51
|
Yi H, Richards EJ. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. THE PLANT CELL 2007; 19:2929-39. [PMID: 17890374 PMCID: PMC2048694 DOI: 10.1105/tpc.107.051821] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/14/2007] [Accepted: 09/04/2007] [Indexed: 05/17/2023]
Abstract
The RPP5 (for recognition of Peronospora parasitica 5) locus in the Arabidopsis thaliana Columbia strain contains a cluster of paralogous disease Resistance (R) genes that play important roles in innate immunity. Among the R genes in this locus, RPP4 confers resistance to two races of the fungal pathogen Hyaloperonospora parasitica, while activation of SNC1 (for suppressor of npr1-1, constitutive 1) results in the resistance to another race of H. parasitica and to pathovars of the bacterial pathogen Pseudomonas syringae through the accumulation of salicylic acid (SA). Here, we demonstrate that other Columbia RPP5 locus R genes can be induced by transgenic overexpression of SNC1, which itself is regulated by a positive amplification loop involving SA accumulation. We also show that small RNA species that can target RPP5 locus R genes are produced in wild-type plants and that these R genes can be cosuppressed in transgenic plants overexpressing SNC1. Steady state expression levels of SNC1 increase in some mutants (dcl4-4, ago1-36, and upf1-5) defective in RNA silencing as well as in transgenic plants expressing the P1/Helper Component-Protease viral suppressor of RNA silencing. However, steady state levels of small RNA species do not change in mutants that upregulate SNC1. These data indicate many Columbia RPP5 locus R genes can be coordinately regulated both positively and negatively and suggest that the RPP5 locus is poised to respond to pathogens that disturb RNA silencing.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
52
|
Diaz-Pendon JA, Li F, Li WX, Ding SW. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. THE PLANT CELL 2007; 19:2053-63. [PMID: 17586651 PMCID: PMC1955711 DOI: 10.1105/tpc.106.047449] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We investigated the genetic pathway in Arabidopsis thaliana targeted during infection by cucumber mosaic virus (CMV) 2b protein, known to suppress non-cell-autonomous transgene silencing and salicylic acid (SA)-mediated virus resistance. We show that 2b expressed from the CMV genome drastically reduced the accumulation of 21-, 22-, and 24-nucleotide classes of viral small interfering RNAs (siRNAs) produced by Dicer-like4 (DCL4), DCL2, and DCL3, respectively. The defect of a CMV 2b-deletion mutant (CMV-Delta2b) in plant infection was efficiently rescued in Arabidopsis mutants producing neither 21- nor 22-nucleotide viral siRNAs. Since genetic analysis further identifies a unique antiviral role for DCL3 upstream of DCL4, our data indicate that inhibition of the accumulation of distinct viral siRNAs plays a key role in 2b suppression of antiviral silencing. Strikingly, disease symptoms caused by CMV-Delta2b in Arabidopsis mutants defective in antiviral silencing were as severe as those caused by CMV, demonstrating an indirect role for the silencing suppressor activity in virus virulence. We found that production of CMV siRNAs without 2b interference depended largely on RNA-dependent RNA polymerase 1 (RDR1) inducible by SA. Given the known role of RDR6-dependent transgene siRNAs in non-cell-autonomous silencing, our results suggest a model in which 2b inhibits the production of RDR1-dependent viral siRNAs that confer SA-dependent virus resistance by directing non-cell-autonomous antiviral silencing.
Collapse
Affiliation(s)
- Juan A Diaz-Pendon
- Center for Plant Cell Biology, Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
53
|
Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 2007; 20:3255-68. [PMID: 17158744 PMCID: PMC1686603 DOI: 10.1101/gad.1495506] [Citation(s) in RCA: 484] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA silencing refers to small regulatory RNA-mediated processes that repress endogenous gene expression and defend hosts from offending viruses. As an anti-host defense mechanism, viruses encode suppressors that can block RNA silencing pathways. Cucumber mosaic virus (CMV)-encoded 2b protein was among the first suppressors identified that could inhibit post-transcriptional gene silencing (PTGS), but with little or no effect on miRNA functions. The mechanisms underlying 2b suppression of RNA silencing are unknown. Here, we demonstrate that the CMV 2b protein also interferes with miRNA pathways, eliciting developmental anomalies partially phenocopying ago1 mutant alleles. In contrast to most characterized suppressors, 2b directly interacts with Argonaute1 (AGO1) in vitro and in vivo, and this interaction occurs primarily on one surface of the PAZ-containing module and part of the PIWI-box of AGO1. Consistent with this interaction, 2b specifically inhibits AGO1 cleavage activity in RISC reconstitution assays. In addition, AGO1 recruits virus-derived small interfering RNAs (siRNAs) in vivo, suggesting that AGO1 is a major factor in defense against CMV infection. We conclude that 2b blocks AGO1 cleavage activity to inhibit miRNA pathways, attenuate RNA silencing, and counter host defense. These findings provide insight on the molecular arms race between host antiviral RNA silencing and virus counterdefense.
Collapse
Affiliation(s)
- Xiuren Zhang
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Haque AKMN, Tanaka Y, Sonoda S, Nishiguchi M. Analysis of transitive RNA silencing after grafting in transgenic plants with the coat protein gene of Sweet potato feathery mottle virus. PLANT MOLECULAR BIOLOGY 2007; 63:35-47. [PMID: 17160454 DOI: 10.1007/s11103-006-9070-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 08/02/2006] [Indexed: 05/09/2023]
Abstract
We have previously reported the graft transmission of target specificity for RNA silencing using transgenic Nicotiana benthamiana plants expressing the coat protein gene (CP, including the 3' non-translated region) of Sweet potato feathery mottle virus. Transgenic plants carrying the 5' 200 and 400 bp regions of CP were newly produced. From these plants, two silenced and two non-silenced lines were selected to investigate the manifestation of transitive RNA silencing by graft experiments. Non-silenced scions carrying the entire transgene were grafted onto either 5' or 3' silencing inducer rootstocks. When non-silenced scions were grafted onto 5' silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions and spread toward the 3' region of the transgene mRNA. Similarly, when non-silenced scions were grafted onto 3' silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions, but was restricted to the 3' region of the transgene and did not spread to the 5' region. In addition, results from crossing experiments, involving non-silenced and 3' silencing inducer plants, confirmed the above finding. This indicates that RNA silencing spreads in the 5'-3' direction, not in the 3'-5' direction, along the transgene mRNA.
Collapse
Affiliation(s)
- A K M Nazmul Haque
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| | | | | | | |
Collapse
|
55
|
Alamillo JM, Saénz P, García JA. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:217-27. [PMID: 17018032 DOI: 10.1111/j.1365-313x.2006.02861.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA). Replication and accumulation of PPV is higher in the locally infected leaves of plants deficient in SA or expressing TEV P1/HC-Pro silencing suppressor. Accumulation of viral derived small RNAs was reduced in the NahG transgenic plants, suggesting that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco. Besides, expression of SA-mediated defense transcripts, such as those of pathogenesis-related (PR) proteins PR-1 and PR-2 or alternative oxidase-1, as well as that of the putative RNA-dependent RNA polymerase NtRDR1, is induced in response to PPV infection, and the expression patterns of these defense transcripts are altered in the TEV P1/HC-Pro transgenic plants. Long-distance movement of PPV is highly enhanced in NahG x P1/HC-Pro double-transgenic plants and systemic symptoms in these plants reveal that the expression of an RNA-silencing suppressor and the lack of SA produce additive but distinct effects. Our results suggest that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco, and that silencing suppressors, such as P1/HC-Pro, also alter the SA-mediated defense. Both an RNA-silencing and an SA-mediated defense mechanism could act together to limit PPV infection.
Collapse
Affiliation(s)
- Josefa M Alamillo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
56
|
Bouché N, Lauressergues D, Gasciolli V, Vaucheret H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 2006; 25:3347-56. [PMID: 16810317 PMCID: PMC1523179 DOI: 10.1038/sj.emboj.7601217] [Citation(s) in RCA: 352] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 06/03/2006] [Indexed: 11/08/2022] Open
Abstract
Plants contain more DICER-LIKE (DCL) enzymes and double-stranded RNA binding (DRB) proteins than other eukaryotes, resulting in increased small RNA network complexities. Analyses of single, double, triple and quadruple dcl mutants exposed DCL1 as a sophisticated enzyme capable of producing both microRNAs (miRNAs) and siRNAs, unlike the three other DCLs, which only produce siRNAs. Depletion of siRNA-specific DCLs results in unbalanced small RNA levels, indicating a redeployment of DCL/DRB complexes. In particular, DCL2 antagonizes the production of miRNAs and siRNAs by DCL1 in certain circumstances and affects development deleteriously in dcl1 dcl4 and dcl1 dcl3 dcl4 mutant plants, whereas dcl1 dcl2 dcl3 dcl4 quadruple mutant plants are viable. We also show that viral siRNAs are produced by DCL4, and that DCL2 can substitute for DCL4 when this latter activity is reduced or inhibited by viruses, pointing to the competitiveness of DCL2. Given the complexity of the small RNA repertoire in plants, the implication of each DCL, in particular DCL2, in the production of small RNAs that have no known function will constitute one of the next challenges.
Collapse
Affiliation(s)
- Nicolas Bouché
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Versailles, France
| | | | - Virginie Gasciolli
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Versailles, France
| | - Hervé Vaucheret
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Versailles, France
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Route de St-Cyr, 78026 Versailles Cedex, France. Tel.: +33 1308 33170; Fax: +33 1308 33099; E-mail:
| |
Collapse
|
57
|
Vaucheret H, Mallory AC, Bartel DP. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 2006; 22:129-36. [PMID: 16600876 PMCID: PMC2323247 DOI: 10.1016/j.molcel.2006.03.011] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/21/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
Arabidopsis ARGONAUTE1 (AGO1) encodes the RNA slicer enzyme of the microRNA (miRNA) pathway and is regulated by miR168-programmed, AGO1-catalyzed mRNA cleavage. Here, we describe two additional regulatory processes required for AGO1 homeostasis: transcriptional coregulation of MIR168 and AGO1 genes, and posttranscriptional stabilization of miR168 by AGO1. Disrupting any of these regulatory processes by using mutations or transgenes disturbs a proper functioning of the miRNA pathway. In contrast, minor perturbation leads to fine-tuned posttranscriptional adjustment of miR168 and AGO1 levels, thereby maintaining a proper balance of other miRNAs, which, together with AGO1, control the mRNA levels of miRNA targets. We suggest that miR168 stabilization occurs at the level of silencing-complex assembly and that modulating the efficiency of assembling miRNA-programmed silencing complexes will also be important in other contexts.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, 78026 Versailles Cedex, France.
| | | | | |
Collapse
|
58
|
Simón-Mateo C, García JA. MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 2006; 80:2429-36. [PMID: 16474149 PMCID: PMC1395392 DOI: 10.1128/jvi.80.5.2429-2436.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 12/06/2005] [Indexed: 01/23/2023] Open
Abstract
Since the discovery of microRNA (miRNA)-guided processing, a new type of RNA silencing, the possibility that such a mechanism could play a role in virus defense has been proposed. In this work, we have analyzed whether Plum pox virus (PPV) chimeras bearing miRNA target sequences (miR171, miR167, and miR159), which have been reported to be functional in Arabidopsis, were affected by miRNA function in three different host plants. Some of these PPV chimeras had clearly impaired infectivity compared with those carrying nonfunctional miRNA target sequences. The behaviors of PPV chimeras were similar but not identical in all the plants tested, and the deleterious effect on virus infectivity depended on the miRNA sequence cloned and on the site of insertion in the viral genome. The effect of the miRNA target sequence was drastically alleviated in transgenic plants expressing the silencing suppressor P1/HCPro. Furthermore, we show that virus chimeras readily escape RNA silencing interference through mutations within the miRNA target sequence, which mainly affected nucleotides matching the 5'-terminal region of the miRNA.
Collapse
Affiliation(s)
- Carmen Simón-Mateo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|