galina Yahubyan
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Ivan Minkov
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Valentina Toneva
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Vesselin Baev
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Correspondence:
| |
Collapse
|
75
|
Cai B, Wang T, Sun H, Liu C, Chu J, Ren Z, Li Q. Gibberellins regulate lateral root development that is associated with auxin and cell wall metabolisms in cucumber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:110995. [PMID: 35193752 DOI: 10.1016/j.plantsci.2021.110995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 06/14/2023]
Abstract
Cucumber is an economically important crop cultivated worldwide. Gibberellins (GAs) play important roles in the development of lateral roots (LRs), which are critical for plant stress tolerance and productivity. Therefore, it is of great importance for cucumber production to study the role of GAs in LR development. Here, the results showed that GAs regulated cucumber LR development in a concentration-dependent manner. Treatment with 1, 10, 50 and 100 μM GA3 significantly increased secondary root length, tertiary root number and length. Of these, 50 μM GA3 treatment had strong effects on increasing root dry weight and the root/shoot dry weight ratio. Pairwise comparisons identified 417 down-regulated genes enriched for GA metabolism-related processes and 447 up-regulated genes enriched for cell wall metabolism-related processes in GA3-treated roots. A total of 3523 non-redundant DEGs were identified in our RNA-Seq data through pairwise comparisons and linear factorial modeling. Of these, most of the genes involved in auxin and cell wall metabolisms were up-regulated in GA3-treated roots. Our findings not only shed light on LR regulation mediated by GA but also offer an important resource for functional studies of candidate genes putatively involved in the regulation of LR development in cucumber and other crops.
Collapse
Affiliation(s)
- Bingbing Cai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| | - Ting Wang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| | - Hong Sun
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Zhonghai Ren
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, Tai'an, Shandong, 271018, China.
| | - Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
76
|
Abstract
Adventitious root (AR) formation is required for the vegetative propagation of economically important horticultural crops, such as apples. Asexual propagation is commonly utilized for breeding programs because of its short life cycle, true-to-typeness, and high efficiency. The lack of AR formation from stem segments is a barrier to segment survival. Therefore, understanding the AR regulatory mechanisms is vital for the prolonged and effective use of biological resources. Several studies have been undertaken to comprehend the molecular and physiological control of AR, which has greatly extended our knowledge regarding AR formation in apples and other crops. Auxin, a master controller of AR formation, is widely used for inducing AR formation in stem cutting. At the same time, cytokinins (CKs) are important for cell division and molecular reprograming, and other hormones, sugars, and nutrients interact with auxin to control excision-induced AR formation. In this review, we discuss the present understandings of ARs’ formation from physiological and molecular aspects and highlight the immediate advancements made in identifying underlying mechanisms involved in the regulation of ARs. Despite the progress made in the previous decades, many concerns about excision-induced AR formation remain unanswered. These focus on the specific functions and interactions of numerous hormonal, molecular, and metabolic components and the overall framework of the entire shoot cutting in a demanding environment.
Collapse
|
77
|
Alves A, Confraria A, Lopes S, Costa B, Perdiguero P, Milhinhos A, Baena-González E, Correia S, Miguel CM. miR160 Interacts in vivo With Pinus pinaster AUXIN RESPONSE FACTOR 18 Target Site and Negatively Regulates Its Expression During Conifer Somatic Embryo Development. FRONTIERS IN PLANT SCIENCE 2022; 13:857611. [PMID: 35371172 PMCID: PMC8965291 DOI: 10.3389/fpls.2022.857611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of several plant developmental processes including embryogenesis. Most miRNA families are conserved across major groups of plant species, but their regulatory roles have been studied mainly in model species like Arabidopsis and other angiosperms. In gymnosperms, miRNA-dependent regulation has been less studied since functional approaches in these species are often difficult to establish. Given the fundamental roles of auxin signaling in somatic embryogenesis (SE) induction and embryo development, we investigated a previously predicted interaction between miR160 and a putative target encoding AUXIN RESPONSE FACTOR 18 in Pinus pinaster (PpARF18) embryonic tissues. Phylogenetic analysis of AUXIN RESPONSE FACTOR 18 (ARF18) from Pinus pinaster and Picea abies, used here as a model system of conifer embryogenesis, showed their close relatedness to AUXIN RESPONSE FACTOR (ARF) genes known to be targeted by miR160 in other species, including Arabidopsis ARF10 and ARF16. By using a luciferase (LUC) reporter system for miRNA activity in Arabidopsis protoplasts, we have confirmed that P. pinaster miR160 (ppi-miR160) interacts in vivo with PpARF18 target site. When the primary miR160 from P. pinaster was overexpressed in protoplasts under non-limiting levels of ARGONAUTE1, a significant increase of miR160 target cleavage activity was observed. In contrast, co-expression of the primary miRNA and the target mimic MIM160 led to a decrease of miR160 activity. Our results further support that this interaction is functional during consecutive stages of SE in the conifer model P. abies. Expression analyses conducted in five stages of development, from proembryogenic masses (PEMs) to the mature embryo, show that conifer ARF18 is negatively regulated by miR160 toward the fully developed mature embryo when miR160 reached its highest expression level. This study reports the first in vivo validation of a predicted target site of a conifer miRNA supporting the conservation of miR160 interaction with ARF targets in gymnosperms. The approach used here should be useful for future characterization of miRNA functions in conifer embryogenesis.
Collapse
Affiliation(s)
- Ana Alves
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Ana Confraria
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Susana Lopes
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Bruno Costa
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Perdiguero
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ana Milhinhos
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Sandra Correia
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Célia M. Miguel
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
78
|
Shen X, He J, Ping Y, Guo J, Hou N, Cao F, Li X, Geng D, Wang S, Chen P, Qin G, Ma F, Guan Q. The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees. PLANT PHYSIOLOGY 2022; 188:1686-1708. [PMID: 34893896 PMCID: PMC8896624 DOI: 10.1093/plphys/kiab565] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 05/25/2023]
Abstract
Drought stress tolerance is a complex trait regulated by multiple factors. Here, we demonstrate that the miRNA160-Auxin Response Factor 17 (ARF17)-HYPONASTIC LEAVES 1 module is crucial for apple (Malus domestica) drought tolerance. Using stable transgenic plants, we found that drought tolerance was improved by higher levels of Mdm-miR160 or MdHYL1 and by decreased levels of MdARF17, whereas reductions in MdHYL1 or increases in MdARF17 led to greater drought sensitivity. Further study revealed that modulation of drought tolerance was achieved through regulation of drought-responsive miRNA levels by MdARF17 and MdHYL1; MdARF17 interacted with MdHYL1 and bound to the promoter of MdHYL1. Genetic analysis further suggested that MdHYL1 is a direct downstream target of MdARF17. Importantly, MdARF17 and MdHYL1 regulated the abundance of Mdm-miR160. In addition, the Mdm-miR160-MdARF17-MdHYL1 module regulated adventitious root development. We also found that Mdm-miR160 can move from the scion to the rootstock in apple and tomato (Solanum lycopersicum), thereby improving root development and drought tolerance of the rootstock. Our study revealed the mechanisms by which the positive feedback loop of Mdm-miR160-MdARF17-MdHYL1 influences apple drought tolerance.
Collapse
Affiliation(s)
- Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Ping
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuguo Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gege Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
79
|
Ranjan A, Sinha R, Singla-Pareek SL, Pareek A, Singh AK. Shaping the root system architecture in plants for adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13651. [PMID: 35174506 DOI: 10.1111/ppl.13651] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root system architecture plays an important role in plant adaptation to drought stress. The root system architecture (RSA) consists of several structural features, which includes number and length of main and lateral roots along with the density and length of root hairs. These features exhibit plasticity under water-limited environments and could be critical to developing crops with efficient root systems for adaptation under drought. Recent advances in the omics approaches have significantly improved our understanding of the regulatory mechanisms of RSA remodeling under drought and the identification of genes and other regulatory elements. Plant response to drought stress at physiological, morphological, biochemical, and molecular levels in root cells is regulated by various phytohormones and their crosstalk. Stress-induced reactive oxygen species play a significant role in regulating root growth and development under drought stress. Several transcription factors responsible for the regulation of RSA under drought have proven to be beneficial for developing drought tolerant crops. Molecular breeding programs for developing drought-tolerant crops have been greatly benefitted by the availability of quantitative trait loci (QTLs) associated with the RSA regulation. In the present review, we have discussed the role of various QTLs, signaling components, transcription factors, microRNAs and crosstalk among various phytohormones in shaping RSA and present future research directions to better understand various factors involved in RSA remodeling for adaptation to drought stress. We believe that the information provided herein may be helpful in devising strategies to develop crops with better RSA for efficient uptake and utilization of water and nutrients under drought conditions.
Collapse
Affiliation(s)
- Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| |
Collapse
|
80
|
Dong Q, Hu B, Zhang C. microRNAs and Their Roles in Plant Development. FRONTIERS IN PLANT SCIENCE 2022; 13:824240. [PMID: 35251094 PMCID: PMC8895298 DOI: 10.3389/fpls.2022.824240] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 05/26/2023]
Abstract
Small RNAs are short non-coding RNAs with a length ranging between 20 and 24 nucleotides. Of these, microRNAs (miRNAs) play a distinct role in plant development. miRNAs control target gene expression at the post-transcriptional level, either through direct cleavage or inhibition of translation. miRNAs participate in nearly all the developmental processes in plants, such as juvenile-to-adult transition, shoot apical meristem development, leaf morphogenesis, floral organ formation, and flowering time determination. This review summarizes the research progress in miRNA-mediated gene regulation and its role in plant development, to provide the basis for further in-depth exploration regarding the function of miRNAs and the elucidation of the molecular mechanism underlying the interaction of miRNAs and other pathways.
Collapse
Affiliation(s)
- Qingkun Dong
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Binbin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cui Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
81
|
Pan ZJ, Nien YC, Shih YA, Chen TY, Lin WD, Kuo WH, Hsu HC, Tu SL, Chen JC, Wang CN. Transcriptomic Analysis Suggests Auxin Regulation in Dorsal-Ventral Petal Asymmetry of Wild Progenitor Sinningia speciosa. Int J Mol Sci 2022; 23:2073. [PMID: 35216188 PMCID: PMC8876764 DOI: 10.3390/ijms23042073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/22/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
The establishment of dorsal-ventral (DV) petal asymmetry is accompanied by differential growth of DV petal size, shape, and color differences, which enhance ornamental values. Genes involved in flower symmetry in Sinningia speciosa have been identified as CYCLOIDEA (SsCYC), but which gene regulatory network (GRN) is associated with SsCYC to establish DV petal asymmetry is still unknown. To uncover the GRN of DV petal asymmetry, we identified 630 DV differentially expressed genes (DV-DEGs) from the RNA-Seq of dorsal and ventral petals in the wild progenitor, S. speciosa 'ES'. Validated by qRT-PCR, genes in the auxin signaling transduction pathway, SsCYC, and a major regulator of anthocyanin biosynthesis were upregulated in dorsal petals. These genes correlated with a higher endogenous auxin level in dorsal petals, with longer tube length growth through cell expansion and a purple dorsal color. Over-expression of SsCYC in Nicotiana reduced petal size by regulating cell growth, suggesting that SsCYC also controls cell expansion. This suggests that auxin and SsCYC both regulate DV petal asymmetry. Transiently over-expressed SsCYC, however, could not activate most major auxin signaling genes, suggesting that SsCYC may not trigger auxin regulation. Whether auxin can activate SsCYC or whether they act independently to regulate DV petal asymmetry remains to be explored in the future.
Collapse
Affiliation(s)
- Zhao-Jun Pan
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Z.-J.P.); (Y.-C.N.); (Y.-A.S.); (T.-Y.C.)
| | - Ya-Chi Nien
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Z.-J.P.); (Y.-C.N.); (Y.-A.S.); (T.-Y.C.)
| | - Yu-An Shih
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Z.-J.P.); (Y.-C.N.); (Y.-A.S.); (T.-Y.C.)
| | - Tsun-Ying Chen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Z.-J.P.); (Y.-C.N.); (Y.-A.S.); (T.-Y.C.)
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (W.-D.L.); (S.-L.T.)
| | - Wen-Hsi Kuo
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan; (W.-H.K.); (H.-C.H.)
| | - Hao-Chun Hsu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan; (W.-H.K.); (H.-C.H.)
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (W.-D.L.); (S.-L.T.)
| | - Jen-Chih Chen
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Neng Wang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Z.-J.P.); (Y.-C.N.); (Y.-A.S.); (T.-Y.C.)
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan; (W.-H.K.); (H.-C.H.)
| |
Collapse
|
82
|
Auxin Response Factors Are Ubiquitous in Plant Growth and Development, and Involved in Crosstalk between Plant Hormones: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031360] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Auxin response factors (ARFs) are an important family of transcription factors involved in the exertion of auxin in plants and play a key role in regulating the growth and development of plant nutritional and reproductive organs such as roots, stems, leaves, flowers, fruits, and seeds. Foods of plant origin occupy an important place in the nutritional structure of the human diet, and the main edible parts of different plants vary. In this paper, we review recent research reports on ARFs and summarize its role in the regulation of leaf, flower, root, and fruit growth, as well as other important life activities. We also present the challenges and opportunities that ARFs will present in the future. It will be important to deepen our understanding of the mechanisms by which ARFs interact with other proteins or genes. In addition, it is worth considering that more technical tools should be put into the study of ARFs and that the research should be oriented towards solving practical problems. In the future, it is expected that the nutrition and function of plant-derived foods can be improved through gene editing and other means.
Collapse
|
83
|
Quiñones MA, Lucas MM, Pueyo JJ. Adaptive Mechanisms Make Lupin a Choice Crop for Acidic Soils Affected by Aluminum Toxicity. FRONTIERS IN PLANT SCIENCE 2022; 12:810692. [PMID: 35069669 PMCID: PMC8766672 DOI: 10.3389/fpls.2021.810692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/14/2021] [Indexed: 05/25/2023]
Abstract
Almost half of the world's agricultural soils are acidic, and most of them present significant levels of aluminum (Al) contamination, with Al3+ as the prevailing phytotoxic species. Lupin is a protein crop that is considered as an optimal alternative to soybean cultivation in cold climates. Lupins establish symbiosis with certain soil bacteria, collectively known as rhizobia, which are capable of fixing atmospheric nitrogen. Moreover, some lupin species, especially white lupin, form cluster roots, bottlebrush-like structures specialized in the mobilization and uptake of nutrients in poor soils. Cluster roots are also induced by Al toxicity. They exude phenolic compounds and organic acids that chelate Al to form non-phytotoxic complexes in the rhizosphere and inside the root cells, where Al complexes are accumulated in the vacuole. Lupins flourish in highly acidic soils where most crops, including other legumes, are unable to grow. Some lupin response mechanisms to Al toxicity are common to other plants, but lupin presents specific tolerance mechanisms, partly as a result of the formation of cluster roots. Al-induced lupin organic acid secretion differs from P-induced secretion, and organic acid transporters functions differ from those in other legumes. Additionally, symbiotic rhizobia can contribute to Al detoxification. After revising the existing knowledge on lupin distinct Al tolerance mechanisms, we conclude that further research is required to elucidate the specific organic acid secretion and Al accumulation mechanisms in this unique legume, but definitely, white lupin arises as a choice crop for cultivation in Al-rich acidic soils in temperate climate regions.
Collapse
|
84
|
Luo P, Di D, Wu L, Yang J, Lu Y, Shi W. MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling. Int J Mol Sci 2022; 23:ijms23010510. [PMID: 35008937 PMCID: PMC8745101 DOI: 10.3390/ijms23010510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022] Open
Abstract
Auxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis. In this review, we will detail the miRNAs involved in auxin signaling to illustrate its in planta complex regulation.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (P.L.); (D.D.)
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
- Correspondence: (P.L.); (D.D.)
| | - Lei Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| |
Collapse
|
85
|
Hao K, Wang Y, Zhu Z, Wu Y, Chen R, Zhang L. miR160: An Indispensable Regulator in Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:833322. [PMID: 35392506 PMCID: PMC8981303 DOI: 10.3389/fpls.2022.833322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNA), recognized as crucial regulators of gene expression at the posttranscriptional level, have been found to be involved in the biological processes of plants. Some miRNAs are up- or down-regulated during plant development, stress response, and secondary metabolism. Over the past few years, it has been proved that miR160 is directly related to the developments of different tissues and organs in multifarious species, as well as plant-environment interactions. This review highlights the recent progress on the contributions of the miR160-ARF module to important traits of plants and the role of miR160-centered gene regulatory network in coordinating growth with endogenous and environmental factors. The manipulation of miR160-guided gene regulation may provide a new method to engineer plants with improved adaptability and yield.
Collapse
Affiliation(s)
- Kai Hao
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
| | - Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yu Wu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
86
|
Bano N, Fakhrah S, Nayak SP, Bag SK, Mohanty CS. Identification of miRNA and their target genes in Cestrum nocturnum L. and Cestrum diurnum L. in stress responses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:31-49. [PMID: 35221570 PMCID: PMC8847519 DOI: 10.1007/s12298-022-01127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED MicroRNAs (miRNAs) are small, highly conserved non-coding RNA molecules and products of primary miRNAs that regulate the target gene expression. Homology-based approaches were employed to identify miRNAs and their targets in Cestrum nocturnum L. and Cestrum diurnum L. A total of 32 and 12 miRNA candidates were identified in C. nocturnum and C. diurnum. These miRNAs belong to 26 and 10 miRNA families and regulate 1024 and 1007 target genes in C. nocturnum, and C. diurnum, respectively. The functional roles of these miRNAs have not been earlier elucidated in Cestrum. MiR815a, miR849, miR1089 and miR172 have a strong propensity to target genes controlling phytochrome-interacting factor 1 (PIF1), ubiquitin-specific protease 12 (UBP12), leucine-rich repeat (LRR) protein kinase and GAI, RGA, SCR (GRAS) family transcription factor in C. nocturnum. While miR5205a, miR1436 and miR530 regulate PATATIN-like protein 6 (PLP6), PHD finger transcription factor and myb domain protein 48 (MYB48) in C. diurnum. Overall, these miRNAs have regulatory responses in biotic and abiotic stresses in both plant species. Eight putative miRNAs and their target genes were selected for qRT-PCR validation. The validated results suggested the importance of miR815a, miR849, miR5205a, miR1089, miR172, miR1436, and miR530 in exerting control over stress responses in C. nocturnum and C. diurnum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01127-1.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Shafquat Fakhrah
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh 226007 India
| | - Sagar Prasad Nayak
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Chandra Sekhar Mohanty
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
87
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
88
|
Tang Y, Du G, Xiang J, Hu C, Li X, Wang W, Zhu H, Qiao L, Zhao C, Wang J, Yu S, Sui J. Genome-wide identification of auxin response factor (ARF) gene family and the miR160-ARF18-mediated response to salt stress in peanut (Arachis hypogaea L.). Genomics 2021; 114:171-184. [PMID: 34933069 DOI: 10.1016/j.ygeno.2021.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Auxin response factors (ARFs) are transcription factors that regulate the transcription of auxin-responsive genes during plant growth and development. In this study, 29 and 30 ARF members were identified from the two wild peanut species, A. duranensis and A. ipaensis, respectively. The ARFs, including their classifications, conserved domains and evolutionary relationships were characterized. RNA-seq analyses revealed that some of the ARF genes were responsive to abiotic stress, particularly high salinity. In addition to abiotic stress, the expression of 2 ARF members was also regulated by biotic stress, specifically Bradyrhizobium infection in A. duranensis. The ARF gene Arahy.7DXUOK was predicted to be a potential target of miR160. Overexpression of miR160 could cause degradation of the Arahy.7DXUOK target gene transcript and increased salt tolerance in miR160OX transgenic plants. Therefore, these molecular characterization and expression profile analyses provide comprehensive information on ARF family members and will help to elucidate their functions to facilitate further research on peanuts.
Collapse
Affiliation(s)
- Yanyan Tang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Guoning Du
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Jie Xiang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Changli Hu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Xiaoting Li
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Weihua Wang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Lixian Qiao
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Chunmei Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingshan Wang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Shanlin Yu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China..
| |
Collapse
|
89
|
Kościelniak P, Glazińska P, Kȩsy J, Zadworny M. Formation and Development of Taproots in Deciduous Tree Species. FRONTIERS IN PLANT SCIENCE 2021; 12:772567. [PMID: 34925417 PMCID: PMC8675582 DOI: 10.3389/fpls.2021.772567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Trees are generally long-lived and are therefore exposed to numerous episodes of external stimuli and adverse environmental conditions. In certain trees e.g., oaks, taproots evolved to increase the tree's ability to acquire water from deeper soil layers. Despite the significant role of taproots, little is known about the growth regulation through internal factors (genes, phytohormones, and micro-RNAs), regulating taproot formation and growth, or the effect of external factors, e.g., drought. The interaction of internal and external stimuli, involving complex signaling pathways, regulates taproot growth during tip formation and the regulation of cell division in the root apical meristem (RAM). Assuming that the RAM is the primary regulatory center responsible for taproot growth, factors affecting the RAM function provide fundamental information on the mechanisms affecting taproot development.
Collapse
Affiliation(s)
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kȩsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| |
Collapse
|
90
|
Dubey S, Shri M, Chakrabarty D. MicroRNA mediated regulation of gene expression in response to heavy metals in plants. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2021; 30:744-755. [DOI: 10.1007/s13562-021-00718-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/28/2021] [Indexed: 06/27/2023]
|
91
|
miRNAomic Approach to Plant Nitrogen Starvation. Int J Genomics 2021; 2021:8560323. [PMID: 34796230 PMCID: PMC8595019 DOI: 10.1155/2021/8560323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs). miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their regulatory role in N metabolism.
Collapse
|
92
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
93
|
Hu QQ, Shu JQ, Li WM, Wang GZ. Role of Auxin and Nitrate Signaling in the Development of Root System Architecture. FRONTIERS IN PLANT SCIENCE 2021; 12:690363. [PMID: 34858444 PMCID: PMC8631788 DOI: 10.3389/fpls.2021.690363] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/25/2021] [Indexed: 06/12/2023]
Abstract
The plant root is an important storage organ that stores indole-3-acetic acid (IAA) from the apical meristem, as well as nitrogen, which is obtained from the external environment. IAA and nitrogen act as signaling molecules that promote root growth to obtain further resources. Fluctuations in the distribution of nitrogen in the soil environment induce plants to develop a set of strategies that effectively improve nitrogen use efficiency. Auxin integrates the information regarding the nitrate status inside and outside the plant body to reasonably distribute resources and sustainably construct the plant root system. In this review, we focus on the main factors involved in the process of nitrate- and auxin-mediated regulation of root structure to better understand how the root system integrates the internal and external information and how this information is utilized to modify the root system architecture.
Collapse
|
94
|
Barrera-Rojas CH, Otoni WC, Nogueira FTS. Shaping the root system: the interplay between miRNA regulatory hubs and phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6822-6835. [PMID: 34259838 DOI: 10.1093/jxb/erab299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
The root system commonly lies underground, where it provides anchorage for the aerial organs, as well as nutrients and water. Both endogenous and environmental cues contribute to the establishment of the root system. Among the endogenous cues, microRNAs (miRNAs), transcription factors, and phytohormones modulate root architecture. miRNAs belong to a subset of endogenous hairpin-derived small RNAs that post-transcriptionally control target gene expression, mostly transcription factors, comprising the miRNA regulatory hubs. Phytohormones are signaling molecules involved in most developmental processes. Some miRNAs and targets participate in more than one hormonal pathway, thereby providing new bridges in plant hormonal crosstalk. Unraveling the intricate network of molecular mechanisms underlying the establishment of root systems is a central aspect in the development of novel strategies for plant breeding to increase yield and optimize agricultural land use. In this review, we summarize recent findings describing the molecular mechanisms associated with the interplay between miRNA regulatory hubs and phytohormones to ensure the establishment of a proper root system. We focus on post-embryonic growth and development of primary, lateral, and adventitious roots. In addition, we discuss novel insights for future research on the interaction between miRNAs and phytohormones in root architecture.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Wagner Campos Otoni
- Department of Plant Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
95
|
Bertolotti G, Scintu D, Dello Ioio R. A small cog in a large wheel: crucial role of miRNAs in root apical meristem patterning. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6755-6767. [PMID: 34350947 DOI: 10.1093/jxb/erab332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
In both animal and plants, establishment of body axes is fundamental for proper organ development. Plant roots show two main developmental axes: the proximo-distal axis, which spans from the hypocotyl-root junction to the root tip; and the radial axis, which traverses from the vascular tissue to the epidermis. Root axes are determined in the root meristem. The root meristem occupies the tip of the root and contains self-renewing stem cells, which continuously produce new root cells. An intricate network of signalling pathways regulates meristem function and patterning to ensure proper root development and growth. In the last decade, miRNAs, 20-21 nucleotide-long molecules with morphogenetic activity, emerged as central regulators of root cell patterning. Their activity intersects with master regulators of meristematic activity, including phytohormones. In this review, we discuss the latest findings about the activity of miRNAs and their interaction with other molecular networks in the formation of root meristem axes. Furthermore, we describe how these small molecules allow root growth to adapt to changes in the environment, while maintaining the correct patterning.
Collapse
Affiliation(s)
- Gaia Bertolotti
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| | - Daria Scintu
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| | - Raffaele Dello Ioio
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| |
Collapse
|
96
|
Zhu Y, Liu Q, Xu W, Yao L, Wang X, Wang H, Xu Y, Li L, Duan C, Yi Z, Lin C. Identification of novel drought-responsive miRNA regulatory network of drought stress response in common vetch ( Vicia sativa). Open Life Sci 2021; 16:1111-1121. [PMID: 34712821 PMCID: PMC8511966 DOI: 10.1515/biol-2021-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 11/15/2022] Open
Abstract
Drought is among the most important natural disasters with severe effects on animals and plants. MicroRNAs are a class of noncoding RNAs that play a crucial role in plant growth, development, and response to stress factors, including drought. However, the microRNAs in drought responses in common vetch (Vicia sativa), an annual herbaceous leguminous plant commonly used for forage by including it in mixed seeding during winter and spring, have not been characterized. To explore the microRNAs' response to drought in common vetch, we sequenced 10 small RNA (sRNA) libraries by the next-generation sequencing technology. We obtained 379 known miRNAs belonging to 38 families and 47 novel miRNAs. The two groups had varying numbers of differentially expressed miRNAs: 85 in the comparison group D5 vs C5 and 38 in the comparison group D3 vs C3. Combined analysis of mRNA and miRNA in the same samples under drought treatment identified 318 different target genes of 123 miRNAs. Functional annotation of the target genes revealed that the miRNAs regulate drought-responsive genes, such as leucine-rich repeat receptor-like kinase-encoding genes (LRR-RLKs), ABC transporter G family member 1 (ABCG1), and MAG2-interacting protein 2 (MIP2). The genes were involved in various pathways, including cell wall biosynthesis, reactive oxygen removal, and protein transport. The findings in this study provide new insights into the miRNA-mediated regulatory networks of drought stress response in common vetch.
Collapse
Affiliation(s)
- Yongqun Zhu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, People’s Republic of China
| | - Qiuxu Liu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, People’s Republic of China
| | - Wenzhi Xu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, People’s Republic of China
| | - Li Yao
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, People’s Republic of China
| | - Xie Wang
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, People’s Republic of China
| | - Hong Wang
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, People’s Republic of China
| | - Yalin Xu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, People’s Republic of China
| | - Linxiang Li
- Bazhong Green Agriculture Innovation and Development Research Institute, Sichuan Academy of Agricultural Sciences, Bazhong, Sichuan 636000, People’s Republic of China
| | - Chunhua Duan
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, People’s Republic of China
| | - Zhixin Yi
- Bazhong Green Agriculture Innovation and Development Research Institute, Sichuan Academy of Agricultural Sciences, Bazhong, Sichuan 636000, People’s Republic of China
| | - Chaowen Lin
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, People’s Republic of China
| |
Collapse
|
97
|
The Novel Cucurbitaceae miRNA ClmiR86 Is Involved in Grafting-Enhanced Phosphate Utilization and Phosphate Starvation Tolerance in Watermelon. PLANTS 2021; 10:plants10102133. [PMID: 34685942 PMCID: PMC8540214 DOI: 10.3390/plants10102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
Watermelon (Citrullus lanatus) is a globally important Cucurbitaceae crop in which grafting is commonly used to improve stress tolerance and enhance nutrient utilization. However, the mechanism underlying grafting-enhanced nutrient assimilation remains unclear. Here, we demonstrate the possible involvement of a novel Cucurbitaceae miRNA, ClmiR86, in grafting-enhanced phosphate-starvation tolerance via CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE 5 (ClCIPK5) suppression in watermelon. Transcript analyses revealed that the induction of ClmiR86 expression was correlated with the downregulation of ClCIPK5 in squash-grafted watermelon under phosphate starvation. In addition, the differential expression of ClmiR86 in various watermelon genotypes was consistent with their phosphate utilization efficiency. Furthermore, ClmiR86 overexpression in Arabidopsis enhanced root growth and phosphate uptake under phosphate starvation and promoted inflorescence elongation under normal conditions. These results suggest that the ClmiR86–ClCIPK5 axis is involved in phosphate starvation response as well as grafting-enhanced growth vigor and phosphate assimilation. The present study provides valuable insights for investigating long-distance signaling and nutrient utilization in plants.
Collapse
|
98
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
99
|
Kunej U, Jakše J, Radišek S, Štajner N. Identification and Characterization of Verticillium nonalfalfae-Responsive MicroRNAs in the Roots of Resistant and Susceptible Hop Cultivars. PLANTS (BASEL, SWITZERLAND) 2021; 10:1883. [PMID: 34579416 PMCID: PMC8471970 DOI: 10.3390/plants10091883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022]
Abstract
MicroRNAs are 21- to 24-nucleotide-long, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They can modulate various biological processes, including plant response and resistance to fungal pathogens. Hops are grown for use in the brewing industry and, recently, also for the pharmaceutical industry. Severe Verticillium wilt caused by the phytopathogenic fungus Verticillium nonalfalfae, is the main factor in yield loss in many crops, including hops (Humulus lupulus L.). In our study, we identified 56 known and 43 novel miRNAs and their expression patterns in the roots of susceptible and resistant hop cultivars after inoculation with V. nonalfalfae. In response to inoculation with V. nonalfalfae, we found five known and two novel miRNAs that are differentially expressed in the susceptible cultivar and six known miRNAs in the resistant cultivar. Differentially expressed miRNAs target 49 transcripts involved in protein localization and pigment synthesis in the susceptible cultivar, whereas they are involved in transcription factor regulation and hormone signalling in the resistant cultivar. The results of our study suggest that the susceptible and resistant hop cultivars respond differently to V. nonalfalfae inoculation at the miRNA level and that miRNAs may contribute to the successful defence of the resistant cultivar.
Collapse
Affiliation(s)
- Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (J.J.)
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (J.J.)
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia;
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (J.J.)
| |
Collapse
|
100
|
Singh P, Dutta P, Chakrabarty D. miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. PLANT CELL REPORTS 2021; 40:1617-1630. [PMID: 34159416 DOI: 10.1007/s00299-021-02736-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/10/2021] [Indexed: 05/06/2023]
Abstract
One of the most interesting signaling molecules that regulates a wide array of adaptive stress responses in plants are the micro RNAs (miRNAs) that are a unique class of non-coding RNAs constituting novel mechanisms of post-transcriptional gene regulation. Recent studies revealed the role of miRNAs in several biotic and abiotic stresses by regulating various phytohormone signaling pathways as well as by targeting a number of transcription factors (TFs) and defense related genes. Phytohormones are signal molecules modulating the plant growth and developmental processes by regulating gene expression. Studies concerning miRNAs in abiotic stress response also show their vital roles in abiotic stress signaling. Current research indicates that miRNAs may act as possible candidates to create abiotic stress tolerant crop plants by genetic engineering. Yet, the detailed mechanism governing the dynamic expression networks of miRNAs in response to stress tolerance remains unclear. In this review, we provide recent updates on miRNA-mediated regulation of phytohormones combating various stress and its role in adaptive stress response in crop plants.
Collapse
Affiliation(s)
- Puja Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prasanna Dutta
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|