51
|
Nafisi M, Fimognari L, Sakuragi Y. Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. PHYTOCHEMISTRY 2015; 112:63-71. [PMID: 25496656 DOI: 10.1016/j.phytochem.2014.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/02/2014] [Accepted: 11/06/2014] [Indexed: 05/04/2023]
Abstract
The plant cell wall surrounds every cell in plants. During microbial infection, the cell wall provides a dynamic interface for interaction with necrotrophic phytopathogens as a rich source of carbohydrates for the growth of pathogens, as a physical barrier restricting the progression of the pathogens, and as an integrity sensory system that can activate intracellular signaling cascades and ultimately lead to a multitude of inducible host defense responses. Studies over the last decade have provided evidence of interplays between the cell wall and phytohormone signaling. This review summarizes the current state of knowledge about the cell wall-phytohormone interplays, with the focus on auxin, cytokinin, brassinosteroids, and abscisic acid, and discuss how they impact the outcome of plant-necrotrophic pathogen interaction.
Collapse
Affiliation(s)
- Majse Nafisi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Lorenzo Fimognari
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| |
Collapse
|
52
|
Zhang M, Chen GX, Lv DW, Li XH, Yan YM. N-linked glycoproteome profiling of seedling leaf in Brachypodium distachyon L. J Proteome Res 2015; 14:1727-38. [PMID: 25652041 DOI: 10.1021/pr501080r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Brachypodium distachyon L., a model plant for cereal crops, has become important as an alternative and potential biofuel grass. In plants, N-glycosylation is one of the most common and important protein modifications, playing important roles in signal recognition, increase in protein activity, stability of protein structure, and formation of tissues and organs. In this study, we performed the first glycoproteome analysis in the seedling leaves of B. distachyon. Using lectin affinity chromatography enrichment and mass-spectrometry-based analysis, we identified 47 glycosylation sites representing 46 N-linked glycoproteins. Motif-X analysis showed that two conserved motifs, N-X-T/S (X is any amino acid, except Pro), were significantly enriched. Further functional analysis suggested that some of these identified glycoproteins are involved in signal transduction, protein trafficking, and quality control and the modification and remodeling of cell-wall components such as receptor-like kinases, protein disulfide isomerase, and polygalacturonase. Moreover, transmembrane helices and signal peptide prediction showed that most of these glycoproteins could participate in typical protein secretory pathways in eukaryotes. The results provide a general overview of protein N-glycosylation modifications during the early growth of seedling leaves in B. distachyon and supplement the glycoproteome databases of plants.
Collapse
Affiliation(s)
- Ming Zhang
- †College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, China.,‡College of Life Science, Heze University, University Road No. 2269, 274015 Shandong, China
| | - Guan-Xing Chen
- †College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, China
| | - Dong-Wen Lv
- †College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, China
| | - Xiao-Hui Li
- †College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, China
| | - Yue-Ming Yan
- †College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, China.,§Hubei Collaborative Innovation Center for Grain Industry, Jing Secret Road No. 88, 434025 Jingzhou, China
| |
Collapse
|
53
|
Grones P, Friml J. ABP1: finally docking. MOLECULAR PLANT 2015; 8:356-358. [PMID: 25702522 DOI: 10.1016/j.molp.2014.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/04/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Peter Grones
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; Mendel Centre for Plant Genomics and Proteomics, Masaryk University (CEITEC MU), 625 00 Brno, Czech Republic.
| |
Collapse
|
54
|
Liu CM. Auxin Binding Protein 1 (ABP1): a matter of fact. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:234-235. [PMID: 25664934 DOI: 10.1111/jipb.12339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
55
|
Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci U S A 2015; 112:2275-80. [PMID: 25646447 PMCID: PMC4343106 DOI: 10.1073/pnas.1500365112] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Auxin binding protein 1 (ABP1) has been studied for decades. It has been suggested that ABP1 functions as an auxin receptor and has an essential role in many developmental processes. Here we present our unexpected findings that ABP1 is neither required for auxin signaling nor necessary for plant development under normal growth conditions. We used our ribozyme-based CRISPR technology to generate an Arabidopsis abp1 mutant that contains a 5-bp deletion in the first exon of ABP1, which resulted in a frameshift and introduction of early stop codons. We also identified a T-DNA insertion abp1 allele that harbors a T-DNA insertion located 27 bp downstream of the ATG start codon in the first exon. We show that the two new abp1 mutants are null alleles. Surprisingly, our new abp1 mutant plants do not display any obvious developmental defects. In fact, the mutant plants are indistinguishable from wild-type plants at every developmental stage analyzed. Furthermore, the abp1 plants are not resistant to exogenous auxin. At the molecular level, we find that the induction of known auxin-regulated genes is similar in both wild-type and abp1 plants in response to auxin treatments. We conclude that ABP1 is not a key component in auxin signaling or Arabidopsis development.
Collapse
Affiliation(s)
- Yangbin Gao
- Section of Cell and Developmental Biology and
| | - Yi Zhang
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0116; and
| | - Da Zhang
- Section of Cell and Developmental Biology and College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinhua Dai
- Section of Cell and Developmental Biology and
| | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0116; and
| | - Yunde Zhao
- Section of Cell and Developmental Biology and
| |
Collapse
|
56
|
Boudon F, Chopard J, Ali O, Gilles B, Hamant O, Boudaoud A, Traas J, Godin C. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol 2015; 11:e1003950. [PMID: 25569615 PMCID: PMC4288716 DOI: 10.1371/journal.pcbi.1003950] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/29/2014] [Indexed: 01/10/2023] Open
Abstract
The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth.
Collapse
Affiliation(s)
- Frédéric Boudon
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
| | - Jérôme Chopard
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
| | - Olivier Ali
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
| | - Benjamin Gilles
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université Montpellier 2, CNRS, Montpellier, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon 1, ENS-Lyon, INRA, CNRS, Lyon, France
- * E-mail: (JT); (CG)
| | - Christophe Godin
- Virtual Plants Inria team, UMR AGAP, CIRAD, INRIA, INRA, Montpellier, France
- * E-mail: (JT); (CG)
| |
Collapse
|
57
|
Effendi Y, Ferro N, Labusch C, Geisler M, Scherer GFE. Complementation of the embryo-lethal T-DNA insertion mutant of AUXIN-BINDING-PROTEIN 1 (ABP1) with abp1 point mutated versions reveals crosstalk of ABP1 and phytochromes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:403-18. [PMID: 25392478 PMCID: PMC4265171 DOI: 10.1093/jxb/eru433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The function of the extracytoplasmic AUXIN-BINDING-PROTEIN1 (ABP1) is largely enigmatic. We complemented a homozygous T-DNA insertion null mutant of ABP1 in Arabidopsis thaliana Wassilewskia with three mutated and one wild-type (wt) ABP1 cDNA, all tagged C-terminally with a strepII-FLAG tag upstream the KDEL signal. Based on in silico modelling, the abp1 mutants were predicted to have altered geometries of the auxin binding pocket and calculated auxin binding energies lower than the wt. Phenotypes linked to auxin transport were compromised in these three complemented abp1 mutants. Red light effects, such as elongation of hypocotyls in constant red (R) and far-red (FR) light, in white light supplemented by FR light simulating shade, and inhibition of gravitropism by R or FR, were all compromised in the complemented lines. Using auxin- or light-induced expression of marker genes, we showed that auxin-induced expression was delayed already after 10 min, and light-induced expression within 60 min, even though TIR1/AFB or phyB are thought to act as receptors relevant for gene expression regulation. The expression of marker genes in seedlings responding to both auxin and shade showed that for both stimuli regulation of marker gene expression was altered after 10-20 min in the wild type and phyB mutant. The rapidity of expression responses provides a framework for the mechanics of functional interaction of ABP1 and phyB to trigger interwoven signalling pathways.
Collapse
Affiliation(s)
- Yunus Effendi
- Leibniz Universität Hannover, Institut für Gartenbauliche Produktionssysteme, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany Al Azhar Indonesia University, Department of Biology, Sisingamangaraja, Jakarta 12110, Indonesia
| | - Noel Ferro
- University of Bonn, Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115 Bonn, Germany
| | - Corinna Labusch
- Leibniz Universität Hannover, Institut für Gartenbauliche Produktionssysteme, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Markus Geisler
- University of Fribourg, Department of Biology - Plant Biology, Chemin de Museé 10, CH-1700 Fribourg, Switzerland
| | - Günther F E Scherer
- Leibniz Universität Hannover, Institut für Gartenbauliche Produktionssysteme, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
58
|
Salehin M, Bagchi R, Estelle M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. THE PLANT CELL 2015; 27:9-19. [PMID: 25604443 PMCID: PMC4330579 DOI: 10.1105/tpc.114.133744] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/14/2014] [Accepted: 12/26/2014] [Indexed: 05/18/2023]
Abstract
Auxin regulates a vast array of growth and developmental processes throughout the life cycle of plants. Auxin responses are highly context dependent and can involve changes in cell division, cell expansion, and cell fate. The complexity of the auxin response is illustrated by the recent finding that the auxin-responsive gene set differs significantly between different cell types in the root. Auxin regulation of transcription involves a core pathway consisting of the TIR1/AFB F-box proteins, the Aux/IAA transcriptional repressors, and the ARF transcription factors. Auxin is perceived by a transient coreceptor complex consisting of a TIR1/AFB protein and an Aux/IAA protein. Auxin binding to the coreceptor results in degradation of the Aux/IAAs and derepression of ARF-based transcription. Although the basic outlines of this pathway are now well established, it remains unclear how specificity of the pathway is conferred. However, recent results, focusing on the ways that these three families of proteins interact, are starting to provide important clues.
Collapse
Affiliation(s)
- Mohammad Salehin
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093
| | - Rammyani Bagchi
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093
| | - Mark Estelle
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
59
|
Lin D, Ren H, Fu Y. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:31-9. [PMID: 25168157 DOI: 10.1111/jipb.12281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/27/2014] [Indexed: 05/08/2023]
Abstract
In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communication. Plants have a specific subfamily of the Rho GTPase family, usually called Rho of Plants (ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP-mediated regulation of plant cell morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cells. Especially, the auxin-ROP signaling networks have been demonstrated to control interdigitated growth of pavement cells to form jigsaw-puzzle shapes. Here, we review findings related to the discovery of this novel auxin-signaling mechanism at the cell surface. This signaling pathway is to a large extent independent of the well-known Transport Inhibitor Response (TIR)-Auxin Signaling F-Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane-localized, transmembrane kinase (TMK) receptor-like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self-organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis.
Collapse
Affiliation(s)
- Deshu Lin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | |
Collapse
|
60
|
Sénéchal F, Mareck A, Marcelo P, Lerouge P, Pelloux J. Arabidopsis PME17 Activity can be Controlled by Pectin Methylesterase Inhibitor4. PLANT SIGNALING & BEHAVIOR 2015; 10:e983351. [PMID: 25826258 PMCID: PMC4622950 DOI: 10.4161/15592324.2014.983351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 05/18/2023]
Abstract
The degree of methylesterification (DM) of homogalacturonans (HGs), the main constituent of pectins in Arabidopsis thaliana, can be modified by pectin methylesterases (PMEs). Regulation of PME activity occurs through interaction with PME inhibitors (PMEIs) and subtilases (SBTs). Considering the size of the gene families encoding PMEs, PMEIs and SBTs, it is highly likely that specific pairs mediate localized changes in pectin structure with consequences on cell wall rheology and plant development. We previously reported that PME17, a group 2 PME expressed in root, could be processed by SBT3.5, a co-expressed subtilisin-like serine protease, to mediate changes in pectin properties and root growth. Here, we further report that a PMEI, PMEI4, is co-expressed with PME17 and is likely to regulate its activity. This sheds new light on the possible interplay of specific PMEs, PMEIs and SBTs in the fine-tuning of pectin structure.
Collapse
Key Words
- ARF, Auxin response factor
- Arabidopsis thaliana
- BES1/BIM1-3, BRI1 EMS suppressor 1/BES1 interaction MYC-like 1-3
- Col-0, Columbia-0
- DM, Degree of methylesterification
- Gal-A, Galacturonic acid
- HG, Homogalacturonan
- IEF, Isoelectric focusing
- KO, Knock-out
- OG, Oligogalacturonide
- PG, Polygalacturonase
- PL, Pectate lyase
- PM, Plasma membrane
- PME, Pectin methylesterase
- PMEI, Pectin methylesterase inhibitor
- RLK, Receptor-like kinase
- SBT, Subtilase
- TF, Transcription factor
- WAK, Wall-associated kinase
- cell wall
- co-expression
- growth
- pectin
- pectin methylesterase
- pectin methylesterase inhibitor
- root
- subtilase
Collapse
Affiliation(s)
- Fabien Sénéchal
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne; Amiens, France
| | - Alain Mareck
- EA4358-GlycoMEV Glycobiologie et Matrice Extracellulaire Végétale; IFRMP 23; UFR des Sciences et Techniques; Université de Rouen; Mont-Saint-Aignan, France
| | - Paulo Marcelo
- ICAP Plateforme d’Ingénierie Cellulaire et Analyses des Protéines; Université de Picardie Jules Verne; Amiens, France
| | - Patrice Lerouge
- EA4358-GlycoMEV Glycobiologie et Matrice Extracellulaire Végétale; IFRMP 23; UFR des Sciences et Techniques; Université de Rouen; Mont-Saint-Aignan, France
| | - Jérôme Pelloux
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne; Amiens, France
- Correspondence to: Jérôme Pelloux;
| |
Collapse
|
61
|
Abstract
The plasma membrane H(+)-ATPase is the pump that provides the driving force for transport of numerous solutes in plant cells, and plays an essential role for the growth and maintenance of cell homeostasis. Recent investigations using guard cells with respect to blue-light-induced stomatal opening uncovered the regulatory mechanisms of the H(+)-ATPase, and revealed that the phosphorylation status of penultimate threonine in the C-terminus of H(+)-ATPase is key step for the activity regulation. The same regulatory mechanisms for the H(+)-ATPase were evidenced in hypocotyl elongation in response to ABA and auxin, suggesting that the phosphorylation of the penultimate threonine is a common regulatory mechanism for the H(+)-ATPase. We also present the data that the activity of the H(+)-ATPase limits the plant growth. Typical structure of the H(+)-ATPase in the C-terminus was acquired in the transition of plants from water to the terrestrial land.
Collapse
Affiliation(s)
- Yin Wang
- Institute for Advanced Research, Nagoya University, Nagoya, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya, Japan
| | | | | |
Collapse
|