51
|
Cordoba E, Aceves-Zamudio DL, Hernández-Bernal AF, Ramos-Vega M, León P. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:147-59. [PMID: 25281700 PMCID: PMC4265152 DOI: 10.1093/jxb/eru394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H(+)/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5' regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified.
Collapse
Affiliation(s)
- Elizabeth Cordoba
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Denise Lizeth Aceves-Zamudio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Alma Fabiola Hernández-Bernal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Maricela Ramos-Vega
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| | - Patricia León
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos. México. C.P. 62210, Mexico
| |
Collapse
|
52
|
Yan H, Ma L, Wang Z, Lin Z, Su J, Lu BR. Multiple tissue-specific expression of rice seed-shattering gene SH4 regulated by its promoter pSH4. RICE (NEW YORK, N.Y.) 2015; 8:12. [PMID: 25844117 PMCID: PMC4384984 DOI: 10.1186/s12284-015-0047-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/02/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Rice seed shattering is an important domestication syndrome encoded by a gene named as SH4. The coding region of SH4 has been well studied regarding its function and roles in evolution. However, its promoter has not been identified, which limited our understanding of the detailed regulatory mechanisms of this gene. It is therefore critical to characterize the promoter and study its expression pattern. RESULTS We analyzed the 5' upstream sequences of this gene and identified a ~2.6 kb fragment with typical promoter features, which was designated as pSH4. The promoter contained a number of cis-acting elements related to abscisic acid (ABA) and a CpG island that were characteristics of multiple tissue-specific expression. We isolated and ligated pSH4 to the β-glucuronidase (GUS) reporter gene, and transformed it into a japonica rice cultivar to determine the multiple expression pattern of SH4. Histochemical location and fluorescence analyses of GUS activity of transgenic plants indicated multiple tissue-specific expression of pSH4 in the seed-pedicel junction region of mature panicles (with highest level), stems, coleoptiles of germinated seeds, and scutella of mature seeds. CONCLUSIONS The multiple tissue-specific expression pSH4 is categorized as a spatiotemporal promoter that drives the expression of the SH4 gene in different rice tissues, in addition to the seed-pedicel junction region. Our findings suggest that SH4 may have additional functions in the growth and development of rice, apart from its major role in seed shattering.
Collapse
Affiliation(s)
- Huanxin Yan
- />Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Songhu Road 2005, Shanghai, 200436 China
| | - Li Ma
- />Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Songhu Road 2005, Shanghai, 200436 China
| | - Zhe Wang
- />Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Songhu Road 2005, Shanghai, 200436 China
| | - Zhimin Lin
- />Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, 350003 China
| | - Jun Su
- />Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Wusi Road 247, Fuzhou, 350003 China
| | - Bao-Rong Lu
- />Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Songhu Road 2005, Shanghai, 200436 China
| |
Collapse
|
53
|
Wu J, Zhu C, Pang J, Zhang X, Yang C, Xia G, Tian Y, He C. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:1118-30. [PMID: 25353370 DOI: 10.1111/tpj.12714] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 08/25/2014] [Accepted: 10/20/2014] [Indexed: 05/05/2023]
Abstract
Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination.
Collapse
Affiliation(s)
- Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Rabot A, Portemer V, Péron T, Mortreau E, Leduc N, Hamama L, Coutos-Thévenot P, Atanassova R, Sakr S, Le Gourrierec J. Interplay of sugar, light and gibberellins in expression of Rosa hybrida vacuolar invertase 1 regulation. PLANT & CELL PHYSIOLOGY 2014; 55:1734-48. [PMID: 25108242 DOI: 10.1093/pcp/pcu106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Our previous findings showed that the expression of the Rosa hybrida vacuolar invertase 1 gene (RhVI1) was tightly correlated with the ability of buds to grow out and was under sugar, gibberellin and light control. Here, we aimed to provide an insight into the mechanistic basis of this regulation. In situ hybridization showed that RhVI1 expression was localized in epidermal cells of young leaves of bursting buds. We then isolated a 895 bp fragment of the promoter of RhVI1. In silico analysis identified putative cis-elements involved in the response to sugars, light and gibberellins on its proximal part (595 bp). To carry out functional analysis of the RhVI1 promoter in a homologous system, we developed a direct method for stable transformation of rose cells. 5' deletions of the proximal promoter fused to the uidA reporter gene were inserted into the rose cell genome to study the cell's response to exogenous and endogenous stimuli. Deletion analysis revealed that the 468 bp promoter fragment is sufficient to trigger reporter gene activity in response to light, sugars and gibberellins. This region confers sucrose- and fructose-, but not glucose-, responsive activation in the dark. Inversely, the -595 to -468 bp region that carries the sugar-repressive element (SRE) is required to down-regulate the RhVI1 promoter in response to sucrose and fructose in the dark. We also demonstrate that sugar/light and gibberellin/light act synergistically to up-regulate β-glucuronidase (GUS) activity sharply under the control of the 595 bp pRhVI1 region. These results reveal that the 127 bp promoter fragment located between -595 and -468 bp is critical for light and sugar and light and gibberellins to act synergistically.
Collapse
Affiliation(s)
- Amélie Rabot
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France These authors contributed equally to this work
| | - Virginie Portemer
- Université de Poitiers, UMR 7267 CNRS/Université de Poitiers Écologie et Biologie des Interactions, équipe Physiologie Moléculaire du Transport des Sucres chez les végétaux, 3 rue Jacques Fort, B31, 86 000 Poitiers, France These authors contributed equally to this work. Present address: INRA, Institut Jean Pierre Bourgin, UMR 1318, F-78026 Versailles, France
| | - Thomas Péron
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | - Eric Mortreau
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | - Nathalie Leduc
- Université d'Angers, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | - Latifa Hamama
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France Université d'Angers, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49071 Beaucouzé, France
| | - Pierre Coutos-Thévenot
- Université de Poitiers, UMR 7267 CNRS/Université de Poitiers Écologie et Biologie des Interactions, équipe Physiologie Moléculaire du Transport des Sucres chez les végétaux, 3 rue Jacques Fort, B31, 86 000 Poitiers, France
| | - Rossitza Atanassova
- Université de Poitiers, UMR 7267 CNRS/Université de Poitiers Écologie et Biologie des Interactions, équipe Physiologie Moléculaire du Transport des Sucres chez les végétaux, 3 rue Jacques Fort, B31, 86 000 Poitiers, France
| | - Soulaiman Sakr
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | - José Le Gourrierec
- Université d'Angers, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| |
Collapse
|
55
|
Lee KW, Chen PW, Yu SM. Metabolic adaptation to sugar/O2 deficiency for anaerobic germination and seedling growth in rice. PLANT, CELL & ENVIRONMENT 2014; 37:2234-44. [PMID: 24575721 DOI: 10.1111/pce.12311] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 05/20/2023]
Abstract
Rice is characterized by a broad range of metabolic and morphological adaptations to flooding, such as germination and mobilization of stored nutrients under submergence until seedlings reach the water surface to carry out photosynthesis, and sustainable growth of mature plants for long durations under partial submergence. The underlying mechanisms of the molecular basis of adaptation to anaerobic germination and seedling growth in rice are being uncovered. Induction of an ensemble of hydrolases to mobilize endosperm nutrient reserves is one of the key factors for successful germination and coleoptile elongation in rice under submergence. To compensate for reduced efficiency of Tricarboxylic Acid cycle and oxidative respiration in mitochondria under O2 deficient conditions, α-amylases play a central role in the hydrolysis of starch to provide sugar substrates for glycolysis and alcohol fermentation for generating ATP. We review the progress on the molecular mechanism regulating α-amylase expression that involves the integration of signals generated by the hormone gibberellin (GA), sugar starvation and O2 deprivation that results in germination and sustainable seedling growth in rice under anaerobic conditions. Comparisons are also made between dicots and monocots for the molecular mechanism of induction of genes involved in alcohol fermentation and sugar/O2 deficiency sensing system.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | | | | |
Collapse
|
56
|
Ochiai A, Sugai H, Harada K, Tanaka S, Ishiyama Y, Ito K, Tanaka T, Uchiumi T, Taniguchi M, Mitsui T. Crystal structure of α-amylase from Oryza sativa: molecular insights into enzyme activity and thermostability. Biosci Biotechnol Biochem 2014; 78:989-97. [PMID: 25036124 DOI: 10.1080/09168451.2014.917261] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AmyI-1 is an α-amylase from Oryza sativa (rice) and plays a crucial role in degrading starch in various tissues and at various growth stages. This enzyme is a glycoprotein with an N-glycosylated carbohydrate chain, a unique characteristic among plant α-amylases. In this study, we report the first crystal structure of AmyI-1 at 2.2-Å resolution. The structure consists of a typical (β/α)8-barrel, which is well-conserved among most α-amylases in the glycoside hydrolase family-13. Structural superimposition indicated small variations in the catalytic domain and carbohydrate-binding sites between AmyI-1 and barley α-amylases. By contrast, regions around the N-linked glycosylation sites displayed lower conservation of amino acid residues, including Asn-263, Asn-265, Thr-307, Asn-342, Pro-373, and Ala-374 in AmyI-1, which are not conserved in barley α-amylases, suggesting that these residues may contribute to the construction of the structure of glycosylated AmyI-1. These results increase the depths of our understanding of the biological functions of AmyI-1.
Collapse
Affiliation(s)
- Akihito Ochiai
- a Faculty of Engineering, Department of Materials Science and Technology , Niigata University , Niigata , Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Wu CS, Kuo WT, Chang CY, Kuo JY, Tsai YT, Yu SM, Wu HT, Chen PW. The modified rice αAmy8 promoter confers high-level foreign gene expression in a novel hypoxia-inducible expression system in transgenic rice seedlings. PLANT MOLECULAR BIOLOGY 2014; 85:147-61. [PMID: 24445591 DOI: 10.1007/s11103-014-0174-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/15/2014] [Indexed: 05/20/2023]
Abstract
Expression of α-amylase genes in rice is induced not only by sugar starvation and gibberellin (GA) but also by O2 deficiency. Promoters of two rice α-amylase genes, αAmy3 and αAmy8, have been shown to direct high-level production of recombinant proteins in rice suspension cells and germinated seeds. In the present study, we modified the cis-acting DNA elements within the sugar/GA response complex (SRC/GARC) of αAmy8 promoter. We found that addition of a G box and duplicated TA box leads to high-level expression of αAmy8 SRC/GARC and significantly enhances αAmy8 promoter activity in transformed rice cells and germinated transgenic rice seeds. We also show that these modifications have drastically increased the activity of αAmy8 promoter in rice seedlings under hypoxia. Our results reveal that the G box and duplicated TA box may play important roles in stimulating promoter activity in response to hypoxia in rice. The modified αAmy8 promoter was used to produce the recombinant human epidermal growth factor (hEGF) in rice cells and hypoxic seedlings. We found that the bioactive recombinant hEGF are stably produced and yields are up to 1.8% of total soluble protein (TSP) in transformed rice cells. The expression level of synthetic hEGF containing preferred rice codon usage comprises up to 7.8% of TSP in hypoxic transgenic seedlings. Our studies reveal that the modified αAmy8 promoter can be applicable in establishing a novel expression system for the high-level production of foreign proteins in transgenic rice cells and seedlings under hypoxia.
Collapse
Affiliation(s)
- Chung-Shen Wu
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Wu CS, Chen DY, Chang CF, Li MJ, Hung KY, Chen LJ, Chen PW. The promoter and the 5'-untranslated region of rice metallothionein OsMT2b gene are capable of directing high-level gene expression in germinated rice embryos. PLANT CELL REPORTS 2014; 33:793-806. [PMID: 24381099 DOI: 10.1007/s00299-013-1555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Critical regions within the rice metallothionein OsMT2b gene promoter are identified and the 5'-untranslated region (5'-UTR) is found essential for the high-level promoter activity in germinated transgenic rice embryos. Many metallothionein (MT) genes are highly expressed in plant tissues. A rice subfamily p2 (type 2) MT gene, OsMT2b, has been shown previously to exhibit the most abundant gene expression in young rice seedling. In the present study, transient expression assays and a transgenic approach were employed to characterize the expression of the OsMT2b gene in rice. We found that the OsMT2b gene is strongly and differentially expressed in germinated rice embryos during seed germination and seedling development. Histochemical staining analysis of transgenic rice carrying OsMT2b::GUS chimeric gene showed that high-level GUS activity was detected in germinated embryos and at the meristematic part of other tissues during germination. Deletion analysis of the OsMT2b promoter revealed that the 5'-flanking region of the OsMT2b between nucleotides -351 and -121 relative to the transcriptional initiation site is important for promoter activity in rice embryos, and this region contains the consensus sequences of G box and TA box. Our study demonstrates that the 5'-untranslated region (5'-UTR) of OsMT2b gene is not only necessary for the OsMT2b promoter activity, but also sufficient to augment the activity of a minimal promoter in both transformed cell cultures and germinated transgenic embryos in rice. We also found that addition of the maize Ubi intron 1 significantly enhanced the OsMT2b promoter activity in rice embryos. Our studies reveal that OsMT2b351-ubi(In) promoter can be applied in plant transformation and represents potential for driving high-level production of foreign proteins in transgenic rice.
Collapse
Affiliation(s)
- Chung-Shen Wu
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
59
|
Rubio S, Donoso A, Pérez FJ. The dormancy-breaking stimuli "chilling, hypoxia and cyanamide exposure" up-regulate the expression of α-amylase genes in grapevine buds. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:373-81. [PMID: 24594388 DOI: 10.1016/j.jplph.2013.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 05/08/2023]
Abstract
It has been suggested that respiratory stress is involved in the mechanism underlying the dormancy-breaking effect of hydrogen cyanamide (H2CN2) and sodium azide in grapevine buds; indeed, reductions in oxygen levels (hypoxia) and inhibitors of respiration promote bud-break in grapevines. In this study, we showed that, hypoxia increased starch hydrolysis soluble sugar consumption and up-regulated the expression of α-amylase genes (Vvα-AMYs) in grapevine buds, suggesting that these biochemical changes induced by hypoxia, may play a relevant role in the release of buds from endodormancy (ED). Three of the four Vvα-AMY genes that are expressed in grapevine buds were up-regulated by hypoxia and a correlation between changes in sugar content and level of Vvα-AMY gene expression during the hypoxia treatment was found, suggesting that soluble sugars mediate the effect of hypoxia on Vvα-AMY gene expression. Exogenous applications of soluble sugars and sugar analogs confirmed this finding and revealed that osmotic stress induces the expression of Vvα-AMY1 and Vvα-AMY3 and that soluble sugars induces Vvα-AMY2 and Vvα-AMY4 gene expression. Interestingly, the plant hormone gibberellic acid (GA3) induced the expression of Vvα-AMY3 and Vvα-AMY4 genes, while dormancy breaking stimuli, chilling and cyanamide exposure, mainly induced the expression of Vvα-AMY1 and Vvα-AMY2 genes, suggesting that these two α-amylase genes might be involved in the release of grapevine buds from the ED.
Collapse
Affiliation(s)
- Sebastián Rubio
- Universidad de Chile, Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Casilla 653, Santiago, Chile
| | - Amanda Donoso
- Universidad de Chile, Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Casilla 653, Santiago, Chile
| | - Francisco J Pérez
- Universidad de Chile, Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Casilla 653, Santiago, Chile.
| |
Collapse
|
60
|
Lin CR, Lee KW, Chen CY, Hong YF, Chen JL, Lu CA, Chen KT, Ho THD, Yu SM. SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source-sink communication in cereal seedlings under abiotic stress. THE PLANT CELL 2014; 26:808-27. [PMID: 24569770 PMCID: PMC3967042 DOI: 10.1105/tpc.113.121939] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 12/14/2013] [Accepted: 01/29/2014] [Indexed: 05/19/2023]
Abstract
In plants, source-sink communication plays a pivotal role in crop productivity, yet the underlying regulatory mechanisms are largely unknown. The SnRK1A protein kinase and transcription factor MYBS1 regulate the sugar starvation signaling pathway during seedling growth in cereals. Here, we identified plant-specific SnRK1A-interacting negative regulators (SKINs). SKINs antagonize the function of SnRK1A, and the highly conserved GKSKSF domain is essential for SKINs to function as repressors. Overexpression of SKINs inhibits the expression of MYBS1 and hydrolases essential for mobilization of nutrient reserves in the endosperm, leading to inhibition of seedling growth. The expression of SKINs is highly inducible by drought and moderately by various stresses, which is likely related to the abscisic acid (ABA)-mediated repression of SnRK1A under stress. Overexpression of SKINs enhances ABA sensitivity for inhibition of seedling growth. ABA promotes the interaction between SnRK1A and SKINs and shifts the localization of SKINs from the nucleus to the cytoplasm, where it binds SnRK1A and prevents SnRK1A and MYBS1 from entering the nucleus. Our findings demonstrate that SnRK1A plays a key role regulating source-sink communication during seedling growth. Under abiotic stress, SKINs antagonize the function of SnRK1A, which is likely a key factor restricting seedling vigor.
Collapse
Affiliation(s)
- Chien-Ru Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei 114, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Kuo-Wei Lee
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Chih-Yu Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Ya-Fang Hong
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Jyh-Long Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Chung-An Lu
- Department of Life Science National Central University, Taoyuan 320, Taiwan, Republic of China
| | - Ku-Ting Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
- Agricultural Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
| | - Su-May Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei 114, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
- Agricultural Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
- Address correspondence to
| |
Collapse
|
61
|
Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2013; 110:E5025-34. [PMID: 24297892 PMCID: PMC3870710 DOI: 10.1073/pnas.1308973110] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.
Collapse
|
62
|
RNA-sequencing reveals previously unannotated protein- and microRNA-coding genes expressed in aleurone cells of rice seeds. Genomics 2013; 103:122-34. [PMID: 24200500 DOI: 10.1016/j.ygeno.2013.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/03/2013] [Accepted: 10/25/2013] [Indexed: 01/14/2023]
Abstract
The rice genome annotation has been greatly improved in recent years, largely due to the availability of full length cDNA sequences derived from many tissues. Among those yet to be studied is the aleurone layer, which produces hydrolases for mobilization of seed storage reserves during seed germination and post germination growth. Herein, we report transcriptomes of aleurone cells treated with the hormones abscisic acid, gibberellic acid, or both. Using a comprehensive approach, we identified hundreds of novel genes. To minimize the number of false positives, only transcripts that did not overlap with existing annotations, had a high level of expression, and showed a high level of uniqueness within the rice genome were considered to be novel genes. This approach led to the identification of 553 novel genes that encode proteins and/or microRNAs. The transcriptome data reported here will help to further improve the annotation of the rice genome.
Collapse
|
63
|
Joo J, Lee YH, Kim YK, Nahm BH, Song SI. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities. Mol Cells 2013; 35:421-35. [PMID: 23620302 PMCID: PMC3887869 DOI: 10.1007/s10059-013-0036-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 10/26/2022] Open
Abstract
The expression of the six rice ASR genes is differentially regulated in a tissue-dependent manner according to environmental conditions and reproductive stages. OsASR1 and OsASR3 are the most abundant and are found in most tissues; they are enriched in the leaves and roots, respectively. Coexpression analysis of OsASR1 and OsASR3 and a comparison of the cis-acting elements upstream of OsASR1 and OsASR3 suggested that their expression is regulated in common by abiotic stresses but differently regulated by hormone and sugar signals. The results of quantitative real-time PCR analyses of OsASR1 and OsASR3 expression under various conditions further support this model. The expression of both OsASR1 and OsASR3 was induced by drought stress, which is a major regulator of the expression of all ASR genes in rice. In contrast, ABA is not a common regulator of the expression of these genes. OsASR1 transcription was highly induced by ABA, whereas OsASR3 transcription was strongly induced by GA. In addition, OsASR1 and OsASR3 expression was significantly induced by sucrose and sucrose/glucose treatments, respectively. The induction of gene expression in response to these specific hormone and sugar signals was primarily observed in the major target tissues of these genes (i.e., OsASR1 in leaves and OsASR3 in roots). Our data also showed that the overexpression of either OsASR1 or OsASR3 in transgenic rice plants increased their tolerance to drought and cold stress. Taken together, our results revealed that the transcriptional control of different rice ASR genes exhibit different tissue-dependent sugar and hormone-sensitivities.
Collapse
Affiliation(s)
- Joungsu Joo
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| | - Youn Hab Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin 449–728,
Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin 449–728,
Korea
| | - Sang Ik Song
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| |
Collapse
|
64
|
Ho SL, Huang LF, Lu CA, He SL, Wang CC, Yu SP, Chen J, Yu SM. Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. PLANT MOLECULAR BIOLOGY 2013; 81:347-61. [PMID: 23329372 DOI: 10.1007/s11103-012-0006-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/26/2012] [Indexed: 05/18/2023]
Abstract
Germination followed by seedling growth constitutes two essential steps in the initiation of a new life cycle in plants, and in cereals, completion of these steps is regulated by sugar starvation and the hormone gibberellin. A calcium-dependent protein kinase 1 gene (OsCDPK1) was identified by differential screening of a cDNA library derived from sucrose-starved rice suspension cells. The expression of OsCDPK1 was found to be specifically activated by sucrose starvation among several stress conditions tested as well as activated transiently during post-germination seedling growth. In gain- and loss-of-function studies performed with transgenic rice overexpressing a constitutively active or RNA interference gene knockdown construct, respectively, OsCDPK1 was found to negatively regulate the expression of enzymes essential for GA biosynthesis. In contrast, OsCDPK1 activated the expression of a 14-3-3 protein, GF14c. Overexpression of either constitutively active OsCDPK1 or GF14c enhanced drought tolerance in transgenic rice seedlings. Hence, our studies demonstrated that OsCDPK1 transduces the post-germination Ca(2+) signal derived from sugar starvation and GA, refines the endogenous GA concentration and prevents drought stress injury, all essential functions to seedling development at the beginning of the life cycle in rice.
Collapse
Affiliation(s)
- Shin-Lon Ho
- Department of Agronomy, National Chiayi University, Chiayi, 600, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Li ZY, Xu ZS, Chen Y, He GY, Yang GX, Chen M, Li LC, Ma YZ. A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development. PLoS One 2013; 8:e56412. [PMID: 23437128 PMCID: PMC3577912 DOI: 10.1371/journal.pone.0056412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/09/2013] [Indexed: 01/28/2023] Open
Abstract
Glucose and phytohormones such as abscisic acid (ABA), ethylene, and gibberellin (GA) coordinately regulate germination and seedling development. However, there is still inadequate evidence to link their molecular roles in affecting plant responses. Calcium acts as a second messenger in a diverse range of signal transduction pathways. As calcium sensors unique to plants, calcineurin B-like (CBL) proteins are well known to modulate abiotic stress responses. In this study, it was found that CBL1 was induced by glucose in Arabidopsis. Loss-of-function mutant cbl1 exhibited hypersensitivity to glucose and paclobutrazol, a GA biosynthetic inhibitor. Several sugar-responsive and GA biosynthetic gene expressions were altered in the cbl1 mutant. CBL1 protein physically interacted with AKINβ1, the regulatory β subunit of the SnRK1 complex which has a central role in sugar signaling. Our results indicate a novel role for CBL1 in modulating responses to glucose and GA signals.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM); (YC)
| | - Yang Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM); (YC)
| | - Guang-Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Guang-Xiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Lian-Cheng Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- * E-mail: (Z-SX); (Y-ZM); (YC)
| |
Collapse
|
66
|
Goggin DE, Powles SB. Selection for low dormancy in annual ryegrass (Lolium rigidum) seeds results in high constitutive expression of a glucose-responsive α-amylase isoform. ANNALS OF BOTANY 2012; 110:1641-50. [PMID: 22875813 PMCID: PMC3503496 DOI: 10.1093/aob/mcs213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS α-Amylase in grass caryopses (seeds) is usually expressed upon commencement of germination and is rarely seen in dry, mature seeds. A heat-stable α-amylase activity was unexpectedly selected for expression in dry annual ryegrass (Lolium rigidum) seeds during targeted selection for low primary dormancy. The aim of this study was to characterize this constitutive activity biochemically and determine if its presence conferred insensitivity to the germination inhibitors abscisic acid and benzoxazolinone. METHODS α-Amylase activity in developing, mature and germinating seeds from the selected (low-dormancy) and a field-collected (dormant) population was characterized by native activity PAGE. The response of seed germination and α-amylase activity to abscisic acid and benzoxazolinone was assessed. Using an alginate affinity matrix, α-amylase was purified from dry and germinating seeds for analysis of its enzymatic properties. KEY RESULTS The constitutive α-amylase activity appeared late during seed development and was mainly localized in the aleurone; in germinating seeds, this activity was responsive to both glucose and gibberellin. It migrated differently on native PAGE compared with the major activities in germinating seeds of the dormant population, but the enzymatic properties of α-amylase purified from the low-dormancy and dormant seeds were largely indistinguishable. Seed imbibition on benzoxazolinone had little effect on the low-dormancy seeds but greatly inhibited germination and α-amylase activity in the dormant population. CONCLUSIONS The constitutive α-amylase activity in annual ryegrass seeds selected for low dormancy is electrophoretically different from that in germinating seeds and its presence confers insensitivity to benzoxazolinone. The concurrent selection of low dormancy and constitutive α-amylase activity may help to enhance seedling establishment under competitive conditions.
Collapse
Affiliation(s)
- Danica E Goggin
- Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Crawley, Australia.
| | | |
Collapse
|
67
|
Hu YF, Li YP, Zhang J, Liu H, Tian M, Huang Y. Binding of ABI4 to a CACCG motif mediates the ABA-induced expression of the ZmSSI gene in maize (Zea mays L.) endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5979-89. [PMID: 23048129 DOI: 10.1093/jxb/ers246] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Starch synthase I (SSI) contributes the majority of the starch synthase activity in developing maize endosperm. In this work, the effects of various plant hormones and sugars on the expression of the starch synthase I gene (ZmSSI) in developing maize endosperms were examined. The accumulation of ZmSSI mRNA was induced using abscisic acid (ABA) but not with glucose, sucrose, or gibberellin treatment. To investigate the molecular mechanism underlying this effect, the ZmSSI promoter region (-1537 to +51) was isolated and analysed. A transient expression assay in maize endosperm tissue showed that the full-length ZmSSI promoter is activated by ABA. The results of deletion and mutation assays demonstrated that a CACCG motif in the ZmSSI promoter is responsible for the ABA inducibility. The results of binding shift assays indicated that this CACCG motif interacts with the maize ABI4 protein in vitro. The overexpression of ABI4 in endosperm tissue enhanced the activity of a promoter containing the CACCG motif in the absence of ABA treatment. Expression pattern analysis indicated that the transcription pattern of ABI4 in the developing maize endosperm was induced by ABA treatment but was only slightly affected by glucose or sucrose treatment. Taken together, these data indicate that ABI4 binds to the CACCG motif in the ZmSSI promoter and mediates its ABA inducibility.
Collapse
Affiliation(s)
- Yu-Feng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | | | | | | | | | | |
Collapse
|
68
|
Choubane D, Rabot A, Mortreau E, Legourrierec J, Péron T, Foucher F, Ahcène Y, Pelleschi-Travier S, Leduc N, Hamama L, Sakr S. Photocontrol of bud burst involves gibberellin biosynthesis in Rosa sp. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1271-80. [PMID: 22749285 DOI: 10.1016/j.jplph.2012.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 05/06/2023]
Abstract
Light is a critical determinant of plant shape by controlling branching patterns and bud burst in many species. To gain insight into how light induces bud burst, we investigated whether its inductive effect in rose was related to gibberellin (GA) biosynthesis. In axillary buds of beheaded plants subject to light, the expression of two GA biosynthesis genes (RoGA20ox and RoGA3ox) was promptly and strongly induced, while that of a GA-catabolism genes (RoGA2ox) was reduced. By contrast, lower expression levels of these two GA biosynthesis genes were found in darkness, and correlated with a total inhibition of bud burst. This effect was dependent on both light intensity and quality. In in vitro cultured buds, the inductive effect of light on the growth of preformed leaves and SAM organogenic activity was inhibited by ancymidol and paclobutrazol, two effectors of GA biosynthesis. This effect was concentration-dependent, and negated by GA(3). However, GA(3) alone could not rescue bud burst in the dark. GA biosynthesis was also required for the expression and activity of a vacuolar invertase, and therefore for light-induced sugar metabolism within buds. These findings are evidence that GA biosynthesis contributes to the light effect on bud burst and lay the foundations of a better understanding of its exact role in plant branching.
Collapse
Affiliation(s)
- Djillali Choubane
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Hong YF, Ho THD, Wu CF, Ho SL, Yeh RH, Lu CA, Chen PW, Yu LC, Chao A, Yu SM. Convergent starvation signals and hormone crosstalk in regulating nutrient mobilization upon germination in cereals. THE PLANT CELL 2012; 24:2857-73. [PMID: 22773748 PMCID: PMC3426119 DOI: 10.1105/tpc.112.097741] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Germination is a unique developmental transition from metabolically quiescent seed to actively growing seedling that requires an ensemble of hydrolases for coordinated nutrient mobilization to support heterotrophic growth until autotrophic photosynthesis is established. This study reveals two crucial transcription factors, MYBS1 and MYBGA, present in rice (Oryza sativa) and barley (Hordeum vulgare), that function to integrate diverse nutrient starvation and gibberellin (GA) signaling pathways during germination of cereal grains. Sugar represses but sugar starvation induces MYBS1 synthesis and its nuclear translocation. GA antagonizes sugar repression by enhancing conuclear transport of the GA-inducible MYBGA with MYBS1 and the formation of a stable bipartite MYB-DNA complex to activate the α-amylase gene. We further discovered that not only sugar but also nitrogen and phosphate starvation signals converge and interconnect with GA to promote the conuclear import of MYBS1 and MYBGA, resulting in the expression of a large set of GA-inducible but functionally distinct hydrolases, transporters, and regulators associated with mobilization of the full complement of nutrients to support active seedling growth in cereals.
Collapse
Affiliation(s)
- Ya-Fang Hong
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Chin-Feng Wu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Shin-Lon Ho
- Department of Agronomy, National Chia-Yi University, Chiayi 600, Taiwan, Republic of China
| | - Rong-Hwei Yeh
- Department of Photonics and Communication Engineering, Asia University, Wu-Feng, Taichung 413, Taiwan, Republic of China
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli, Taoyuan 320, Taiwan, Republic of China
| | - Peng-Wen Chen
- Institute of Agricultural Biotechnology, National Chia-Yi University, Chiayi 600, Taiwan, Republic of China
| | - Lin-Chih Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Annlin Chao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
- Address correspondence to
| |
Collapse
|
70
|
Jami SK, Clark GB, Ayele BT, Roux SJ, Kirti PB. Identification and characterization of annexin gene family in rice. PLANT CELL REPORTS 2012; 31:813-825. [PMID: 22167239 DOI: 10.1007/s00299-011-1201-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
Plant annexins are Ca(2+)-dependent phospholipid-binding proteins and are encoded by multigene families. They are implicated in the regulation of plant development as well as protection from drought and other stresses. They are well characterized in Arabidopsis, however no such characterization of rice annexin gene family has been reported thus far. With the availability of the rice genome sequence information, we have identified ten members of the rice annexin gene family. At the protein level, they share 16-64% identity with predicted molecular masses ranging from 32 to 40 kDa. Phylogenetic analysis of rice annexins together with annexins from other monocots led to their classification into five different orthologous groups and share similar motif patterns in their protein sequences. Expression analysis by real-time RT-PCR revealed differential temporal and spatial regulation of these genes. The rice annexin genes are also found to be regulated in seedling stage by various abiotic stressors including salinity, drought, heat and cold. Additionally, in silico analysis of the putative upstream sequences was analyzed for the presence of stress-responsive cis-elements. These results provide a basis for further functional characterization of specific rice annexin genes at the tissue/developmental level and in response to abiotic stresses.
Collapse
Affiliation(s)
- Sravan Kumar Jami
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | | | | | | | |
Collapse
|
71
|
Dayan J, Voronin N, Gong F, Sun TP, Hedden P, Fromm H, Aloni R. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. THE PLANT CELL 2012; 24:66-79. [PMID: 22253226 PMCID: PMC3289570 DOI: 10.1105/tpc.111.093096] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/19/2011] [Accepted: 12/31/2011] [Indexed: 05/17/2023]
Abstract
The gibberellins (GAs) are a group of endogenous compounds that promote the growth of most plant organs, including stem internodes. We show that in tobacco (Nicotiana tabacum) the presence of leaves is essential for the accumulation of bioactive GAs and their immediate precursors in the stem and consequently for normal stem elongation, cambial proliferation, and xylem fiber differentiation. These processes do not occur in the absence of maturing leaves but can be restored by application of C(19)-GAs, identifying the presence of leaves as a requirement for GA signaling in stems and revealing the fundamental role of GAs in secondary growth regulation. The use of reporter genes for GA activity and GA-directed DELLA protein degradation in Arabidopsis thaliana confirms the presence of a mobile signal from leaves to the stem that induces GA signaling.
Collapse
Affiliation(s)
- Jonathan Dayan
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Nickolay Voronin
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fan Gong
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Tai-ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Peter Hedden
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Hillel Fromm
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roni Aloni
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
72
|
Prouse MB, Campbell MM. The interaction between MYB proteins and their target DNA binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:67-77. [DOI: 10.1016/j.bbagrm.2011.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 02/02/2023]
|
73
|
Chou HL, Dai Z, Hsieh CW, Ku MSB. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:58. [PMID: 22152050 PMCID: PMC3307496 DOI: 10.1186/1754-6834-4-58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 12/10/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. RESULTS In this study, the cellulose hydrolytic enzyme β-1, 4-endoglucanase (E1) gene, from the thermophilic bacterium Acidothermus cellulolyticus, was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial E1 gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer, with the signal peptide of tobacco pathogenesis-related protein for targeting the E1 protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial E1 enzyme were obtained that expressed the gene at high levels without severely impairing plant growth and development. However, some transgenic plants exhibited a shorter stature and flowered earlier than the wild type plants. The E1 specific activities in the leaves of the highest expressing transgenic rice lines were about 20-fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. A zymogram and temperature-dependent activity analyses demonstrated the thermostability of the E1 enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid for one hour at 39°C and another hour at 81°C yielded 43% more reducing sugars than wild type rice straw. CONCLUSION Taken together, these data suggest that transgenic rice can effectively serve as a bioreactor for the large-scale production of active, thermostable cellulose hydrolytic enzymes. As a feedstock, direct expression of large amount of cellulases in transgenic rice may also facilitate saccharification of cellulose in rice straw and significantly reduce the costs for hydrolytic enzymes.
Collapse
Affiliation(s)
- Hong Li Chou
- Institute of Bioagricultural Science, National Chiayi University, Chiayi, 60004 Taiwan
| | - Ziyu Dai
- Fungal Biotechnology Team, Chemical and Biological Processing Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chia Wen Hsieh
- Departmet of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, 60004 Taiwan
| | - Maurice SB Ku
- Institute of Bioagricultural Science, National Chiayi University, Chiayi, 60004 Taiwan
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4238, USA
| |
Collapse
|
74
|
PzsS3a, a novel endosperm specific promoter from maize (Zea mays L.) induced by ABA. Biotechnol Lett 2011; 33:1465-71. [DOI: 10.1007/s10529-011-0582-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
|
75
|
Shi J, An HL, Zhang L, Gao Z, Guo XQ. GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. PLANT MOLECULAR BIOLOGY 2010; 74:1-17. [PMID: 20602149 DOI: 10.1007/s11103-010-9661-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/23/2010] [Indexed: 05/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play a pivotal role in environmental responses and developmental processes in plants. Previous researches mainly focus on the MAPKs in groups A and B, and little is known on group C. In this study, we isolated and characterized GhMPK7, which is a novel gene from cotton belonging to the group C MAPK. RNA blot analysis indicated that GhMPK7 transcript was induced by pathogen infection and multiple defense-related signal molecules. Transgenic Nicotina benthamiana overexpressing GhMPK7 displayed significant resistance to fungus Colletotrichum nicotianae and virus PVY, and the transcript levels of SA pathway genes were more rapidly and strongly induced. Furthermore, the transgenic N. benthamiana showed reduced ROS-mediated injuries by upregulating expression of oxidative stress-related genes. Interestingly, the transgenic plants germinated earlier and grew faster in comparison to wild-type plants. beta-glucuronidase activity driven by the GhMPK7 promoter was detected in the apical meristem at the vegetative stage, and it was enhanced by treatments with signal molecules and phytohormones. These results suggest that GhMPK7 might play an important role in SA-regulated broad-spectrum resistance to pathogen infection, and that it is also involved in regulation of plant growth and development.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis
- Base Sequence
- Cloning, Molecular
- Colletotrichum/pathogenicity
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Gossypium/enzymology
- Gossypium/genetics
- Gossypium/growth & development
- Mitogen-Activated Protein Kinases/classification
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Diseases/virology
- Plants, Genetically Modified
- Promoter Regions, Genetic
- Reactive Oxygen Species/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Stress, Physiological
- Nicotiana
Collapse
Affiliation(s)
- Jing Shi
- Shandong Agricultural University, Tai'an, People's Republic of China
| | | | | | | | | |
Collapse
|
76
|
Park M, Yim HK, Park HG, Lim J, Kim SH, Hwang YS. Interference with oxidative phosphorylation enhances anoxic expression of rice alpha-amylase genes through abolishing sugar regulation. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3235-44. [PMID: 20530196 PMCID: PMC2905192 DOI: 10.1093/jxb/erq145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rice has the unique ability to express alpha-amylase under anoxic conditions, a feature that is critical for successful anaerobic germination and growth. Previously, anaerobic conditions were shown to up-regulate the expression of Amy3 subfamily genes (Amy3B/C, 3D, and 3E) in rice embryos. These genes are known to be feedback regulated by the hydrolytic products of starchy endosperm such as the simple sugar glucose. It was found that oxygen deficiency interferes with the repression of Amy3D gene expression imposed by low concentrations of glucose but not with that imposed by higher amounts. This differential anoxic de-repression depending on sugar concentration suggests the presence of two distinct pathways for sugar regulation of Amy3D gene expression. Anoxic de-repression can be mimicked by treating rice embryos with inhibitors of ATP synthesis during respiration. Other sugar-regulated rice alpha-amylase genes, Amy3B/C and 3E, behave similarly to Amy3D. Treatment with a respiratory inhibitor or anoxia also relieved the sugar repression of the rice CIPK15 gene, a main upstream positive regulator of SnRK1A that is critical for Amy3D expression in response to sugar starvation. SnRK1A accumulation was previously shown to be required for MYBS1 expression, which transactivates Amy3D by binding to a cis-acting element found in the proximal region of all Amy3 subfamily gene promoters (the TA box). Taken together, these results suggest that prevention of oxidative phosphorylation by oxygen deficiency interferes with the sugar repression of Amy3 subfamily gene expression, leading to their enhanced expression in rice embryos during anaerobic germination.
Collapse
Affiliation(s)
- Minji Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hui-kyeong Yim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyeok-gon Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jun Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Soo-Hwan Kim
- Department of Life Science, Yonsei University, Wonju 220-710, Republic of Korea
| | - Yong-sic Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
77
|
Chen M, Meng Y, Mao C, Chen D, Wu P. Methodological framework for functional characterization of plant microRNAs. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2271-2280. [PMID: 20388745 DOI: 10.1093/jxb/erq087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the beginning of this century, microRNAs (miRNAs), which are tiny RNA molecules, have become one of the major research topics on gene expression regulation in both animals and plants. The major task of miRNA study is to elucidate how the miRNAs are expressed in vivo, how they exert regulatory effects on their targets, and how they can be qualitatively or quantitatively cloned. For these purposes, the methodology of miRNA study has been developed and significantly improved in recent years. The focus here is on a number of powerful methods for plant miRNA research including bioinformatics tools and experimental approaches being used for upstream or downstream analysis of miRNAs or miRNA cloning. Some discrepancies exist in the miRNA research methodology between plants and animals, for example, 5' modified RACE (Rapid Amplification of cDNA Ends) can be used for cleavage target validation only in plants. However, numerous common methods are shared by these two miRNA research areas. Thus, this review will enhance our understanding of miRNA research methodology in organisms.
Collapse
Affiliation(s)
- Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Zijingang Campus, Yu Hang Tang Road 388, Hangzhou 310058, PR China.
| | | | | | | | | |
Collapse
|
78
|
A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Mol Biol Rep 2010; 38:191-7. [PMID: 20358292 DOI: 10.1007/s11033-010-0094-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 03/15/2010] [Indexed: 01/22/2023]
Abstract
A dwarf mutant from Brassica napus, namely NDF-1, which was derived from a high doubled haploid (DH) line '3529'(Brassica napus L.) of which seeds were jointly treated with chemical inducers and fast neutron bombardment, was revealed that dwarfism is under the control of a major gene(designated as ndf1) with a mainly additive effect and non-significant dominance effect. The germination and hypocotyls elongation response of dwarf mutants after exogenous GA and uniconazol application showed NDF-1 was a gibberellin insensitive dwarf. We cloned the Brassica napus GID1 gene, named BnGID1, and found it was the ortholog of AtGID1a. The sequence blasting of the BnGID1 genes from NDF-1 and wild type showed there was no mutant in the gene. But the quantitative RT-PCR analysis of GID1 EST pointed out the mutation was caused by the low-level expression of BnGID1 gene. After sequenced the BnGID1 gene's upstream, we found three bases mutated in the pyrimidine box (P-box) of the BnGID1 promoter, which is linkage with the dwarf mutant.
Collapse
|
79
|
Kang SG, Price J, Lin PC, Hong JC, Jang JC. The arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. MOLECULAR PLANT 2010; 3:361-73. [PMID: 20080816 DOI: 10.1093/mp/ssp115] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Sugar signaling is a mechanism that plants use to integrate various internal and external cues to achieve nutrient homeostasis, mediate developmental programs, and articulate stress responses. Many bZIP transcription factors are known to be involved in nutrient and/or stress signaling. An Arabidopsis S1-group bZIP gene, AtbZIP1, was identified as a sugar-sensitive gene in a previous gene expression profiling study (Plant Cell. 16, 2128-2150). In this report, we show that the expression of AtbZIP1 is repressed by sugars in a fast, sensitive, and reversible way. The sugar repression of AtbZIP1 is affected by a conserved sugar signaling component, hexokinase. Besides being a sugar-regulated gene, AtbZIP1 can mediate sugar signaling and affect gene expression, plant growth, and development. When carbon nutrients are limited, gain or loss of function of AtbZIP1 causes changes in the rates of early seedling establishment. Results of phenotypic analyses indicate that AtbZIP1 acts as a negative regulator of early seedling growth. Using gain- and loss-of-function plants in a microarray analysis, two sets of putative AtbZIP1-regulated genes have been identified. Among them, sugar-responsive genes are highly over-represented, implicating a role of AtbZIP1 in sugar-mediated gene expression. Using yeast two-hybrid (Y-2-H) screens and bimolecular fluorescence complementation (BiFC) analyses, we are able to recapitulate extensive C/S1 AtbZIP protein interacting network in living cells. Finally, we show that AtbZIP1 can bind ACGT-based motifs in vitro and that the binding characteristics appear to be affected by the heterodimerization between AtbZIP1 and the C-group AtbZIPs, including AtbZIP10 and AtbZIP63.
Collapse
Affiliation(s)
- Shin Gene Kang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
80
|
Lee KW, Chen PW, Lu CA, Chen S, Ho THD, Yu SM. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal 2009; 2:ra61. [PMID: 19809091 DOI: 10.1126/scisignal.2000333] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Flooding is a widespread natural disaster that leads to oxygen (O(2)) and energy deficiency in terrestrial plants, thereby reducing their productivity. Rice is unusually tolerant to flooding, but the underlying mechanism for this tolerance has remained elusive. Here, we show that protein kinase CIPK15 [calcineurin B-like (CBL)-interacting protein kinase] plays a key role in O(2)-deficiency tolerance in rice. CIPK15 regulates the plant global energy and stress sensor SnRK1A (Snf1-related protein kinase 1) and links O(2)-deficiency signals to the SnRK1-dependent sugar-sensing cascade to regulate sugar and energy production and to enable rice growth under floodwater. Our studies contribute to understanding how rice grows under the conditions of O(2) deficiency necessary for growing rice in irrigated lowlands.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei 114, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
81
|
Hur YS, Shin KH, Kim S, Nam KH, Lee MS, Chun JY, Cheon CI. Overexpression of GmAKR1, a stress-induced aldo/keto reductase from soybean, retards nodule development. Mol Cells 2009; 27:217-23. [PMID: 19277505 DOI: 10.1007/s10059-009-0027-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 02/02/2023] Open
Abstract
Development of symbiotic root nodules in legumes involves the induction and repression of numerous genes in conjunction with changes in the level of phytohormones. We have isolated several genes that exhibit differential expression patterns during the development of soybean nodules. One of such genes, which were repressed in mature nodules, was identified as a putative aldo/keto reductase and thus named Glycine max aldo/keto reductase 1 (GmAKR1). GmAKR1 appears to be a close relative of a yeast aldo/keto reductase YakC whose in vivo substrate has not been identified yet. The expression of GmAKR1 in soybean showed a root-specific expression pattern and inducibility by a synthetic auxin analogue 2,4-D, which appeared to be corroborated by presence of the root-specific element and the stress-response element in the promoter region. In addition, constitutive overexpression of GmAKR1 in transgenic soybean hairy roots inhibited nodule development, which suggests that it plays a negative role in the regulation of nodule development. One of the Arabidopsis orthologues of GmAKR1 is the ARF-GAP domain 2 protein, which is a potential negative regulator of vesicle trafficking; therefore GmAKR1 may have a similar function in the roots and nodules of legume plants.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/pharmacology
- Alcohol Oxidoreductases/genetics
- Alcohol Oxidoreductases/isolation & purification
- Alcohol Oxidoreductases/metabolism
- Aldehyde Reductase
- Aldo-Keto Reductases
- Amino Acid Sequence
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cloning, Molecular
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Herbicides/pharmacology
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/drug effects
- Plant Roots/enzymology
- Plant Roots/microbiology
- Plants, Genetically Modified
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rhizobiaceae/pathogenicity
- Root Nodules, Plant/drug effects
- Root Nodules, Plant/enzymology
- Root Nodules, Plant/microbiology
- Seedlings/drug effects
- Seedlings/enzymology
- Seedlings/microbiology
- Sequence Homology, Amino Acid
- Glycine max/enzymology
- Symbiosis
Collapse
Affiliation(s)
- Yoon-Sun Hur
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | | | | | | | | | | | | |
Collapse
|
82
|
Kiyosaki T, Asakura T, Matsumoto I, Tamura T, Terauchi K, Funaki J, Kuroda M, Misaka T, Abe K. Wheat cysteine proteases triticain alpha, beta and gamma exhibit mutually distinct responses to gibberellin in germinating seeds. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:101-6. [PMID: 18448192 DOI: 10.1016/j.jplph.2008.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 05/15/2023]
Abstract
We cloned three novel papain-type cysteine proteases (CPs), triticain alpha, beta and gamma, from 1-d-germinating wheat seeds. Triticain alpha, beta and gamma were constituted with 461, 472 and 365 amino acid residues, respectively, and had Cys-His-Asn catalytic triads as well as signal and propeptide sequences. Triticain gamma contained a putative vacuole-sorting sequence. Phylogenetic analysis showed that these CPs were divided into mutually different clusters. Triticain alpha and gamma mRNAs were expressed in seeds at an early stage of maturation and at the stage of germination 2d after imbibition, while triticain beta mRNA appeared shortly after imbibition. The expression of mRNAs for triticain alpha and gamma was suppressed by uniconazol, a gibberellin synthesis inhibitor. All the three CP mRNAs were strongly expressed in both embryo and aleurone layers. These results suggest that triticain alpha, beta and gamma play differential roles in seed maturation as well as in digestion of storage proteins during germination.
Collapse
Affiliation(s)
- Toshihiro Kiyosaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Punwani JA, Rabiger DS, Lloyd A, Drews GN. The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:406-14. [PMID: 18410484 DOI: 10.1111/j.1365-313x.2008.03514.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The female gametophyte contains two synergid cells that play a role in many steps of the angiosperm reproductive process, including pollen tube guidance. At their micropylar poles, the synergid cells have a thickened and elaborated cell wall: the filiform apparatus that is thought to play a role in the secretion of the pollen tube attractant(s). MYB98 regulates an important subcircuit of the synergid gene regulatory network (GRN) that functions to activate the expression of genes required for pollen tube guidance and filiform apparatus formation. The MYB98 subcircuit comprises at least 83 downstream genes, including 48 genes within four gene families (CRP810, CRP3700, CRP3730 and CRP3740) that encode Cys-rich proteins. We show that the 11 CRP3700 genes, which include DD11 and DD18, are regulated by a common cis-element, GTAACNT, and that a multimer of this sequence confers MYB98-dependent synergid expression. The GTAACNT element contains the MYB98-binding site identified in vitro, suggesting that the 11 CRP3700 genes are direct targets of MYB98. We also show that five of the CRP810 genes, which include DD2, lack a functional GTAACNT element, suggesting that they are not directly regulated by MYB98. In addition, we show that the five CRP810 genes are regulated by the cis-element AACGT, and that a multimer of this sequence confers synergid expression. Together, these results suggest that the MYB98 branch of the synergid GRN is multi-tiered and, therefore, contains at least one additional downstream transcription factor.
Collapse
Affiliation(s)
- Jayson A Punwani
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | | | |
Collapse
|
84
|
Kim J, Kim TG, Jung SH, Kim JR, Park T, Heslop-Harrison P, Cho KH. Evolutionary design principles of modules that control cellular differentiation: consequences for hysteresis and multistationarity. ACTA ACUST UNITED AC 2008; 24:1516-22. [PMID: 18467345 DOI: 10.1093/bioinformatics/btn229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION Gene regulatory networks (GRNs) govern cellular differentiation processes and enable construction of multicellular organisms from single cells. Although such networks are complex, there must be evolutionary design principles that shape the network to its present form, gaining complexity from simple modules. RESULTS To isolate particular design principles, we have computationally evolved random regulatory networks with a preference to result either in hysteresis (switching threshold depending on current state), or in multistationarity (having multiple steady states), two commonly observed dynamical features of GRNs related to differentiation processes. We have analyzed the resulting evolved networks and compared their structures and characteristics with real GRNs reported from experiments. CONCLUSION We found that the artificially evolved networks have particular topologies and it was notable that these topologies share important features and similarities with the real GRNs, particularly in contrasting properties of positive and negative feedback loops. We conclude that the structures of real GRNs are consistent with selection to favor one or other of the dynamical features of multistationarity or hysteresis. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Junil Kim
- Department of Bio and Brain Engineering and KI for the BioCentury, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon, 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
85
|
Punwani JA, Rabiger DS, Drews GN. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins. THE PLANT CELL 2007; 19:2557-68. [PMID: 17693534 PMCID: PMC2002610 DOI: 10.1105/tpc.107.052076] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98-green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation.
Collapse
Affiliation(s)
- Jayson A Punwani
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | | | | |
Collapse
|
86
|
Lu CA, Lin CC, Lee KW, Chen JL, Huang LF, Ho SL, Liu HJ, Hsing YI, Yu SM. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. THE PLANT CELL 2007; 19:2484-99. [PMID: 17766403 PMCID: PMC2002608 DOI: 10.1105/tpc.105.037887] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sugars repress alpha-amylase expression in germinating embryos and cell cultures of rice (Oryza sativa) through a sugar response complex (SRC) in alpha-amylase gene promoters and its interacting transcription factor MYBS1. The Snf1 protein kinase is required for the derepression of glucose-repressible genes in yeast. In this study, we explored the role of the yeast Snf1 ortholog in rice, SnRK1, in sugar signaling and plant growth. Rice embryo transient expression assays indicated that SnRK1A and SnRK1B act upstream and relieve glucose repression of MYBS1 and alphaAmy3 SRC promoters. Both SnRK1s contain N-terminal kinase domains serving as activators and C-terminal regulatory domains as dominant negative regulators of SRC. The accumulation and activity of SnRK1A was regulated by sugars posttranscriptionally, and SnRK1A relieved glucose repression specifically through the TA box in SRC. A transgenic RNA interference approach indicated that SnRK1A is also necessary for the activation of MYBS1 and alphaAmy3 expression under glucose starvation. Two mutants of SnRK1s, snrk1a and snrk1b, were obtained, and the functions of both SnRK1s were further studied. Our studies demonstrated that SnRK1A is an important intermediate in the sugar signaling cascade, functioning upstream from the interaction between MYBS1 and alphaAmy3 SRC and playing a key role in regulating seed germination and seedling growth in rice.
Collapse
Affiliation(s)
- Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|