51
|
Tunc-Ozdemir M, Li B, Jaiswal DK, Urano D, Jones AM, Torres MP. Predicted Functional Implications of Phosphorylation of Regulator of G Protein Signaling Protein in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1456. [PMID: 28890722 PMCID: PMC5575782 DOI: 10.3389/fpls.2017.01456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/04/2017] [Indexed: 05/22/2023]
Abstract
Heterotrimeric G proteins function in development, biotic, and abiotic stress responses, hormone signaling as well as sugar sensing. We previously proposed that discrimination of these various external signals in the G protein pathway is accomplished in plants by membrane-localized receptor-like kinases (RLKs) rather than G-protein-coupled receptors. Arabidopsis thaliana Regulator of G Signaling protein 1 (AtRGS1) modulates G protein activation and is phosphorylated by several RLKs and by WITH-NO-LYSINE kinases (WNKs). Here, a combination of in vitro kinase assays, mass spectrometry, and computational bioinformatics identified and functionally prioritized phosphorylation sites in AtRGS1. Phosphosites for two more RLKs (BRL3 and PEPR1) were identified and added to the AtRGS1 phosphorylation profile. Bioinformatics analyses revealed that RLKs and WNK kinases phosphorylate plant RGS proteins within regions that are conserved across eukaryotes and at a high frequency. Four phospho-sites among 14 identified are proximal to equivalent mammalian phosphosites that impact RGS function, including: pS437 and pT267 in GmRGS2, and pS339 and pS436 in AtRGS1. Based on these analyses, we propose that pS437 and pS436 regulate GmRGS2 and AtRGS1 protein interactions and/or localization, whereas pT267 is important for modulation of GmRGS2 GAP activity and localization. Moreover, pS339 most likely affects AtRGS1 activation.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
| | - Bo Li
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
| | - Dinesh K. Jaiswal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
| | - Daisuke Urano
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
- Temasek Life Sciences Laboratory, National University of SingaporeSingapore, Singapore
| | - Alan M. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
- *Correspondence: Alan M. Jones, Matthew P. Torres,
| | - Matthew P. Torres
- School of Biological Sciences, Georgia Institute of Technology, AtlantaGA, United States
- *Correspondence: Alan M. Jones, Matthew P. Torres,
| |
Collapse
|
52
|
Stateczny D, Oppenheimer J, Bommert P. G protein signaling in plants: minus times minus equals plus. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:127-135. [PMID: 27875794 DOI: 10.1016/j.pbi.2016.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 05/09/2023]
Abstract
Heterotrimeric G proteins are key regulators in the transduction of extracellular signals both in animals and plants. In plants, heterotrimeric G protein signaling plays essential roles in development and in response to biotic and abiotic stress. However, over the last decade it has become clear that plants have unique mechanisms of G protein signaling. Although plants share most of the core components of heterotrimeric G proteins, some of them exhibit unusual properties compared to their animal counterparts. In addition, plants do not share functional GPCRs. Therefore the well-established paradigm of the animal G protein signaling cycle is not applicable in plants. In this review, we summarize recent insights into these unique mechanisms of G protein signaling in plants with special focus on the evident potential of G protein signaling as a target to modify developmental and physiological parameters important for yield increase.
Collapse
Affiliation(s)
- Dave Stateczny
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Jara Oppenheimer
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Peter Bommert
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststr. 18, D-22609 Hamburg, Germany.
| |
Collapse
|
53
|
Hackenberg D, Perroud PF, Quatrano R, Pandey S. Sporophyte Formation and Life Cycle Completion in Moss Requires Heterotrimeric G-Proteins. PLANT PHYSIOLOGY 2016; 172:1154-1166. [PMID: 27550997 PMCID: PMC5047110 DOI: 10.1104/pp.16.01088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/11/2016] [Indexed: 05/23/2023]
Abstract
In this study, we report the functional characterization of heterotrimeric G-proteins from a nonvascular plant, the moss Physcomitrella patens. In plants, G-proteins have been characterized from only a few angiosperms to date, where their involvement has been shown during regulation of multiple signaling and developmental pathways affecting overall plant fitness. In addition to its unparalleled evolutionary position in the plant lineages, the P. patens genome also codes for a unique assortment of G-protein components, which includes two copies of Gβ and Gγ genes, but no canonical Gα Instead, a single gene encoding an extra-large Gα (XLG) protein exists in the P. patens genome. Here, we demonstrate that in P. patens the canonical Gα is biochemically and functionally replaced by an XLG protein, which works in the same genetic pathway as one of the Gβ proteins to control its development. Furthermore, the specific G-protein subunits in P. patens are essential for its life cycle completion. Deletion of the genomic locus of PpXLG or PpGβ2 results in smaller, slower growing gametophores. Normal reproductive structures develop on these gametophores, but they are unable to form any sporophyte, the only diploid stage in the moss life cycle. Finally, the mutant phenotypes of ΔPpXLG and ΔPpGβ2 can be complemented by the homologous genes from Arabidopsis, AtXLG2 and AtAGB1, respectively, suggesting an overall conservation of their function throughout the plant evolution.
Collapse
Affiliation(s)
- Dieter Hackenberg
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132 (D.H., S.P.); andDepartment of Biology, Washington University, One Brookings Drive, Campus Box 1137, St. Louis, Missouri 63130 (P.-F.P., R.Q.)
| | - Pierre-François Perroud
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132 (D.H., S.P.); andDepartment of Biology, Washington University, One Brookings Drive, Campus Box 1137, St. Louis, Missouri 63130 (P.-F.P., R.Q.)
| | - Ralph Quatrano
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132 (D.H., S.P.); andDepartment of Biology, Washington University, One Brookings Drive, Campus Box 1137, St. Louis, Missouri 63130 (P.-F.P., R.Q.)
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132 (D.H., S.P.); andDepartment of Biology, Washington University, One Brookings Drive, Campus Box 1137, St. Louis, Missouri 63130 (P.-F.P., R.Q.)
| |
Collapse
|
54
|
Li L, Sheen J. Dynamic and diverse sugar signaling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:116-125. [PMID: 27423125 PMCID: PMC5050104 DOI: 10.1016/j.pbi.2016.06.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Sugars fuel life and exert numerous regulatory actions that are fundamental to all life forms. There are two principal mechanisms underlie sugar 'perception and signal transduction' in biological systems. Direct sensing and signaling is triggered via sugar-binding sensors with a broad range of affinity and specificity, whereas sugar-derived bioenergetic molecules and metabolites modulate signaling proteins and indirectly relay sugar signals. This review discusses the emerging sugar signals and potential sugar sensors discovered in plant systems. The findings leading to informative understanding of physiological regulation by sugars are considered and assessed. Comparative transcriptome analyses highlight the primary and dynamic sugar responses and reveal the convergent and specific regulators of key biological processes in the sugar-signaling network.
Collapse
Affiliation(s)
- Lei Li
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA
| | - Jen Sheen
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA.
| |
Collapse
|
55
|
Xu Q, Zhao M, Wu K, Fu X, Liu Q. Emerging insights into heterotrimeric G protein signaling in plants. J Genet Genomics 2016; 43:495-502. [DOI: 10.1016/j.jgg.2016.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022]
|
56
|
Roy Choudhury S, Pandey S. Interaction of Heterotrimeric G-Protein Components with Receptor-like Kinases in Plants: An Alternative to the Established Signaling Paradigm? MOLECULAR PLANT 2016; 9:1093-1095. [PMID: 27250573 DOI: 10.1016/j.molp.2016.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 04/19/2016] [Accepted: 05/24/2016] [Indexed: 06/05/2023]
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
57
|
Rogato A, Valkov VT, Alves LM, Apone F, Colucci G, Chiurazzi M. Down-regulated Lotus japonicus GCR1 plants exhibit nodulation signalling pathways alteration. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:71-82. [PMID: 27095401 DOI: 10.1016/j.plantsci.2016.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
G Protein Coupled Receptor (GPCRs) are integral membrane proteins involved in various signalling pathways by perceiving many extracellular signals and transducing them to heterotrimeric G proteins, which further transduce these signals to intracellular downstream effectors. GCR1 is the only reliable plant candidate as a member of the GPCRs superfamily. In the legume/rhizobia symbiotic interaction, G proteins are involved in signalling pathways controlling different steps of the nodulation program. In order to investigate the putative hierarchic role played by GCR1 in these symbiotic pathways we identified and characterized the Lotus japonicus gene encoding the seven transmembrane GCR1 protein. The detailed molecular and topological analyses of LjGCR1 expression patterns that are presented suggest a possible involvement in the early steps of nodule organogenesis. Furthermore, phenotypic analyses of independent transgenic RNAi lines, showing a significant LjGCR1 expression down regulation, suggest an epistatic action in the control of molecular markers of nodulation pathways, although no macroscopic symbiotic phenotypes could be revealed.
Collapse
Affiliation(s)
- Alessandra Rogato
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Ludovico Martins Alves
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Fabio Apone
- Arterra Bioscience Srl, Via B. Brin 69, 80142 Napoli, Italy
| | | | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|