51
|
Qiu Z, Zhu L, He L, Chen D, Zeng D, Chen G, Hu J, Zhang G, Ren D, Dong G, Gao Z, Shen L, Zhang Q, Guo L, Qian Q. DNA damage and reactive oxygen species cause cell death in the rice local lesions 1 mutant under high light and high temperature. THE NEW PHYTOLOGIST 2019; 222:349-365. [PMID: 30449034 DOI: 10.1111/nph.15597] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/07/2018] [Indexed: 05/17/2023]
Abstract
High light and high temperature (HLHT) stress may become more frequent and severe as the climate changes, affecting crop growth and resulting in reduced production. However, the mechanism of the response to HLHT stress in rice is not yet fully understood. In the present study, we screened a rice mutant library using HLHT conditions and isolated an HLHT-sensitive mutant, local lesions 1 (ls1), which showed decreased pigment contents, defective stomata and chloroplasts, and a local lesions phenotype under HLHT. We characterized and cloned LS1 by map-based cloning and genetic complementation. LS1 encodes the A subunit of the RNase H2 complex (RNASEH2A). Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and comet assays indicated that mutation of LS1 led to severe DNA damage under HLHT stress. Furthermore, we found excessive reactive oxygen species (ROS) accumulation in the ls1 mutant under HLHT stress. Exogenous antioxidants eased the local lesions phenotype of the ls1 mutant under HLHT. DNA damage caused by HLHT stress induces ROS accumulation, which causes the injury and apoptosis of leaf cells in the ls1 mutant. These results enhance our understanding of the regulatory mechanism in the response to HLHT stress in higher plants.
Collapse
Affiliation(s)
- Zhennan Qiu
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Lei He
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Dongdong Chen
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China, National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
52
|
González de Cózar JM, Gerards M, Teeri E, George J, Dufour E, Jacobs HT, Jõers P. RNase H1 promotes replication fork progression through oppositely transcribed regions of Drosophila mitochondrial DNA. J Biol Chem 2019; 294:4331-4344. [PMID: 30635398 PMCID: PMC6433063 DOI: 10.1074/jbc.ra118.007015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) replication uses a simple core machinery similar to those of bacterial viruses and plasmids, but its components are challenging to unravel. Here, we found that, as in mammals, the single Drosophila gene for RNase H1 (rnh1) has alternative translational start sites, resulting in two polypeptides, targeted to either mitochondria or the nucleus. RNAi-mediated rnh1 knockdown did not influence growth or viability of S2 cells, but compromised mtDNA integrity and copy number. rnh1 knockdown in intact flies also produced a phenotype of impaired mitochondrial function, characterized by respiratory chain deficiency, locomotor dysfunction, and decreased lifespan. Its overexpression in S2 cells resulted in cell lethality after 5–9 days, attributable to the nuclearly localized isoform. rnh1 knockdown and overexpression produced opposite effects on mtDNA replication intermediates. The most pronounced effects were seen in genome regions beyond the major replication pauses where the replication fork needs to progress through a gene cluster that is transcribed in the opposite direction. RNase H1 deficiency led to an accumulation of replication intermediates in these zones, abundant mtDNA molecules joined by four-way junctions, and species consistent with fork regression from the origin. These findings indicate replication stalling due to the presence of unprocessed RNA/DNA heteroduplexes, potentially leading to the degradation of collapsed forks or to replication restart by a mechanism involving strand invasion. Both mitochondrial RNA and DNA syntheses were affected by rnh1 knockdown, suggesting that RNase H1 also plays a role in integrating or coregulating these processes in Drosophila mitochondria.
Collapse
Affiliation(s)
- Jose M González de Cózar
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Mike Gerards
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Eveliina Teeri
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Jack George
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Eric Dufour
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Howard T Jacobs
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland, .,Institute of Biotechnology, FI-00014 University of Helsinki, Finland, and
| | - Priit Jõers
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland.,Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
53
|
Briggs E, Hamilton G, Crouch K, Lapsley C, McCulloch R. Genome-wide mapping reveals conserved and diverged R-loop activities in the unusual genetic landscape of the African trypanosome genome. Nucleic Acids Res 2018; 46:11789-11805. [PMID: 30304482 PMCID: PMC6294496 DOI: 10.1093/nar/gky928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/25/2018] [Accepted: 10/05/2018] [Indexed: 01/09/2023] Open
Abstract
R-loops are stable RNA-DNA hybrids that have been implicated in transcription initiation and termination, as well as in telomere maintenance, chromatin formation, and genome replication and instability. RNA Polymerase (Pol) II transcription in the protozoan parasite Trypanosoma brucei is highly unusual: virtually all genes are co-transcribed from multigene transcription units, with mRNAs generated by linked trans-splicing and polyadenylation, and transcription initiation sites display no conserved promoter motifs. Here, we describe the genome-wide distribution of R-loops in wild type mammal-infective T. brucei and in mutants lacking RNase H1, revealing both conserved and diverged functions. Conserved localization was found at centromeres, rRNA genes and retrotransposon-associated genes. RNA Pol II transcription initiation sites also displayed R-loops, suggesting a broadly conserved role despite the lack of promoter conservation or transcription initiation regulation. However, the most abundant sites of R-loop enrichment were within the regions between coding sequences of the multigene transcription units, where the hybrids coincide with sites of polyadenylation and nucleosome-depletion. Thus, instead of functioning in transcription termination the most widespread localization of R-loops in T. brucei suggests a novel correlation with pre-mRNA processing. Finally, we find little evidence for correlation between R-loop localization and mapped sites of DNA replication initiation.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Rd, Bearsden, G61 1QH, UK
| | - Kathryn Crouch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
54
|
Sakamoto W, Takami T. Chloroplast DNA Dynamics: Copy Number, Quality Control and Degradation. PLANT & CELL PHYSIOLOGY 2018; 59:1120-1127. [PMID: 29860378 DOI: 10.1093/pcp/pcy084] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/01/2018] [Indexed: 05/16/2023]
Abstract
Endosymbiotically originated chloroplast DNA (cpDNA) encodes part of the genetic information needed to fulfill chloroplast function, including fundamental processes such as photosynthesis. In the last two decades, advances in genome analysis led to the identification of a considerable number of cpDNA sequences from various species. While these data provided the consensus features of cpDNA organization and chloroplast evolution in plants, how cpDNA is maintained through development and is inherited remains to be fully understood. In particular, the fact that cpDNA exists as multiple copies despite its limited genetic capacity raises the important question of how copy number is maintained or whether cpDNA is subjected to quantitative fluctuation or even developmental degradation. For example, cpDNA is abundant in leaves, where it forms punctate structures called nucleoids, which seemingly alter their morphologies and numbers depending on the developmental status of the chloroplast. In this review, we summarize our current understanding of 'cpDNA dynamics', focusing on the changes in DNA abundance. A special focus is given to the cpDNA degradation mechanism, which appears to be mediated by Defective in Pollen organelle DNA degradation 1 (DPD1), a recently discovered organelle exonuclease. The physiological significance of cpDNA degradation in flowering plants is also discussed.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
55
|
Strengths and Weaknesses of the Current Strategies to Map and Characterize R-Loops. Noncoding RNA 2018; 4:ncrna4020009. [PMID: 29657305 PMCID: PMC6027298 DOI: 10.3390/ncrna4020009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/26/2022] Open
Abstract
R-loops are evolutionarily conserved three-stranded structures that result from the formation of stable DNA:RNA hybrids in the genome. R-loops have attracted increasing interest in recent years as potent regulators of gene expression and genome stability. In particular, their strong association with severe replication stress makes them potential oncogenic structures. Despite their importance, the rules that govern their formation and their dynamics are still controversial and an in-depth description of their direct impact on chromatin organization and DNA transactions is still lacking. To better understand the diversity of R-loop functions, reliable, accurate, and quantitative mapping techniques, as well as functional assays are required. Here, I review the different approaches that are currently used to do so and to highlight their individual strengths and weaknesses. In particular, I review the advantages and disadvantages of using the S9.6 antibody to map R-loops in vivo in an attempt to propose guidelines for best practices.
Collapse
|
56
|
Mach J. Thrown for a Loop: How RNase H1 and DNA Gyrases Limit R-Loops and Maintain Genome Stability in Chloroplasts. THE PLANT CELL 2017; 29:2311-2312. [PMID: 28970337 PMCID: PMC5774561 DOI: 10.1105/tpc.17.00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|