51
|
Su T, Han M, Min J, Chen P, Mao Y, Huang Q, Tong Q, Liu Q, Fang Y. Genome-Wide Survey of Invertase Encoding Genes and Functional Characterization of an Extracellular Fungal Pathogen-Responsive Invertase in Glycine max. Int J Mol Sci 2018; 19:E2395. [PMID: 30110937 PMCID: PMC6121457 DOI: 10.3390/ijms19082395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Invertases are essential enzymes that irreversibly catalyze the cleavage of sucrose into glucose and fructose. Cell wall invertase (CWI) and vacuolar invertase (VI) are glycosylated proteins and exert fundamental roles in plant growth as well as in response to environmental cues. As yet, comprehensive insight into invertase encoding genes are lacking in Glycine max. In the present study, the systematic survey of gene structures, coding regions, regulatory elements, conserved motifs, and phylogenies resulted in the identification of thirty⁻two putative invertase genes in soybean genome. Concomitantly, impacts on gene expression, enzyme activities, proteins, and soluble sugar accumulation were explored in specific tissues upon stress perturbation. In combination with the observation of subcellular compartmentation of the fluorescent fusion protein that indeed exported to apoplast, heterologous expression, and purification in using Pichia pastoris system revealed that GmCWI4 was a typical extracellular invertase. We postulated that GmCWI4 may play regulatory roles and be involved in pathogenic fungi defense. The experimental evaluation of physiological significance via phenotypic analysis of mutants under stress exposure has been initiated. Moreover, our paper provides theoretical basis for elucidating molecular mechanisms of invertase in association with inhibitors underlying the stress regime, and will contribute to the improvement of plant performance to a diverse range of stressors.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Peixian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuxin Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiao Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qian Tong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiuchen Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
52
|
Dubois M, Selden K, Bediée A, Rolland G, Baumberger N, Noir S, Bach L, Lamy G, Granier C, Genschik P. SIAMESE-RELATED1 Is Regulated Posttranslationally and Participates in Repression of Leaf Growth under Moderate Drought. PLANT PHYSIOLOGY 2018; 176:2834-2850. [PMID: 29472278 PMCID: PMC5884595 DOI: 10.1104/pp.17.01712] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/10/2018] [Indexed: 05/06/2023]
Abstract
The plant cell cycle is tightly regulated by factors that integrate endogenous cues and environmental signals to adapt plant growth to changing conditions. Under drought, cell division in young leaves is blocked by an active mechanism, reducing the evaporative surface and conserving energy resources. The molecular function of cyclin-dependent kinase-inhibitory proteins (CKIs) in regulating the cell cycle has already been well studied, but little is known about their involvement in cell cycle regulation under adverse growth conditions. In this study, we show that the transcript of the CKI gene SIAMESE-RELATED1 (SMR1) is quickly induced under moderate drought in young Arabidopsis (Arabidopsis thaliana) leaves. Functional characterization further revealed that SMR1 inhibits cell division and affects meristem activity, thereby restricting the growth of leaves and roots. Moreover, we demonstrate that SMR1 is a short-lived protein that is degraded by the 26S proteasome after being ubiquitinated by a Cullin-RING E3 ubiquitin ligase. Consequently, overexpression of a more stable variant of the SMR1 protein leads to a much stronger phenotype than overexpression of the native SMR1. Under moderate drought, both the SMR1 transcript and SMR1 protein accumulate. Despite this induction, smr1 mutants do not show overall tolerance to drought stress but do show less growth inhibition of young leaves under drought. Surprisingly, the growth-repressive hormone ethylene promotes SMR1 induction, but the classical drought hormone abscisic acid does not.
Collapse
Affiliation(s)
- Marieke Dubois
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Katia Selden
- Biochimie et Physiologie Moléculaire des Plantes, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| | - Alexis Bediée
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Université de Montpellier, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| | - Gaëlle Rolland
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Université de Montpellier, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Lien Bach
- Biochimie et Physiologie Moléculaire des Plantes, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| | - Geneviève Lamy
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Christine Granier
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Université de Montpellier, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
- Biochimie et Physiologie Moléculaire des Plantes, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| |
Collapse
|
53
|
GWAS Uncovers Differential Genetic Bases for Drought and Salt Tolerances in Sesame at the Germination Stage. Genes (Basel) 2018; 9:genes9020087. [PMID: 29443881 PMCID: PMC5852583 DOI: 10.3390/genes9020087] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Sesame has great potential as an industrial crop but its production is challenged by drought and salt stresses. To unravel the genetic variants leading to salinity and drought tolerances at the germination stage, genome-wide association studies of stress tolerance indexes related to NaCl-salt and polyethylene glycol-drought induced stresses were performed with a diversity panel of 490 sesame accessions. An extensive variation was observed for drought and salt responses in the population and most of the accessions were moderately tolerant to both stresses. A total of 132 and 120 significant Single Nucleotide Polymorphisms (SNPs) resolved to nine and 15 Quantitative trait loci (QTLs) were detected for drought and salt stresses, respectively. Only two common QTLs for drought and salt responses were found located on linkage groups 5 and 7, respectively. This indicates that the genetic bases for drought and salt responses in sesame are different. A total of 13 and 27 potential candidate genes were uncovered for drought and salt tolerance indexes, respectively, encoding transcription factors, antioxidative enzymes, osmoprotectants and involved in hormonal biosynthesis, signal transduction or ion sequestration. The identified SNPs and potential candidate genes represent valuable resources for future functional characterization towards the enhancement of sesame cultivars for drought and salt tolerances.
Collapse
|
54
|
Aziz A, Akram NA, Ashraf M. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:192-203. [PMID: 29248677 DOI: 10.1016/j.plaphy.2017.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/19/2017] [Accepted: 12/03/2017] [Indexed: 05/27/2023]
Abstract
Phytoextracts are being widely used these days as a source of bioactive compounds for mitigating the harmful effects of abiotic stresses including drought stress. In this study, it was assessed how far foliar applied pure synthetic ascorbic acid (AsA) or natural sweet orange juice (OJ) enriched with AsA could mitigate the drought stress induced adverse effects on growth and some key metabolic processes in quinoa (Chenopodium quinoa Willd.; cultivar V9) plants. Two weeks old quinoa seedlings were subjected to varying irrigation regimes as control [100% field capacity (FC)] and drought stress (60% FC, 40% FC and 20% FC). After one month of water deficit treatments, various levels of ascorbic acid (150 mg L-1 AsA or 25% OJ) besides control [distilled water (DW) and no spray (NS)] were applied as a foliar spray. After 15 days of AsA application, different physio-biochemical attributes were measured. The results showed that water deficit markedly decreased plant growth, relative water content (RWC), photosynthetic rate, total carotenoids (CAR) and total flavonoids, while it increased relative membrane permeability (RMP), intrinsic AsA content, hydrogen peroxide (H2O2), malondialdehyde (MDA), glycinebetaine (GB), total phenolics, total soluble proteins (TSP), total free amino acids, activities of key antioxidant enzymes [superoxide dismutase (SOD), peroxidase (POD)], total soluble sugars (TSS), reducing (RS) and non-reducing sugars (NRS). Most obvious results of most of these parameters were observed at 40% and 20% FC. Foliar-applied pure 150 mg L-1 AsA and 25% OJ were found to be very effective in improving plant growth, RMP, photosynthetic rate, CAR, proline, AsA, MDA, GB, TSP, free amino acids, SOD, POD, TSS, RS, NRS and total flavonoids. It was noticed that 25% OJ enriched with AsA and other essential nutrients and biomolecules was as efficient as 150 mg L-1 AsA in reducing the adverse effects of drought stress on quinoa plants. So, it was concluded that OJ, a cheaper source of vitamin C, can be used as a mitigating agent for improving drought tolerance in plants under drought-prone environments.
Collapse
Affiliation(s)
- Aniqa Aziz
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Nudrat Aisha Akram
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | | |
Collapse
|
55
|
Bellon MR, Dulloo E, Sardos J, Thormann I, Burdon JJ. In situ conservation-harnessing natural and human-derived evolutionary forces to ensure future crop adaptation. Evol Appl 2017; 10:965-977. [PMID: 29151853 PMCID: PMC5680627 DOI: 10.1111/eva.12521] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022] Open
Abstract
Ensuring the availability of the broadest possible germplasm base for agriculture in the face of increasingly uncertain and variable patterns of biotic and abiotic change is fundamental for the world's future food supply. While ex situ conservation plays a major role in the conservation and availability of crop germplasm, it may be insufficient to ensure this. In situ conservation aims to maintain target species and the collective genotypes they represent under evolution. A major rationale for this view is based on the likelihood that continued exposure to changing selective forces will generate and favor new genetic variation and an increased likelihood that rare alleles that may be of value to future agriculture are maintained. However, the evidence that underpins this key rationale remains fragmented and has not been examined systematically, thereby decreasing the perceived value and support for in situ conservation for agriculture and food systems and limiting the conservation options available. This study reviews evidence regarding the likelihood and rate of evolutionary change in both biotic and abiotic traits for crops and their wild relatives, placing these processes in a realistic context in which smallholder farming operates and crop wild relatives continue to exist. It identifies areas of research that would contribute to a deeper understanding of these processes as the basis for making them more useful for future crop adaptation.
Collapse
Affiliation(s)
- Mauricio R. Bellon
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)México CityMéxico
| | | | | | | | - Jeremy J. Burdon
- Commonwealth Scientific and Industrial Research Organisation Agriculture & Food (CSIRO)CanberraACTAustralia
| |
Collapse
|
56
|
Natural variation identifies genes affecting drought-induced abscisic acid accumulation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:11536-11541. [PMID: 29073083 DOI: 10.1073/pnas.1705884114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulation of the stress hormone abscisic acid (ABA) in response to drought and low water-potential controls many downstream acclimation mechanisms. However, mechanisms controlling ABA accumulation itself are less known. There was a 10-fold range of variation in ABA levels among nearly 300 Arabidopsis thaliana accessions exposed to the same low water-potential severity. Genome-wide association analysis (GWAS) identified genomic regions containing clusters of ABA-associated SNPs. Candidate genes within these regions included few genes with known stress or ABA-related function. The GWAS data were used to guide reverse genetic analysis, which found effectors of ABA accumulation. These included plasma-membrane-localized signaling proteins such as receptor-like kinases, aspartic protease, a putative lipid-binding START domain protein, and other membrane proteins of unknown function as well as a RING U-box protein and possible effect of tonoplast transport on ABA accumulation. Putative loss-of-function polymorphisms within the START domain protein were associated with climate factors at accession sites of origin, indicating its potential involvement in drought adaptation. Overall, using ABA accumulation as a basis for a combined GWAS-reverse genetic strategy revealed the broad natural variation in low-water-potential-induced ABA accumulation and was successful in identifying genes that affect ABA levels and may act in upstream drought-related sensing and signaling mechanisms. ABA effector loci were identified even when each one was of incremental effect, consistent with control of ABA accumulation being distributed among the many branches of ABA metabolism or mediated by genes with partially redundant function.
Collapse
|
57
|
Miao Z, Han Z, Zhang T, Chen S, Ma C. A systems approach to a spatio-temporal understanding of the drought stress response in maize. Sci Rep 2017; 7:6590. [PMID: 28747711 PMCID: PMC5529502 DOI: 10.1038/s41598-017-06929-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
Crops are often subjected to periods of drought stress during their life cycle. However, how stress response mechanisms contribute to the crosstalk between stress signaling pathways and developmental signaling pathways is still unknown. We built a gene co-expression network from a spatio-temporal transcriptomic map of the drought stress response in maize (Zea mays), profiled from three tissues and four developmental stages and characterized hub genes associated with duplication events, selection, and regulatory networks. Co-expression analysis grouped drought-response genes into ten modules, covering 844 highly connected genes (hub genes). Of these, 15.4% hub genes had diverged by whole-genome duplication events and 2.5% might then have been selected during natural domestication and artificial improvement processes, successively. We identified key transcription factor hubs in a transcriptional regulatory network, which may function as a crosstalk mechanism between drought stress and developmental signalling pathways in maize. Understanding the evolutionary biases that have evolved to enhance drought adaptation lays the foundation for further dissection of crosstalk between stress signalling pathways and developmental signalling pathways in maize, towards molecular design of new cultivars with desirable yield and greater stress tolerance.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
58
|
Rymaszewski W, Vile D, Bediee A, Dauzat M, Luchaire N, Kamrowska D, Granier C, Hennig J. Stress-Related Gene Expression Reflects Morphophysiological Responses to Water Deficit. PLANT PHYSIOLOGY 2017; 174:1913-1930. [PMID: 28522456 PMCID: PMC5490902 DOI: 10.1104/pp.17.00318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/15/2017] [Indexed: 05/18/2023]
Abstract
Acclimation to water deficit (WD) enables plants to maintain growth under unfavorable environmental conditions, although the mechanisms are not completely understood. In this study, the natural variation of long-term acclimation to moderate and severe soil WD was investigated in 18 Arabidopsis (Arabidopsis thaliana) accessions using PHENOPSIS, an automated phenotyping platform. Soil water content was adjusted at an early stage of plant development and maintained at a constant level until reproductive age was achieved. The accessions were selected based on the expression levels of ANNEXIN1, a drought-related marker. Severe WD conditions had a greater effect on most of the measured morphophysiological traits than moderate WD conditions. Multivariate analyses indicated that trait responses associated with plant size and water management drove most of the variation. Accessions with similar responses at these two levels were grouped in clusters that displayed different response strategies to WD The expression levels of selected stress-response genes revealed large natural variation under WD conditions. Responses of morphophysiological traits, such as projected rosette area, transpiration rate, and rosette water content, were correlated with changes in the expression of stress-related genes, such as NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 and N-MYC DOWNREGULATED-LIKE1 (NDL1), in response to WD Interestingly, the morphophysiological acclimation response to WD also was reflected in the gene expression levels (most notably those of NDL1, CHALCONE SYNTHASE, and MYB DOMAIN PROTEIN44) in plants cultivated under well-watered conditions. Our results may lead to the development of biomarkers and predictors of plant morphophysiological responses based on gene expression patterns.
Collapse
Affiliation(s)
- Wojciech Rymaszewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Denis Vile
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Alexis Bediee
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Myriam Dauzat
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Nathalie Luchaire
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Dominika Kamrowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Christine Granier
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
59
|
Chini A, Ben-Romdhane W, Hassairi A, Aboul-Soud MAM. Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses. PLoS One 2017; 12:e0177381. [PMID: 28570564 PMCID: PMC5453414 DOI: 10.1371/journal.pone.0177381] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
Plant phenotypic plasticity determines plant adaptation to changing environments and agricultural productivity. Phytohormones are essential plant signalling molecules regulating this plasticity through complex signalling networks. Jasmonates (JAs) are key phytohormones regulating many aspects of growth, development and defence responses. An important role of JAs in tolerance to abiotic stresses is also emerging. The expression of JAZ (JASMONATE-ZIM-DOMAIN PROTEIN) genes, encoding for the key repressors in the JA-pathway, is regulated by multiple abiotic stresses, suggesting a role for the JAZ proteins in response to these stresses. The JAZ proteins belong to the TIFY family, well described in many plant species. However, only the role of few tomato JAZ proteins in response to microbial infection has been analysed so far. Here, we identify the members of the tomato TIFY family, and characterize them phylogenetically. In addition, we analyse the transcriptional regulation of several SlJAZ in response to abiotic stresses and hormone treatments both in root and leaves to assess their specific expression in response to stresses. Most SlJAZ are JA-induced and responsive to one or more abiotic stresses, providing clues for functional analysis of JAZ genes in abiotic responses in tomato.
Collapse
Affiliation(s)
- Andrea Chini
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
- * E-mail: (AC); (MAMA-S)
| | - Walid Ben-Romdhane
- Department of Plant Production, College of Food and Agricultural sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Centre of Biotechnology of Sfax (CBS), University of Sfax, LPAP, Sfax, Tunisia
| | - Afif Hassairi
- Department of Plant Production, College of Food and Agricultural sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Centre of Biotechnology of Sfax (CBS), University of Sfax, LPAP, Sfax, Tunisia
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Biochemistry and Molecular Biology Department, Cairo University Research Park, Cairo University, Giza, Egypt
- * E-mail: (AC); (MAMA-S)
| |
Collapse
|
60
|
Bazakos C, Hanemian M, Trontin C, Jiménez-Gómez JM, Loudet O. New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:435-455. [PMID: 28226236 DOI: 10.1146/annurev-arplant-042916-040820] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative genetics has a long history in plants: It has been used to study specific biological processes, identify the factors important for trait evolution, and breed new crop varieties. These classical approaches to quantitative trait locus mapping have naturally improved with technology. In this review, we show how quantitative genetics has evolved recently in plants and how new developments in phenotyping, population generation, sequencing, gene manipulation, and statistics are rejuvenating both the classical linkage mapping approaches (for example, through nested association mapping) as well as the more recently developed genome-wide association studies. These strategies are complementary in most instances, and indeed, one is often used to confirm the results of the other. Despite significant advances, an emerging trend is that the outcome and efficiency of the different approaches depend greatly on the genetic architecture of the trait in the genetic material under study.
Collapse
Affiliation(s)
- Christos Bazakos
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - Mathieu Hanemian
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - Charlotte Trontin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78026 Versailles Cedex, France;
| |
Collapse
|