51
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
52
|
McCallum B, Chang SM. Pollen competition in style: Effects of pollen size on siring success in the hermaphroditic common morning glory, Ipomoea purpurea. AMERICAN JOURNAL OF BOTANY 2016; 103:460-70. [PMID: 26905086 DOI: 10.3732/ajb.1500211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/12/2015] [Indexed: 05/16/2023]
Abstract
PREMISE OF THE STUDY Pollen size varies greatly among flowering plant species and has been shown to influence the delivery of sperm cells to the eggs. Relatively little is known, however, about the functional significance of within-species genetic variation in pollen size. This study tests whether pollen size influences the relative siring success of a pollen donor during in vivo pollen competition experiments. METHODS We used two groups of Ipomoea purpurea plants genetically divergent in their pollen sizes and applied equal number of pollen grains from one large-pollen and one small-pollen donor onto the same stigma. Using microsatellite genetic markers, we identified the pollen parent of each of the resulting progeny to determine the relative siring success of the competing donors. Competitions between donors of equal-sized pollen served as a control. KEY RESULTS Differences in pollen size significantly affected the relative siring success of a pollen donor; larger-grained individuals outcompeted smaller-grained competitors but not equal-sized competitors. Relative siring success, however, sometimes varied across different pollen recipients. CONCLUSIONS Pollen size can influence the relative siring success of different individuals competing on the same stigma during postpollination processes. However, other factors, such as pollen-pistil interaction and environmental conditions, are likely to influence these competitions as well.
Collapse
Affiliation(s)
- Britnie McCallum
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602 USA
| | - Shu-Mei Chang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602 USA
| |
Collapse
|
53
|
Kanaoka MM, Higashiyama T. Peptide signaling in pollen tube guidance. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:127-36. [PMID: 26580200 DOI: 10.1016/j.pbi.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 05/05/2023]
Abstract
Fertilization is an important life event for sexually reproductive plants. Part of this process involves precise regulation of a series of complicated cell-cell communications between male and female tissues. Through genetic and omics approaches, many genes and proteins involved in this process have been identified. Here we review our current understanding of signaling components during fertilization. We will especially focus on LURE peptides and related signaling events that are required for micropylar pollen tube guidance. We will also summarize signaling events required for termination of micropylar pollen tube guidance after fertilization.
Collapse
Affiliation(s)
- Masahiro M Kanaoka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
54
|
Qu LJ, Li L, Lan Z, Dresselhaus T. Peptide signalling during the pollen tube journey and double fertilization. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5139-50. [PMID: 26068467 DOI: 10.1093/jxb/erv275] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Flowering seed plants (angiosperms) have evolved unique ways to protect their gametes from pathogen attack and from drying out. The female gametes (egg and central cell) are deeply embedded in the maternal tissues of the ovule inside the ovary, while the male gametes (sperm cells) are enclosed in the vegetative pollen tube cell. After germination of the pollen tube at the surface of papilla cells of the stigma the two immobile sperm cells are transported deep inside the sporophytic maternal tissues to be released inside the ovule for double fertilization. Angiosperms have evolved a number of hurdles along the pollen tube journey to prevent inbreeding and fertilization by alien sperm cells, and to maximize reproductive success. These pre-zygotic hybridization barriers require intensive communication between the male and female reproductive cells and the necessity to distinguish self from non-self interaction partners. General molecules such as nitric oxide (NO) or gamma-aminobutyric acid (GABA) therefore appear to play only a minor role in these species-specific communication events. The past 20 years have shown that highly polymorphic peptides play a leading role in all communication steps along the pollen tube pathway and fertilization. Here we review our current understanding of the role of peptides during reproduction with a focus on peptide signalling during self-incompatibility, pollen tube growth and guidance as well as sperm reception and gamete activation.
Collapse
Affiliation(s)
- Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Ling Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Zijun Lan
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
55
|
Higashiyama T, Takeuchi H. The mechanism and key molecules involved in pollen tube guidance. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:393-413. [PMID: 25621518 DOI: 10.1146/annurev-arplant-043014-115635] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.
Collapse
|
56
|
Wrzaczek M, Vainonen JP, Stael S, Tsiatsiani L, Help-Rinta-Rahko H, Gauthier A, Kaufholdt D, Bollhöner B, Lamminmäki A, Staes A, Gevaert K, Tuominen H, Van Breusegem F, Helariutta Y, Kangasjärvi J. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis. EMBO J 2014; 34:55-66. [PMID: 25398910 DOI: 10.15252/embj.201488582] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recognition of extracellular peptides by plasma membrane-localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER (GRI) is dependent on the activity of the type II metacaspase METACASPASE-9. GRI is cleaved by METACASPASE-9 in vitro resulting in the release of an 11 amino acid peptide. This peptide bound in vivo to the extracellular domain of the plasma membrane-localized, atypical leucine-rich repeat receptor-like kinase POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 5 (PRK5) and was sufficient to induce oxidative stress/ROS-dependent cell death. This shows a signaling pathway in plants from processing and activation of an extracellular protein to recognition by its receptor.
Collapse
Affiliation(s)
- Michael Wrzaczek
- Plant Biology, Department of Biosciences University of Helsinki, Helsinki, Finland
| | - Julia P Vainonen
- Plant Biology, Department of Biosciences University of Helsinki, Helsinki, Finland
| | - Simon Stael
- Department of Plant Systems Biology, VIB, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium Department of Medical Protein Research, VIB, Ghent, Belgium Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Liana Tsiatsiani
- Department of Plant Systems Biology, VIB, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium Department of Medical Protein Research, VIB, Ghent, Belgium Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Hanna Help-Rinta-Rahko
- Plant Biology, Department of Biosciences University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Adrien Gauthier
- Plant Biology, Department of Biosciences University of Helsinki, Helsinki, Finland
| | - David Kaufholdt
- Plant Biology, Department of Biosciences University of Helsinki, Helsinki, Finland
| | - Benjamin Bollhöner
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Airi Lamminmäki
- Plant Biology, Department of Biosciences University of Helsinki, Helsinki, Finland
| | - An Staes
- Department of Medical Protein Research, VIB, Ghent, Belgium Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Ykä Helariutta
- Plant Biology, Department of Biosciences University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Jaakko Kangasjärvi
- Plant Biology, Department of Biosciences University of Helsinki, Helsinki, Finland Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
57
|
Gui CP, Dong X, Liu HK, Huang WJ, Zhang D, Wang SJ, Barberini ML, Gao XY, Muschietti J, McCormick S, Tang WH. Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbing mode. THE PLANT CELL 2014; 26:3538-55. [PMID: 25194029 PMCID: PMC4213151 DOI: 10.1105/tpc.114.127381] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/19/2014] [Accepted: 08/15/2014] [Indexed: 05/20/2023]
Abstract
The tubular growth of a pollen tube cell is crucial for the sexual reproduction of flowering plants. LePRK1 is a pollen-specific and plasma membrane-localized receptor-like kinase from tomato (Solanum lycopersicum). LePRK1 interacts with another receptor, LePRK2, and with KINASE PARTNER PROTEIN (KPP), a Rop guanine nucleotide exchange factor. Here, we show that pollen tubes overexpressing LePRK1 or a truncated LePRK1 lacking its extracellular domain (LePRK1ΔECD) have enlarged tips but also extend their leading edges by producing "blebs." Coexpression of LePRK1 and tomato PLIM2a, an actin bundling protein that interacts with KPP in a Ca(2+)-responsive manner, suppressed these LePRK1 overexpression phenotypes, whereas pollen tubes coexpressing KPP, LePRK1, and PLIM2a resumed the blebbing growth mode. We conclude that overexpression of LePRK1 or LePRK1ΔECD rewires pollen tube growth to a blebbing mode, through KPP- and PLIM2a-mediated bundling of actin filaments from tip plasma membranes. Arabidopsis thaliana pollen tubes expressing LePRK1ΔECD also grew by blebbing. Our results exposed a hidden capability of the pollen tube cell: upon overexpression of a single membrane-localized molecule, LePRK1 or LePRK1ΔECD, it can switch to an alternative mechanism for extension of the leading edge that is analogous to the blebbing growth mode reported for Dictyostelium and for Drosophila melanogaster stem cells.
Collapse
Affiliation(s)
- Cai-Ping Gui
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Dong
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hai-Kuan Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei-Jie Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Jie Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - María Laura Barberini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Hector Torres, C1428ADN Buenos Aires, Argentina
| | - Xiao-Yan Gao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jorge Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Hector Torres, C1428ADN Buenos Aires, Argentina Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Sheila McCormick
- Plant Gene Expression Center, U.S. Department of Agriculture/Agricultural Research Service, and Department of Plant and Microbial Biology, University of California at Berkeley, Albany, California 94710
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China Plant Gene Expression Center, U.S. Department of Agriculture/Agricultural Research Service, and Department of Plant and Microbial Biology, University of California at Berkeley, Albany, California 94710
| |
Collapse
|
58
|
Miyawaki KN, Yang Z. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:449. [PMID: 25295042 PMCID: PMC4170102 DOI: 10.3389/fpls.2014.00449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/20/2014] [Indexed: 05/04/2023]
Abstract
Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound "active" state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes.
Collapse
Affiliation(s)
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of CaliforniaRiverside, CA, USA
- *Correspondence: Zhenbiao Yang, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, 900 University Avenue, Riverside, CA 92521, USA e-mail:
| |
Collapse
|