51
|
Hutchison CDM, Cordon-Preciado V, Morgan RML, Nakane T, Ferreira J, Dorlhiac G, Sanchez-Gonzalez A, Johnson AS, Fitzpatrick A, Fare C, Marangos JP, Yoon CH, Hunter MS, DePonte DP, Boutet S, Owada S, Tanaka R, Tono K, Iwata S, van Thor JJ. X-ray Free Electron Laser Determination of Crystal Structures of Dark and Light States of a Reversibly Photoswitching Fluorescent Protein at Room Temperature. Int J Mol Sci 2017; 18:E1918. [PMID: 28880248 PMCID: PMC5618567 DOI: 10.3390/ijms18091918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/03/2023] Open
Abstract
The photochromic fluorescent protein Skylan-NS (Nonlinear Structured illumination variant mEos3.1H62L) is a reversibly photoswitchable fluorescent protein which has an unilluminated/ground state with an anionic and cis chromophore conformation and high fluorescence quantum yield. Photo-conversion with illumination at 515 nm generates a meta-stable intermediate with neutral trans-chromophore structure that has a 4 h lifetime. We present X-ray crystal structures of the cis (on) state at 1.9 Angstrom resolution and the trans (off) state at a limiting resolution of 1.55 Angstrom from serial femtosecond crystallography experiments conducted at SPring-8 Angstrom Compact Free Electron Laser (SACLA) at 7.0 keV and 10.5 keV, and at Linac Coherent Light Source (LCLS) at 9.5 keV. We present a comparison of the data reduction and structure determination statistics for the two facilities which differ in flux, beam characteristics and detector technologies. Furthermore, a comparison of droplet on demand, grease injection and Gas Dynamic Virtual Nozzle (GDVN) injection shows no significant differences in limiting resolution. The photoconversion of the on- to the off-state includes both internal and surface exposed protein structural changes, occurring in regions that lack crystal contacts in the orthorhombic crystal form.
Collapse
Affiliation(s)
- Christopher D. M. Hutchison
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Violeta Cordon-Preciado
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Rhodri M. L. Morgan
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan;
| | - Josie Ferreira
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Gabriel Dorlhiac
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Alvaro Sanchez-Gonzalez
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Allan S. Johnson
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Ann Fitzpatrick
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK;
| | - Clyde Fare
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Jon P. Marangos
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Chun Hong Yoon
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Mark S. Hunter
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Daniel P. DePonte
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Sébastien Boutet
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jasper J. van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| |
Collapse
|
52
|
Johansson LC, Stauch B, Ishchenko A, Cherezov V. A Bright Future for Serial Femtosecond Crystallography with XFELs. Trends Biochem Sci 2017; 42:749-762. [PMID: 28733116 DOI: 10.1016/j.tibs.2017.06.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022]
Abstract
X-ray free electron lasers (XFELs) have the potential to revolutionize macromolecular structural biology due to the unique combination of spatial coherence, extreme peak brilliance, and short duration of X-ray pulses. A recently emerged serial femtosecond (fs) crystallography (SFX) approach using XFEL radiation overcomes some of the biggest hurdles of traditional crystallography related to radiation damage through the diffraction-before-destruction principle. Intense fs XFEL pulses enable high-resolution room-temperature structure determination of difficult-to-crystallize biological macromolecules, while simultaneously opening a new era of time-resolved structural studies. Here, we review the latest developments in instrumentation, sample delivery, data analysis, crystallization methods, and applications of SFX to important biological questions, and conclude with brief insights into the bright future of structural biology using XFELs.
Collapse
Affiliation(s)
- Linda C Johansson
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Benjamin Stauch
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA.
| |
Collapse
|
53
|
Silly MG, Ferté T, Tordeux MA, Pierucci D, Beaulieu N, Chauvet C, Pressacco F, Sirotti F, Popescu H, Lopez-Flores V, Tortarolo M, Sacchi M, Jaouen N, Hollander P, Ricaud JP, Bergeard N, Boeglin C, Tudu B, Delaunay R, Luning J, Malinowski G, Hehn M, Baumier C, Fortuna F, Krizmancic D, Stebel L, Sergo R, Cautero G. Pump-probe experiments at the TEMPO beamline using the low-α operation mode of Synchrotron SOLEIL. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:886-897. [PMID: 28664896 DOI: 10.1107/s1600577517007913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented. A 282 kHz repetition-rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two-dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time-resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high-time-resolution pump-probe experiments compared and discussed.
Collapse
Affiliation(s)
- Mathieu G Silly
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Tom Ferté
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Marie Agnes Tordeux
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Debora Pierucci
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Nathan Beaulieu
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Christian Chauvet
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Federico Pressacco
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Fausto Sirotti
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Horia Popescu
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Victor Lopez-Flores
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Marina Tortarolo
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Maurizio Sacchi
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Nicolas Jaouen
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Philippe Hollander
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Jean Paul Ricaud
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Nicolas Bergeard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Christine Boeglin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Bharati Tudu
- Sorbonne Universités, UPMC Université Paris VI, CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, Paris 75005, France
| | - Renaud Delaunay
- Sorbonne Universités, UPMC Université Paris VI, CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, Paris 75005, France
| | - Jan Luning
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, Gif sur Yvette 91192, France
| | - Gregory Malinowski
- P2M - Institut Jean Lamour UMR7198, CNRS - Université de Lorraine, Vandoeuvre-les-Nancy 54506, France
| | - Michel Hehn
- P2M - Institut Jean Lamour UMR7198, CNRS - Université de Lorraine, Vandoeuvre-les-Nancy 54506, France
| | - Cédric Baumier
- CSNSM, Université Paris Sud and CNRS/IN2P3, Batiment 104 et 108, Orsay 91405, France
| | - Franck Fortuna
- CSNSM, Université Paris Sud and CNRS/IN2P3, Batiment 104 et 108, Orsay 91405, France
| | - Damjan Krizmancic
- Laboratorio TASC, IOM-CNR, SS 14 Km 163.5, Basovizza, I-34149 Trieste, Italy
| | - Luigi Stebel
- ELETTRA Sincrotrone Trieste SCpA, Area Science Park, Strada Statale 14 Km 163.5, I-34012 Basovizza, Italy
| | - Rudi Sergo
- ELETTRA Sincrotrone Trieste SCpA, Area Science Park, Strada Statale 14 Km 163.5, I-34012 Basovizza, Italy
| | - Giuseppe Cautero
- ELETTRA Sincrotrone Trieste SCpA, Area Science Park, Strada Statale 14 Km 163.5, I-34012 Basovizza, Italy
| |
Collapse
|
54
|
|
55
|
Molecular Dynamics of XFEL-Induced Photo-Dissociation, Revealed by Ion-Ion Coincidence Measurements. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7050531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
56
|
Quantum Beam Science—Applications to Probe or Influence Matter and Materials. QUANTUM BEAM SCIENCE 2017. [DOI: 10.3390/qubs1010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
57
|
Abbasi E, Jafari S, Hedayati R. Interaction of a relativistic dense electron beam with a laser wiggler in a vacuum: self-field effects on the electron orbits and free-electron laser gain. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1282-1295. [PMID: 27787234 DOI: 10.1107/s1600577516012601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Employing laser wigglers and accelerators provides the potential to dramatically cut the size and cost of X-ray light sources. Owing to recent technological developments in the production of high-brilliance electron beams and high-power laser pulses, it is now conceivable to make steps toward the practical realisation of laser-pumped X-ray free-electron lasers (FELs). In this regard, here the head-on collision of a relativistic dense electron beam with a linearly polarized laser pulse as a wiggler is studied, in which the laser wiggler can be realised using a conventional quantum laser. In addition, an external guide magnetic field is employed to confine the electron beam against self-fields, therefore improving the FEL operation. Conditions allowing such an operating regime are presented and its relevant validity checked using a set of general scaling formulae. Rigorous analytical solutions of the dynamic equations are provided. These solutions are verified by performing calculations using the derived solutions and well known Runge-Kutta procedure to simulate the electron trajectories. The effects of self-fields on the FEL gain in this configuration are estimated. Numerical calculations indicate that in the presence of self-fields the sensitivity of the gain increases in the vicinity of resonance regions. Besides, diamagnetic and paramagnetic effects of the wiggler-induced self-magnetic field cause gain decrement and enhancement for different electron orbits, while these diamagnetic and paramagnetic effects increase with increasing beam density. The results are compared with findings of planar magnetostatic wiggler FELs.
Collapse
Affiliation(s)
- E Abbasi
- Department of Physics, University of Guilan, Rasht 41335-1914, Iran
| | - S Jafari
- Department of Physics, University of Guilan, Rasht 41335-1914, Iran
| | - R Hedayati
- Department of Physics, University of Guilan, Rasht 41335-1914, Iran
| |
Collapse
|
58
|
Chergui M. Time-resolved X-ray spectroscopies of chemical systems: New perspectives. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:031001. [PMID: 27376102 PMCID: PMC4902826 DOI: 10.1063/1.4953104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
The past 3-5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.
Collapse
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS) , ISIC-FSB, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
59
|
Reinhardt M, Koc A, Leitenberger W, Gaal P, Bargheer M. Optimized spatial overlap in optical pump-X-ray probe experiments with high repetition rate using laser-induced surface distortions. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:474-479. [PMID: 26917135 DOI: 10.1107/s1600577515024443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Ultrafast X-ray diffraction experiments require careful adjustment of the spatial overlap between the optical excitation and the X-ray probe pulse. This is especially challenging at high laser repetition rates. Sample distortions caused by the large heat load on the sample and the relatively low optical energy per pulse lead to only tiny signal changes. In consequence, this results in small footprints of the optical excitation on the sample, which turns the adjustment of the overlap difficult. Here a method for reliable overlap adjustment based on reciprocal space mapping of a laser excited thin film is presented.
Collapse
Affiliation(s)
- Matthias Reinhardt
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Azize Koc
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Wolfram Leitenberger
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Peter Gaal
- Institut für Nanostruktur- und Festkörperphysik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Matias Bargheer
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| |
Collapse
|
60
|
Lehmkühler F, Kwaśniewski P, Roseker W, Fischer B, Schroer MA, Tono K, Katayama T, Sprung M, Sikorski M, Song S, Glownia J, Chollet M, Nelson S, Robert A, Gutt C, Yabashi M, Ishikawa T, Grübel G. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser. Sci Rep 2015; 5:17193. [PMID: 26610328 PMCID: PMC4661692 DOI: 10.1038/srep17193] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/26/2015] [Indexed: 11/09/2022] Open
Abstract
Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Paweł Kwaśniewski
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Birgit Fischer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Martin A Schroer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marcin Sikorski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - James Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - Silke Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - Aymeric Robert
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072 Siegen, Germany
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|