51
|
Nguyen H, Di Troia F, Ishigaki G, Stamp M. Generative adversarial networks and image-based malware classification. JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES 2023. [PMCID: PMC9923654 DOI: 10.1007/s11416-023-00465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
For efficient malware removal, determination of malware threat levels, and damage estimation, malware family classification plays a critical role. In this paper, we extract features from malware executable files and represent them as images using various approaches. We then focus on generative adversarial networks (GAN) for multiclass classification and compare our GAN results to other popular machine learning techniques, including support vector machine (SVM), XGBoost, and restricted Boltzmann machines (RBM). We find that the AC-GAN discriminator is generally competitive with other machine learning techniques. We also evaluate the utility of the GAN generative model for adversarial attacks on image-based malware detection. While AC-GAN generated images are visually impressive, we find that they are easily distinguished from real malware images using any of several learning techniques. This result indicates that our GAN generated images are of surprisingly little value in adversarial attacks.
Collapse
Affiliation(s)
- Huy Nguyen
- grid.186587.50000 0001 0722 3678Department of Computer Science, San Jose State University, San Jose, USA
| | - Fabio Di Troia
- grid.186587.50000 0001 0722 3678Department of Computer Science, San Jose State University, San Jose, USA
| | - Genya Ishigaki
- grid.186587.50000 0001 0722 3678Department of Computer Science, San Jose State University, San Jose, USA
| | - Mark Stamp
- grid.186587.50000 0001 0722 3678Department of Computer Science, San Jose State University, San Jose, USA
| |
Collapse
|
52
|
de Andrade EC, Pinheiro LICC, Pinheiro PR, Nunes LC, Pinheiro MCD, Pereira MLD, de Abreu WC, Filho RH, Simão Filho M, Pinheiro PGCD, Nunes REC. Hybrid model for early identification post-Covid-19 sequelae. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2023; 14:1-14. [PMID: 36779007 PMCID: PMC9902243 DOI: 10.1007/s12652-023-04555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Artificial Intelligence techniques based on Machine Learning algorithms, Neural Networks and Naïve Bayes can optimise the diagnostic process of the SARS-CoV-2 or Covid-19. The most significant help of these techniques is analysing data recorded by health professionals when treating patients with this disease. Health professionals' more specific focus is due to the reduction in the number of observable signs and symptoms, ranging from an acute respiratory condition to severe pneumonia, showing an efficient form of attribute engineering. It is important to note that the clinical diagnosis can vary from asymptomatic to extremely harsh conditions. About 80% of patients with Covid-19 may be asymptomatic or have few symptoms. Approximately 20% of the detected cases require hospital care because they have difficulty breathing, of which about 5% may require ventilatory support in the Intensive Care Unit. Also, the present study proposes a hybrid approach model, structured in the composition of Artificial Intelligence techniques, using Machine Learning algorithms, associated with multicriteria methods of decision support based on the Verbal Decision Analysis methodology, aiming at the discovery of knowledge, as well as exploring the predictive power of specific data in this study, to optimise the diagnostic models of Covid-19. Thus, the model will provide greater accuracy to the diagnosis sought through clinical observation.
Collapse
Affiliation(s)
- Evandro Carvalho de Andrade
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza, Ceará Brazil
- Ceara State University, Fortaleza, Ceara Brazil
| | | | - Plácido Rogério Pinheiro
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza, Ceará Brazil
- Ceara State University, Fortaleza, Ceara Brazil
| | - Luciano Comin Nunes
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza, Ceará Brazil
- University Center September 7, Fortaleza, Ceara Brazil
| | | | | | | | | | - Marum Simão Filho
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza, Ceará Brazil
- University Center September 7, Fortaleza, Ceara Brazil
| | | | | |
Collapse
|
53
|
Aslani S, Jacob J. Utilisation of deep learning for COVID-19 diagnosis. Clin Radiol 2023; 78:150-157. [PMID: 36639173 PMCID: PMC9831845 DOI: 10.1016/j.crad.2022.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
The COVID-19 pandemic that began in 2019 has resulted in millions of deaths worldwide. Over this period, the economic and healthcare consequences of COVID-19 infection in survivors of acute COVID-19 infection have become apparent. During the course of the pandemic, computer analysis of medical images and data have been widely used by the medical research community. In particular, deep-learning methods, which are artificial intelligence (AI)-based approaches, have been frequently employed. This paper provides a review of deep-learning-based AI techniques for COVID-19 diagnosis using chest radiography and computed tomography. Thirty papers published from February 2020 to March 2022 that used two-dimensional (2D)/three-dimensional (3D) deep convolutional neural networks combined with transfer learning for COVID-19 detection were reviewed. The review describes how deep-learning methods detect COVID-19, and several limitations of the proposed methods are highlighted.
Collapse
Affiliation(s)
- S Aslani
- Centre for Medical Image Computing and Department of Respiratory Medicine, University College London, London, UK.
| | - J Jacob
- Centre for Medical Image Computing and Department of Respiratory Medicine, University College London, London, UK
| |
Collapse
|
54
|
Gulakala R, Markert B, Stoffel M. Rapid diagnosis of Covid-19 infections by a progressively growing GAN and CNN optimisation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107262. [PMID: 36463675 PMCID: PMC9699959 DOI: 10.1016/j.cmpb.2022.107262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND OBJECTIVE Covid-19 infections are spreading around the globe since December 2019. Several diagnostic methods were developed based on biological investigations and the success of each method depends on the accuracy of identifying Covid infections. However, access to diagnostic tools can be limited, depending on geographic region and the diagnosis duration plays an important role in treating Covid-19. Since the virus causes pneumonia, its presence can also be detected using medical imaging by Radiologists. Hospitals with X-ray capabilities are widely distributed all over the world, so a method for diagnosing Covid-19 from chest X-rays would present itself. Studies have shown promising results in automatically detecting Covid-19 from medical images using supervised Artificial neural network (ANN) algorithms. The major drawback of supervised learning algorithms is that they require huge amounts of data to train. Also, the radiology equipment is not computationally efficient for deep neural networks. Therefore, we aim to develop a Generative Adversarial Network (GAN) based image augmentation to optimize the performance of custom, light, Convolutional networks used for the classification of Chest X-rays (CXR). METHODS A Progressively Growing Generative Adversarial Network (PGGAN) is used to generate synthetic and augmented data to supplement the dataset. We propose two novel CNN architectures to perform the Multi-class classification of Covid-19, healthy and pneumonia affected Chest X-rays. Comparisons have been drawn to the state of the art models and transfer learning methods to evaluate the superiority of the networks. All the models are trained using enhanced and augmented X-ray images and are compared based on classification metrics. RESULTS The proposed models had extremely high classification metrics with proposed Architectures having test accuracy of 98.78% and 99.2% respectively while having 40% lesser training parameters than their state of the art counterpart. CONCLUSION In the present study, a method based on artificial intelligence is proposed, leading to a rapid diagnostic tool for Covid infections based on Generative Adversarial Network (GAN) and Convolutional Neural Networks (CNN). The benefit will be a high accuracy of detection with up to 99% hit rate, a rapid diagnosis, and an accessible Covid identification method by chest X-ray images.
Collapse
Affiliation(s)
- Rutwik Gulakala
- Institute of General Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, D-52062 Aachen, Germany
| | - Bernd Markert
- Institute of General Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, D-52062 Aachen, Germany
| | - Marcus Stoffel
- Institute of General Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, D-52062 Aachen, Germany.
| |
Collapse
|
55
|
Interpretable Differential Diagnosis of Non-COVID Viral Pneumonia, Lung Opacity and COVID-19 Using Tuned Transfer Learning and Explainable AI. Healthcare (Basel) 2023; 11:healthcare11030410. [PMID: 36766986 PMCID: PMC9914430 DOI: 10.3390/healthcare11030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The coronavirus epidemic has spread to virtually every country on the globe, inflicting enormous health, financial, and emotional devastation, as well as the collapse of healthcare systems in some countries. Any automated COVID detection system that allows for fast detection of the COVID-19 infection might be highly beneficial to the healthcare service and people around the world. Molecular or antigen testing along with radiology X-ray imaging is now utilized in clinics to diagnose COVID-19. Nonetheless, due to a spike in coronavirus and hospital doctors' overwhelming workload, developing an AI-based auto-COVID detection system with high accuracy has become imperative. On X-ray images, the diagnosis of COVID-19, non-COVID-19 non-COVID viral pneumonia, and other lung opacity can be challenging. This research utilized artificial intelligence (AI) to deliver high-accuracy automated COVID-19 detection from normal chest X-ray images. Further, this study extended to differentiate COVID-19 from normal, lung opacity and non-COVID viral pneumonia images. We have employed three distinct pre-trained models that are Xception, VGG19, and ResNet50 on a benchmark dataset of 21,165 X-ray images. Initially, we formulated the COVID-19 detection problem as a binary classification problem to classify COVID-19 from normal X-ray images and gained 97.5%, 97.5%, and 93.3% accuracy for Xception, VGG19, and ResNet50 respectively. Later we focused on developing an efficient model for multi-class classification and gained an accuracy of 75% for ResNet50, 92% for VGG19, and finally 93% for Xception. Although Xception and VGG19's performances were identical, Xception proved to be more efficient with its higher precision, recall, and f-1 scores. Finally, we have employed Explainable AI on each of our utilized model which adds interpretability to our study. Furthermore, we have conducted a comprehensive comparison of the model's explanations and the study revealed that Xception is more precise in indicating the actual features that are responsible for a model's predictions.This addition of explainable AI will benefit the medical professionals greatly as they will get to visualize how a model makes its prediction and won't have to trust our developed machine-learning models blindly.
Collapse
|
56
|
Constantinou M, Exarchos T, Vrahatis AG, Vlamos P. COVID-19 Classification on Chest X-ray Images Using Deep Learning Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032035. [PMID: 36767399 PMCID: PMC9915705 DOI: 10.3390/ijerph20032035] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/27/2023]
Abstract
Since December 2019, the coronavirus disease has significantly affected millions of people. Given the effect this disease has on the pulmonary systems of humans, there is a need for chest radiographic imaging (CXR) for monitoring the disease and preventing further deaths. Several studies have been shown that Deep Learning models can achieve promising results for COVID-19 diagnosis towards the CXR perspective. In this study, five deep learning models were analyzed and evaluated with the aim of identifying COVID-19 from chest X-ray images. The scope of this study is to highlight the significance and potential of individual deep learning models in COVID-19 CXR images. More specifically, we utilized the ResNet50, ResNet101, DenseNet121, DenseNet169 and InceptionV3 using Transfer Learning. All models were trained and validated on the largest publicly available repository for COVID-19 CXR images. Furthermore, they were evaluated on unknown data that was not used for training or validation, authenticating their performance and clarifying their usage in a medical scenario. All models achieved satisfactory performance where ResNet101 was the superior model achieving 96% in Precision, Recall and Accuracy, respectively. Our outcomes show the potential of deep learning models on COVID-19 medical offering a promising way for the deeper understanding of COVID-19.
Collapse
|
57
|
Deep Learning Convolutional Neural Network for SARS-CoV-2 Detection Using Chest X-Ray Images. ACTA INFORMATICA PRAGENSIA 2023. [DOI: 10.18267/j.aip.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
|
58
|
Balan E, Saraniya O. Novel neural network architecture using sharpened cosine similarity for robust classification of Covid-19, pneumonia and tuberculosis diseases from X-rays. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023. [DOI: 10.3233/jifs-222840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
COVID-19 is a rapidly proliferating transmissible virus that substantially impacts the world population. Consequently, there is an increasing demand for fast testing, diagnosis, and treatment. However, there is a growing need for quick testing, diagnosis, and treatment. In order to treat infected individuals, stop the spread of the disease, and cure severe pneumonia, early covid-19 detection is crucial. Along with covid-19, various pneumonia etiologies, including tuberculosis, provide additional difficulties for the medical system. In this study, covid-19, pneumonia, tuberculosis, and other specific diseases are categorized using Sharpened Cosine Similarity Network (SCS-Net) rather than dot products in neural networks. In order to benchmark the SCS-Net, the model’s performance is evaluated on binary class (covid-19 and normal), and four-class (tuberculosis, covid-19, pneumonia, and normal) based X-ray images. The proposed SCS-Net for distinguishing various lung disorders has been successfully validated. In multiclass classification, the proposed SCS-Net succeeded with an accuracy of 94.05% and a Cohen’s kappa score of 90.70% ; in binary class, it achieved an accuracy of 96.67% and its Cohen’s kappa score of 93.70%. According to our investigation, SCS in deep neural networks significantly lowers the test error with lower divergence. SCS significantly increases classification accuracy in neural networks and speeds up training.
Collapse
Affiliation(s)
- Elakkiya Balan
- Department of Electronics and Communication Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, India
| | - O. Saraniya
- Department of Electronics and Communication Engineering, Government College of Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
59
|
Lin C, Huang Y, Wang W, Feng S, Feng S. Lesion detection of chest X-Ray based on scalable attention residual CNN. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:1730-1749. [PMID: 36899506 DOI: 10.3934/mbe.2023079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Most of the research on disease recognition in chest X-rays is limited to segmentation and classification, but the problem of inaccurate recognition in edges and small parts makes doctors spend more time making judgments. In this paper, we propose a lesion detection method based on a scalable attention residual CNN (SAR-CNN), which uses target detection to identify and locate diseases in chest X-rays and greatly improves work efficiency. We designed a multi-convolution feature fusion block (MFFB), tree-structured aggregation module (TSAM), and scalable channel and spatial attention (SCSA), which can effectively alleviate the difficulties in chest X-ray recognition caused by single resolution, weak communication of features of different layers, and lack of attention fusion, respectively. These three modules are embeddable and can be easily combined with other networks. Through a large number of experiments on the largest public lung chest radiograph detection dataset, VinDr-CXR, the mean average precision (mAP) of the proposed method was improved from 12.83% to 15.75% in the case of the PASCAL VOC 2010 standard, with IoU > 0.4, which exceeds the existing mainstream deep learning model. In addition, the proposed model has a lower complexity and faster reasoning speed, which is conducive to the implementation of computer-aided systems and provides referential solutions for relevant communities.
Collapse
Affiliation(s)
- Cong Lin
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
- College of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yiquan Huang
- College of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wenling Wang
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Siling Feng
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Siling Feng
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
60
|
Avila-Ponce de León U, Vazquez-Jimenez A, Cervera A, Resendis-González G, Neri-Rosario D, Resendis-Antonio O. Machine Learning and COVID-19: Lessons from SARS-CoV-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:311-335. [PMID: 37378775 DOI: 10.1007/978-3-031-28012-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Currently, methods in machine learning have opened a significant number of applications to construct classifiers with capacities to recognize, identify, and interpret patterns hidden in massive amounts of data. This technology has been used to solve a variety of social and health issues against coronavirus disease 2019 (COVID-19). In this chapter, we present some supervised and unsupervised machine learning techniques that have contributed in three aspects to supplying information to health authorities and diminishing the deadly effects of the current worldwide outbreak on the population. First is the identification and construction of powerful classifiers capable of predicting severe, moderate, or asymptomatic responses in COVID-19 patients starting from clinical or high-throughput technologies. Second is the identification of groups of patients with similar physiological responses to improve the triage classification and inform treatments. The final aspect is the combination of machine learning methods and schemes from systems biology to link associative studies with mechanistic frameworks. This chapter aims to discuss some practical applications in the use of machine learning techniques to handle data coming from social behavior and high-throughput technologies, associated with COVID-19 evolution.
Collapse
Affiliation(s)
- Ugo Avila-Ponce de León
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Aarón Vazquez-Jimenez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Alejandra Cervera
- Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Galilea Resendis-González
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico.
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| |
Collapse
|
61
|
Kathamuthu ND, Subramaniam S, Le QH, Muthusamy S, Panchal H, Sundararajan SCM, Alrubaie AJ, Zahra MMA. A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications. ADVANCES IN ENGINEERING SOFTWARE (BARKING, LONDON, ENGLAND : 1992) 2023; 175:103317. [PMID: 36311489 PMCID: PMC9595382 DOI: 10.1016/j.advengsoft.2022.103317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 05/26/2023]
Abstract
The Coronavirus (COVID-19) has become a critical and extreme epidemic because of its international dissemination. COVID-19 is the world's most serious health, economic, and survival danger. This disease affects not only a single country but the entire planet due to this infectious disease. Illnesses of Covid-19 spread at a much faster rate than usual influenza cases. Because of its high transmissibility and early diagnosis, it isn't easy to manage COVID-19. The popularly used RT-PCR method for COVID-19 disease diagnosis may provide false negatives. COVID-19 can be detected non-invasively using medical imaging procedures such as chest CT and chest x-ray. Deep learning is the most effective machine learning approach for examining a considerable quantity of chest computed tomography (CT) pictures that can significantly affect Covid-19 screening. Convolutional neural network (CNN) is one of the most popular deep learning techniques right now, and its gaining traction due to its potential to transform several spheres of human life. This research aims to develop conceptual transfer learning enhanced CNN framework models for detecting COVID-19 with CT scan images. Though with minimal datasets, these techniques were demonstrated to be effective in detecting the presence of COVID-19. This proposed research looks into several deep transfer learning-based CNN approaches for detecting the presence of COVID-19 in chest CT images.VGG16, VGG19, Densenet121, InceptionV3, Xception, and Resnet50 are the foundation models used in this work. Each model's performance was evaluated using a confusion matrix and various performance measures such as accuracy, recall, precision, f1-score, loss, and ROC. The VGG16 model performed much better than the other models in this study (98.00 % accuracy). Promising outcomes from experiments have revealed the merits of the proposed model for detecting and monitoring COVID-19 patients. This could help practitioners and academics create a tool to help minimal health professionals decide on the best course of therapy.
Collapse
Affiliation(s)
- Nirmala Devi Kathamuthu
- Department of Computer Science and Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu, India
| | - Shanthi Subramaniam
- Department of Computer Science and Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu, India
| | - Quynh Hoang Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Suresh Muthusamy
- Department of Electronics and Communication Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu, India
| | - Hitesh Panchal
- Department of Mechanical Engineering, Government Engineering College, Patan, Gujarat, India
| | | | - Ali Jawad Alrubaie
- Department of Medical Instrumentation Techniques Engineering, Al- Mustaqbal University College, 51001, Hilla, Iraq
| | - Musaddak Maher Abdul Zahra
- Computer Techniques Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq
- Electrical Engineering Department, College of Engineering, University of Babylon, Hilla, Babil, Iraq
| |
Collapse
|
62
|
Deepak G, Madiajagan M, Kulkarni S, Ahmed AN, Gopatoti A, Ammisetty V. MCSC-Net: COVID-19 detection using deep-Q-neural network classification with RFNN-based hybrid whale optimization. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:483-509. [PMID: 36872839 DOI: 10.3233/xst-221360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND COVID-19 is the most dangerous virus, and its accurate diagnosis saves lives and slows its spread. However, COVID-19 diagnosis takes time and requires trained professionals. Therefore, developing a deep learning (DL) model on low-radiated imaging modalities like chest X-rays (CXRs) is needed. OBJECTIVE The existing DL models failed to diagnose COVID-19 and other lung diseases accurately. This study implements a multi-class CXR segmentation and classification network (MCSC-Net) to detect COVID-19 using CXR images. METHODS Initially, a hybrid median bilateral filter (HMBF) is applied to CXR images to reduce image noise and enhance the COVID-19 infected regions. Then, a skip connection-based residual network-50 (SC-ResNet50) is used to segment (localize) COVID-19 regions. The features from CXRs are further extracted using a robust feature neural network (RFNN). Since the initial features contain joint COVID-19, normal, pneumonia bacterial, and viral properties, the conventional methods fail to separate the class of each disease-based feature. To extract the distinct features of each class, RFNN includes a disease-specific feature separate attention mechanism (DSFSAM). Furthermore, the hunting nature of the Hybrid whale optimization algorithm (HWOA) is used to select the best features in each class. Finally, the deep-Q-neural network (DQNN) classifies CXRs into multiple disease classes. RESULTS The proposed MCSC-Net shows the enhanced accuracy of 99.09% for 2-class, 99.16% for 3-class, and 99.25% for 4-class classification of CXR images compared to other state-of-art approaches. CONCLUSION The proposed MCSC-Net enables to conduct multi-class segmentation and classification tasks applying to CXR images with high accuracy. Thus, together with gold-standard clinical and laboratory tests, this new method is promising to be used in future clinical practice to evaluate patients.
Collapse
Affiliation(s)
- Gerard Deepak
- Department of Computer Science and Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - M Madiajagan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sanjeev Kulkarni
- Department of Information Science and Engineering, Yenepoya Institute of Technology, Mangalore, Karnataka, India
| | - Ahmed Najat Ahmed
- Department of Computer Engineering, Lebanese French University, Erbil, Iraq
| | - Anandbabu Gopatoti
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Veeraswamy Ammisetty
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| |
Collapse
|
63
|
A few-shot approach for COVID-19 screening in standard and portable chest X-ray images. Sci Rep 2022; 12:21511. [PMID: 36513713 PMCID: PMC9745688 DOI: 10.1038/s41598-022-25754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Reliable and effective diagnostic systems are of vital importance for COVID-19, specifically for triage and screening procedures. In this work, a fully automatic diagnostic system based on chest X-ray images (CXR) has been proposed. It relies on the few-shot paradigm, which allows to work with small databases. Furthermore, three components have been added to improve the diagnosis performance: (1) a region proposal network which makes the system focus on the lungs; (2) a novel cost function which adds expert knowledge by giving specific penalties to each misdiagnosis; and (3) an ensembling procedure integrating multiple image comparisons to produce more reliable diagnoses. Moreover, the COVID-SC dataset has been introduced, comprising almost 1100 AnteroPosterior CXR images, namely 439 negative and 653 positive according to the RT-PCR test. Expert radiologists divided the negative images into three categories (normal lungs, COVID-related diseases, and other diseases) and the positive images into four severity levels. This entails the most complete COVID-19 dataset in terms of patient diversity. The proposed system has been compared with state-of-the-art methods in the COVIDGR-1.0 public database, achieving the highest accuracy (81.13% ± 2.76%) and the most robust results. An ablation study proved that each system component contributes to improve the overall performance. The procedure has also been validated on the COVID-SC dataset under different scenarios, with accuracies ranging from 70.81 to 87.40%. In conclusion, our proposal provides a good accuracy appropriate for the early detection of COVID-19.
Collapse
|
64
|
Yan C, Yan Y, Wan Z, Zhang Z, Omberg L, Guinney J, Mooney SD, Malin BA. A Multifaceted benchmarking of synthetic electronic health record generation models. Nat Commun 2022; 13:7609. [PMID: 36494374 PMCID: PMC9734113 DOI: 10.1038/s41467-022-35295-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Synthetic health data have the potential to mitigate privacy concerns in supporting biomedical research and healthcare applications. Modern approaches for data generation continue to evolve and demonstrate remarkable potential. Yet there is a lack of a systematic assessment framework to benchmark methods as they emerge and determine which methods are most appropriate for which use cases. In this work, we introduce a systematic benchmarking framework to appraise key characteristics with respect to utility and privacy metrics. We apply the framework to evaluate synthetic data generation methods for electronic health records data from two large academic medical centers with respect to several use cases. The results illustrate that there is a utility-privacy tradeoff for sharing synthetic health data and further indicate that no method is unequivocally the best on all criteria in each use case, which makes it evident why synthetic data generation methods need to be assessed in context.
Collapse
Affiliation(s)
- Chao Yan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yao Yan
- Sage Bionetworks, Seattle, WA, USA
| | - Zhiyu Wan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ziqi Zhang
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | | | - Justin Guinney
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
- Tempus Labs, Chicago, IL, USA
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA.
| | - Bradley A Malin
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
65
|
Phung KA, Nguyen TT, Wangad N, Baraheem S, Vo ND, Nguyen K. Disease Recognition in X-ray Images with Doctor Consultation-Inspired Model. J Imaging 2022; 8:jimaging8120323. [PMID: 36547488 PMCID: PMC9786084 DOI: 10.3390/jimaging8120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The application of chest X-ray imaging for early disease screening is attracting interest from the computer vision and deep learning community. To date, various deep learning models have been applied in X-ray image analysis. However, models perform inconsistently depending on the dataset. In this paper, we consider each individual model as a medical doctor. We then propose a doctor consultation-inspired method that fuses multiple models. In particular, we consider both early and late fusion mechanisms for consultation. The early fusion mechanism combines the deep learned features from multiple models, whereas the late fusion method combines the confidence scores of all individual models. Experiments on two X-ray imaging datasets demonstrate the superiority of the proposed method relative to baseline. The experimental results also show that early consultation consistently outperforms the late consultation mechanism in both benchmark datasets. In particular, the early doctor consultation-inspired model outperforms all individual models by a large margin, i.e., 3.03 and 1.86 in terms of accuracy in the UIT COVID-19 and chest X-ray datasets, respectively.
Collapse
Affiliation(s)
- Kim Anh Phung
- Department of Computer Science, University of Dayton, Dayton, OH 45469, USA
| | - Thuan Trong Nguyen
- Faculty of Software Engineering, University of Information Technology, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
| | - Nileshkumar Wangad
- Department of Computer Science, University of Dayton, Dayton, OH 45469, USA
| | - Samah Baraheem
- Department of Computer Science, University of Dayton, Dayton, OH 45469, USA
| | - Nguyen D. Vo
- Faculty of Software Engineering, University of Information Technology, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
| | - Khang Nguyen
- Faculty of Software Engineering, University of Information Technology, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
- Correspondence:
| |
Collapse
|
66
|
Mostafa FA, Elrefaei LA, Fouda MM, Hossam A. A Survey on AI Techniques for Thoracic Diseases Diagnosis Using Medical Images. Diagnostics (Basel) 2022; 12:3034. [PMID: 36553041 PMCID: PMC9777249 DOI: 10.3390/diagnostics12123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Thoracic diseases refer to disorders that affect the lungs, heart, and other parts of the rib cage, such as pneumonia, novel coronavirus disease (COVID-19), tuberculosis, cardiomegaly, and fracture. Millions of people die every year from thoracic diseases. Therefore, early detection of these diseases is essential and can save many lives. Earlier, only highly experienced radiologists examined thoracic diseases, but recent developments in image processing and deep learning techniques are opening the door for the automated detection of these diseases. In this paper, we present a comprehensive review including: types of thoracic diseases; examination types of thoracic images; image pre-processing; models of deep learning applied to the detection of thoracic diseases (e.g., pneumonia, COVID-19, edema, fibrosis, tuberculosis, chronic obstructive pulmonary disease (COPD), and lung cancer); transfer learning background knowledge; ensemble learning; and future initiatives for improving the efficacy of deep learning models in applications that detect thoracic diseases. Through this survey paper, researchers may be able to gain an overall and systematic knowledge of deep learning applications in medical thoracic images. The review investigates a performance comparison of various models and a comparison of various datasets.
Collapse
Affiliation(s)
- Fatma A. Mostafa
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| | - Lamiaa A. Elrefaei
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, College of Science and Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Aya Hossam
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| |
Collapse
|
67
|
Guo ZZ, Zheng LX, Huang DT, Yan T, Su QL. RS-FFGAN:Generative adversarial network based on real sample feature fusion for pediatric CXR image data enhancement. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
68
|
Fahmy GA, Abd-Elrahman E, Zorkany M. COVID-19 Detection Using Multimodal and Multi-model Ensemble Based Deep Learning Technique. 2022 39TH NATIONAL RADIO SCIENCE CONFERENCE (NRSC) 2022. [DOI: 10.1109/nrsc57219.2022.9971179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ghazal A. Fahmy
- National Telecommunication Institute (NTI),Cairo 11768,Egypt
| | | | - M. Zorkany
- National Telecommunication Institute (NTI),Cairo 11768,Egypt
| |
Collapse
|
69
|
A Review of Synthetic Image Data and Its Use in Computer Vision. J Imaging 2022; 8:jimaging8110310. [PMID: 36422059 PMCID: PMC9698631 DOI: 10.3390/jimaging8110310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Development of computer vision algorithms using convolutional neural networks and deep learning has necessitated ever greater amounts of annotated and labelled data to produce high performance models. Large, public data sets have been instrumental in pushing forward computer vision by providing the data necessary for training. However, many computer vision applications cannot rely on general image data provided in the available public datasets to train models, instead requiring labelled image data that is not readily available in the public domain on a large scale. At the same time, acquiring such data from the real world can be difficult, costly to obtain, and manual labour intensive to label in large quantities. Because of this, synthetic image data has been pushed to the forefront as a potentially faster and cheaper alternative to collecting and annotating real data. This review provides general overview of types of synthetic image data, as categorised by synthesised output, common methods of synthesising different types of image data, existing applications and logical extensions, performance of synthetic image data in different applications and the associated difficulties in assessing data performance, and areas for further research.
Collapse
|
70
|
Dubey AK, Mohbey KK. Combined Cloud-Based Inference System for the Classification of COVID-19 in CT-Scan and X-Ray Images. NEW GENERATION COMPUTING 2022; 41:61-84. [PMID: 36439302 PMCID: PMC9676871 DOI: 10.1007/s00354-022-00195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In the past few years, most of the work has been done around the classification of covid-19 using different images like CT-scan, X-ray, and ultrasound. But none of that is capable enough to deal with each of these image types on a single common platform and can identify the possibility that a person is suffering from COVID or not. Thus, we realized there should be a platform to identify COVID-19 in CT-scan and X-ray images on the fly. So, to fulfill this need, we proposed an AI model to identify CT-scan and X-ray images from each other and then use this inference to classify them of COVID positive or negative. The proposed model uses the inception architecture under the hood and trains on the open-source extended covid-19 dataset. The dataset consists of plenty of images for both image types and is of size 4 GB. We achieved an accuracy of 100%, average macro-Precision of 100%, average macro-Recall of 100%, average macro f1-score of 100%, and AUC score of 99.6%. Furthermore, in this work, cloud-based architecture is proposed to massively scale and load balance as the Number of user requests rises. As a result, it will deliver a service with minimal latency to all users.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Department of Computer Science, Central University of Rajasthan, Ajmer, India
| | | |
Collapse
|
71
|
Lee KW, Chin RKY. Diverse COVID-19 CT Image-to-Image Translation with Stacked Residual Dropout. Bioengineering (Basel) 2022; 9:698. [PMID: 36421099 PMCID: PMC9688018 DOI: 10.3390/bioengineering9110698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 01/11/2024] Open
Abstract
Machine learning models are renowned for their high dependency on a large corpus of data in solving real-world problems, including the recent COVID-19 pandemic. In practice, data acquisition is an onerous process, especially in medical applications, due to lack of data availability for newly emerged diseases and privacy concerns. This study introduces a data synthesization framework (sRD-GAN) that generates synthetic COVID-19 CT images using a novel stacked-residual dropout mechanism (sRD). sRD-GAN aims to alleviate the problem of data paucity by generating synthetic lung medical images that contain precise radiographic annotations. The sRD mechanism is designed using a regularization-based strategy to facilitate perceptually significant instance-level diversity without content-style attribute disentanglement. Extensive experiments show that sRD-GAN can generate exceptional perceptual realism on COVID-19 CT images examined by an experiment radiologist, with an outstanding Fréchet Inception Distance (FID) of 58.68 and Learned Perceptual Image Patch Similarity (LPIPS) of 0.1370 on the test set. In a benchmarking experiment, sRD-GAN shows superior performance compared to GAN, CycleGAN, and one-to-one CycleGAN. The encouraging results achieved by sRD-GAN in different clinical cases, such as community-acquired pneumonia CT images and COVID-19 in X-ray images, suggest that the proposed method can be easily extended to other similar image synthetization problems.
Collapse
Affiliation(s)
| | - Renee Ka Yin Chin
- Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
72
|
Ubale Kiru M, Belaton B, Chew X, Almotairi KH, Hussein AM, Aminu M. Comparative analysis of some selected generative adversarial network models for image augmentation: a case study of COVID-19 x-ray and CT images. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-220017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the fastest-growing fields in today’s world is data analytics. Data analytics paved the way for a significant number of research and development in various fields including medicine and vaccine development, DNA analysis, artificial intelligence and many more. Data plays a very important role in providing the required results and helps in making critical decisions and predictions. However, ethical and legislative restrictions sometimes make it difficult for scientists to acquire data. For example, during the COVID-19 pandemic, data was very limited due to privacy and regulatory issues. To address data unavailability, data scientists usually leverage machine learning algorithms such as Generative Adversarial Networks (GAN) to augment data from existing samples. Today, there are over 450 algorithms that are designed to re-generate or augment data in case of unavailability of the data. With many algorithms in the market, it is practically impossible to predict which algorithm best fits the problem in question, unless many algorithms are tested. In this study, we select the most common types of GAN algorithms available for image augmentation to generate samples capable of representing a whole data distribution. To test the selected models, we used two unique datasets, namely COVID-19 CT images and COVID-19 X-Ray images. Five different GAN algorithms, namely CGAN, DCGAN, f-GAN, WGAN, and CycleGAN, were selected and applied to the samples to see how each algorithm reacts to the samples. To evaluate their performances, Visual Turing Test (VTT) and Fréchet Inception Distance (FID) were used. The VTT result shows that a human expert can accurately distinguish between different samples that were produced. Hence, CycleGAN scored 80% in CT image dataset and 77% in X-Ray image dataset. In contrast, the FID result revealed that CycleGAN had a high convergence and therefore generated high quality and clearer images on both datasets compared to CGAN, DCGAN, f-GAN, and WGAN. This study concluded that the CycleGAN model is the best when it comes to image augmentation due to its friendliness and high convergence.
Collapse
Affiliation(s)
- Muhammad Ubale Kiru
- School of Computer Science, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Bahari Belaton
- School of Computer Science, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Xinying Chew
- School of Computer Science, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Khaled H. Almotairi
- Computer Engineering Department, Computer and Information System College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad MohdAziz Hussein
- Deanship of E-Learning and Distance Education, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam Aminu
- Faculty of Life Science, Ahmadu Bello University, Zaria-Nigeria
| |
Collapse
|
73
|
Gulakala R, Markert B, Stoffel M. Generative adversarial network based data augmentation for CNN based detection of Covid-19. Sci Rep 2022; 12:19186. [PMID: 36357530 PMCID: PMC9647771 DOI: 10.1038/s41598-022-23692-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Covid-19 has been a global concern since 2019, crippling the world economy and health. Biological diagnostic tools have since been developed to identify the virus from bodily fluids and since the virus causes pneumonia, which results in lung inflammation, the presence of the virus can also be detected using medical imaging by expert radiologists. The success of each diagnostic method is measured by the hit rate for identifying Covid infections. However, the access for people to each diagnosis tool can be limited, depending on the geographic region and, since Covid treatment denotes a race against time, the diagnosis duration plays an important role. Hospitals with X-ray opportunities are widely distributed all over the world, so a method investigating lung X-ray images for possible Covid-19 infections would offer itself. Promising results have been achieved in the literature in automatically detecting the virus using medical images like CT scans and X-rays using supervised artificial neural network algorithms. One of the major drawbacks of supervised learning models is that they require enormous amounts of data to train, and generalize on new data. In this study, we develop a Swish activated, Instance and Batch normalized Residual U-Net GAN with dense blocks and skip connections to create synthetic and augmented data for training. The proposed GAN architecture, due to the presence of instance normalization and swish activation, can deal with the randomness of luminosity, that arises due to different sources of X-ray images better than the classical architecture and generate realistic-looking synthetic data. Also, the radiology equipment is not generally computationally efficient. They cannot efficiently run state-of-the-art deep neural networks such as DenseNet and ResNet effectively. Hence, we propose a novel CNN architecture that is 40% lighter and more accurate than state-of-the-art CNN networks. Multi-class classification of the three classes of chest X-rays (CXR), ie Covid-19, healthy and Pneumonia, is performed using the proposed model which had an extremely high test accuracy of 99.2% which has not been achieved in any previous studies in the literature. Based on the mentioned criteria for developing Corona infection diagnosis, in the present study, an Artificial Intelligence based method is proposed, resulting in a rapid diagnostic tool for Covid infections based on generative adversarial and convolutional neural networks. The benefit will be a high accuracy of lung infection identification with 99% accuracy. This could lead to a support tool that helps in rapid diagnosis, and an accessible Covid identification method using CXR images.
Collapse
Affiliation(s)
- Rutwik Gulakala
- grid.1957.a0000 0001 0728 696XInstitute of General Mechanics, RWTH Aachen University, Aachen, Germany
| | - Bernd Markert
- grid.1957.a0000 0001 0728 696XInstitute of General Mechanics, RWTH Aachen University, Aachen, Germany
| | - Marcus Stoffel
- grid.1957.a0000 0001 0728 696XInstitute of General Mechanics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
74
|
Roy S, Tyagi M, Bansal V, Jain V. SVD-CLAHE boosting and balanced loss function for Covid-19 detection from an imbalanced Chest X-Ray dataset. Comput Biol Med 2022; 150:106092. [PMID: 36208598 PMCID: PMC9514969 DOI: 10.1016/j.compbiomed.2022.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/15/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022]
Abstract
Covid-19 disease has had a disastrous effect on the health of the global population, for the last two years. Automatic early detection of Covid-19 disease from Chest X-Ray (CXR) images is a very crucial step for human survival against Covid-19. In this paper, we propose a novel data-augmentation technique, called SVD-CLAHE Boosting and a novel loss function Balanced Weighted Categorical Cross Entropy (BWCCE), in order to detect Covid 19 disease efficiently from a highly class-imbalanced Chest X-Ray image dataset. Our proposed SVD-CLAHE Boosting method is comprised of both oversampling and under-sampling methods. First, a novel Singular Value Decomposition (SVD) based contrast enhancement and Contrast Limited Adaptive Histogram Equalization (CLAHE) methods are employed for oversampling the data in minor classes. Simultaneously, a Random Under Sampling (RUS) method is incorporated in major classes, so that the number of images per class will be more balanced. Thereafter, Balanced Weighted Categorical Cross Entropy (BWCCE) loss function is proposed in order to further reduce small class imbalance after SVD-CLAHE Boosting. Experimental results reveal that ResNet-50 model on the augmented dataset (by SVD-CLAHE Boosting), along with BWCCE loss function, achieved 95% F1 score, 94% accuracy, 95% recall, 96% precision and 96% AUC, which is far better than the results by other conventional Convolutional Neural Network (CNN) models like InceptionV3, DenseNet-121, Xception etc. as well as other existing models like Covid-Lite and Covid-Net. Hence, our proposed framework outperforms other existing methods for Covid-19 detection. Furthermore, the same experiment is conducted on VGG-19 model in order to check the validity of our proposed framework. Both ResNet-50 and VGG-19 model are pre-trained on the ImageNet dataset. We publicly shared our proposed augmented dataset on Kaggle website (https://www.kaggle.com/tr1gg3rtrash/balanced-augmented-covid-cxr-dataset), so that any research community can widely utilize this dataset. Our code is available on GitHub website online (https://github.com/MrinalTyagi/SVD-CLAHE-and-BWCCE).
Collapse
Affiliation(s)
- Santanu Roy
- School of Engineering and Technology, Christ (Deemed to be University), Bangalore 560074, India.
| | - Mrinal Tyagi
- Bharati Vidyapeeth's College of Engineering, New Delhi 110063, India.
| | - Vibhuti Bansal
- Bharati Vidyapeeth's College of Engineering, New Delhi 110063, India.
| | - Vikas Jain
- School of Computer Science Engineering and Technology, Bennett University, Greater Noida, UP 201310, India.
| |
Collapse
|
75
|
Jalali Moghaddam M, Ghavipour M. Towards smart diagnostic methods for COVID-19: Review of deep learning for medical imaging. IPEM-TRANSLATION 2022; 3:100008. [PMID: 36312890 PMCID: PMC9597575 DOI: 10.1016/j.ipemt.2022.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
The infectious disease known as COVID-19 has spread dramatically all over the world since December 2019. The fast diagnosis and isolation of infected patients are key factors in slowing down the spread of this virus and better management of the pandemic. Although the CT and X-ray modalities are commonly used for the diagnosis of COVID-19, identifying COVID-19 patients from medical images is a time-consuming and error-prone task. Artificial intelligence has shown to have great potential to speed up and optimize the prognosis and diagnosis process of COVID-19. Herein, we review publications on the application of deep learning (DL) techniques for diagnostics of patients with COVID-19 using CT and X-ray chest images for a period from January 2020 to October 2021. Our review focuses solely on peer-reviewed, well-documented articles. It provides a comprehensive summary of the technical details of models developed in these articles and discusses the challenges in the smart diagnosis of COVID-19 using DL techniques. Based on these challenges, it seems that the effectiveness of the developed models in clinical use needs to be further investigated. This review provides some recommendations to help researchers develop more accurate prediction models.
Collapse
Affiliation(s)
- Marjan Jalali Moghaddam
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mina Ghavipour
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
76
|
Dar JA, Srivastava KK, Ahmed Lone S. Design and development of hybrid optimization enabled deep learning model for COVID-19 detection with comparative analysis with DCNN, BIAT-GRU, XGBoost. Comput Biol Med 2022; 150:106123. [PMID: 36228465 PMCID: PMC9527202 DOI: 10.1016/j.compbiomed.2022.106123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/03/2022] [Accepted: 09/17/2022] [Indexed: 11/03/2022]
Abstract
The recent investigation has started for evaluating the human respiratory sounds, like voice recorded, cough, and breathing from hospital confirmed Covid-19 tools, which differs from healthy person's sound. The cough-based detection of Covid-19 also considered with non-respiratory and respiratory sounds data related with all declared situations. Covid-19 is respiratory disease, which is usually produced by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). However, it is more indispensable to detect the positive cases for reducing further spread of virus, and former treatment of affected patients. With constant rise in the COVID-19 cases, there has been a constant rise in the need of efficient and safe ways to detect an infected individual. With the cases multiplying constantly, the current detecting devices like RT-PCR and fast testing kits have become short in supply. An effectual Covid-19 detection model using devised hybrid Honey Badger Optimization-based Deep Neuro Fuzzy Network (HBO-DNFN) is developed in this paper. Here, the audio signal is considered as input for detecting Covid-19. The gaussian filter is applied to input signal for removing the noises and then feature extraction is performed. The substantial features, like spectral roll-off, spectral bandwidth, Mel frequency cepstral coefficients (MFCC), spectral flatness, zero crossing rate, spectral centroid, mean square energy and spectral contract are extracted for further processing. Finally, DNFN is applied for detecting Covid-19 and the deep leaning model is trained by designed hybrid HBO algorithm. Accordingly, the developed Hybrid HBO method is newly designed by incorporating Honey Badger optimization Algorithm (HBA) and Jaya algorithm. The performance of developed Covid-19 detection model is evaluated using three metrics, like testing accuracy, sensitivity and specificity. The developed Hybrid HBO-based DNFN is outpaced than other existing approaches in terms of testing accuracy, sensitivity and specificity of "0.9176, 0.9218 and 0. 9219". All the test results are validated with the k-fold cross validation method in order to make an assessment of the generalizability of these results. When k-fold value is 9, sensitivity of existing techniques and developed JHBO-based DNFN is 0.8982, 0.8816, 0.8938, and 0.9207. The sensitivity of developed approach is improved by means of gaussian filtering model. The specificity of DCNN is 0.9125, BI-AT-GRU is 0.8926, and XGBoost is 0.9014, while developed JHBO-based DNFN is 0.9219 in k-fold value 9.
Collapse
Affiliation(s)
- Jawad Ahmad Dar
- Department of Computer Science and Engineering, Mansarovar Global University, Madhya Pradesh, India.
| | - Kamal Kr Srivastava
- Department of Computer Science and Engineering, Mansarovar Global University, Madhya Pradesh, India.
| | - Sajaad Ahmed Lone
- Department of Computer Science and Engineering, Islamic University of Science and Technology, Kashmir, India.
| |
Collapse
|
77
|
Wang Y, Hargreaves CA. A Review Study of the Deep Learning Techniques used for the Classification of Chest Radiological Images for COVID-19 Diagnosis. INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT DATA INSIGHTS 2022. [PMCID: PMC9294035 DOI: 10.1016/j.jjimei.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In the fight against COVID-19, the immediate and accurate screening of infected patients is of great significance. Chest X-Ray (CXR) and Computed Tomography (CT) screening play an important role in the diagnosis of COVID-19. Studies showed that changes occur in Chest Radiological images before the beginning of COVID-19 symptoms for some patients, and the symptoms of COVID-19 and other lung diseases can be similar in their very early stages. Further, it is crucial to effectively distinguish COVID-19 patients from healthy people, and patients with other lung diseases as soon as possible, otherwise inaccurate diagnosis may expose more people to the coronavirus. Many researchers have developed end-to-end deep learning techniques for the classification of COVID-19 patients without manual feature engineering. In this paper, we review the different deep learning techniques that have been used to analyze Chest X-Ray and Computed Tomography scans to classify patients with Covid-19. In addition, we also summarize the common public datasets, challenges, limitations, and possible future work. This review paper is extremely valuable as it confirms that (1) Deep Learning models are effective in classifying chest X-Ray images provided the training dataset is sufficiently large. (2) Data augmentation and generative adversarial networks (GANs) solve the small training dataset problem. (3) Transfer learning methods greatly enhanced the extraction and selection of features that were important for chest image classification. (4) Hyperparameter tuning was valuable for increasing the deep learning model accuracies to generally more than 97%. Our review study helps new researchers identify the gaps and opportunities for further or new research.
Collapse
|
78
|
Kumar S, Mallik A. COVID-19 Detection from Chest X-rays Using Trained Output Based Transfer Learning Approach. Neural Process Lett 2022; 55:1-24. [PMID: 36339644 PMCID: PMC9616430 DOI: 10.1007/s11063-022-11060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
The recent Coronavirus disease (COVID-19), which started in 2019, has spread across the globe and become a global pandemic. The efficient and effective COVID-19 detection using chest X-rays helps in early detection and curtailing the spread of the disease. In this paper, we propose a novel Trained Output-based Transfer Learning (TOTL) approach for COVID-19 detection from chest X-rays. We start by preprocessing the Chest X-rays of the patients with techniques like denoising, contrasting, segmentation. These processed images are then fed to several pre-trained transfer learning models like InceptionV3, InceptionResNetV2, Xception, MobileNet, ResNet50, ResNet50V2, VGG16, and VGG19. We fine-tune these models on the processed chest X-rays. Then we further train the outputs of these models using a deep neural network architecture to achieve enhanced performance and aggregate the capabilities of each of them. The proposed model has been tested on four recent COVID-19 chest X-rays datasets by computing several popular evaluation metrics. The performance of our model has also been compared with various deep transfer learning models and several contemporary COVID-19 detection methods. The obtained results demonstrate the efficiency and efficacy of our proposed model.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Computer Science and Engineering, Delhi Technological University, New Delhi, 110042 India
| | - Abhishek Mallik
- Department of Computer Science and Engineering, Delhi Technological University, New Delhi, 110042 India
| |
Collapse
|
79
|
Kong HJ, Kim JY, Moon HM, Park HC, Kim JW, Lim R, Woo J, Fakhri GE, Kim DW, Kim S. Automation of generative adversarial network-based synthetic data-augmentation for maximizing the diagnostic performance with paranasal imaging. Sci Rep 2022; 12:18118. [PMID: 36302815 PMCID: PMC9613909 DOI: 10.1038/s41598-022-22222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/11/2022] [Indexed: 12/30/2022] Open
Abstract
Thus far, there have been no reported specific rules for systematically determining the appropriate augmented sample size to optimize model performance when conducting data augmentation. In this paper, we report on the feasibility of synthetic data augmentation using generative adversarial networks (GAN) by proposing an automation pipeline to find the optimal multiple of data augmentation to achieve the best deep learning-based diagnostic performance in a limited dataset. We used Waters' view radiographs for patients diagnosed with chronic sinusitis to demonstrate the method developed herein. We demonstrate that our approach produces significantly better diagnostic performance parameters than models trained using conventional data augmentation. The deep learning method proposed in this study could be implemented to assist radiologists in improving their diagnosis. Researchers and industry workers could overcome the lack of training data by employing our proposed automation pipeline approach in GAN-based synthetic data augmentation. This is anticipated to provide new means to overcome the shortage of graphic data for algorithm training.
Collapse
Affiliation(s)
- Hyoun-Joong Kong
- grid.412484.f0000 0001 0302 820XTransdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Medical Big Data Research Center, Seoul National University College of Medicine, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea
| | - Jin Youp Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ilsan Hospital, Dongguk University, Gyeonggi, 10326 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program of Medical Informatics, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Hye-Min Moon
- grid.31501.360000 0004 0470 5905Interdisciplinary for Bioengineering, Seoul National University, Jongno-Gu, Seoul, 03080 Republic of Korea
| | - Hae Chan Park
- grid.412480.b0000 0004 0647 3378Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Gyeonggi, 13620 Republic of Korea
| | - Jeong-Whun Kim
- grid.412480.b0000 0004 0647 3378Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Gyeonggi, 13620 Republic of Korea
| | - Ruth Lim
- grid.38142.3c000000041936754XDepartment of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Jonghye Woo
- grid.38142.3c000000041936754XDepartment of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Georges El Fakhri
- grid.38142.3c000000041936754XDepartment of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Dae Woo Kim
- grid.484628.4 0000 0001 0943 2764Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul Metropolitan Government-Seoul National University 20, Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 Republic of Korea
| | - Sungwan Kim
- grid.412484.f0000 0001 0302 820XTransdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.412484.f0000 0001 0302 820XDepartment of Biomedical Engineering, Seoul National University Hospital, Jongno-Gu, Seoul, 03080 Republic of Korea
| |
Collapse
|
80
|
Elen A. Covid-19 detection from radiographs by feature-reinforced ensemble learning. CONCURRENCY AND COMPUTATION : PRACTICE & EXPERIENCE 2022; 34:e7179. [PMID: 35941889 PMCID: PMC9350261 DOI: 10.1002/cpe.7179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 05/27/2023]
Abstract
The coronavirus (Covid-19) epidemic continues to have a negative influence on the global population's well-being and health. Scientists in many fields around the world are working non-stop to find a solution to the prevention of this epidemic. In the field of computer science, this struggle is supported by studies on especially the analysis of X-ray and CT images with artificial intelligence. In this study, two different ensemble learning models, including deep learning and a combination of machine learning methods, are presented for the detection of SARS-CoV-2 infection from X-ray images. The main purpose of this study is to increase the classification ability of Residual Convolutional Neural Network (ResCNN), which is used as a deep learning method, with the assist of machine learning algorithms and extracted features from images. The proposed models were validated on a total of 5228 chest X-ray images categorized as Normal, Pneumonia, and Covid-19. The images in the dataset were sized in four different ways, 32 × 32, 64 × 64, 128 × 128, and 256 × 256, in order to analyze the validity of the proposed models in more detail. These four datasets were partitioned with the 10-fold cross-validation technique and converted into a total of 40 training and test data. Both proposed models use features derived from the ResCNN as the basis and test a certain number of machine learning algorithms with a majority voting technique by dividing them into subsets. In the architecture of the second model, it combines the features extracted from the Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG) methods in addition to the features obtained from the ResCNN. It has been seen that the classification ability of both proposed models is better than the ResCNN in the experiments. In particular, the second model gives a similar classification score even though it is tested with images four-times smaller (e.g., 32 × 32 vs. 128 × 128) than those used in the ResCNN. This shows that the model can give ideal results with lower computational cost.
Collapse
Affiliation(s)
- Abdullah Elen
- Department of Software Engineering, Faculty of Engineering and Natural SciencesBandirma Onyedi Eylul UniversityBandirmaBalikesirTurkey
| |
Collapse
|
81
|
Gopatoti A, P V. Multi-texture features and optimized DeepNet for COVID-19 detection using chest x-ray images. CONCURRENCY AND COMPUTATION : PRACTICE & EXPERIENCE 2022; 34:e7157. [PMID: 36246408 PMCID: PMC9538201 DOI: 10.1002/cpe.7157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
The corona virus disease 2019 (COVID-19) pandemic has a severe influence on population health all over the world. Various methods are developed for detecting the COVID-19, but the process of diagnosing this problem from radiology and radiography images is one of the effective procedures for diagnosing the affected patients. Therefore, a robust and effective multi-local texture features (MLTF)-based feature extraction approach and Improved Weed Sea-based DeepNet (IWS-based DeepNet) approach is proposed for detecting the COVID-19 at an earlier stage. The developed IWS-based DeepNet is developed for detecting COVID-19to optimize the structure of the Deep Convolutional Neural Network (Deep CNN). The IWS is devised by incorporating the Improved Invasive Weed Optimization (IIWO) and Sea Lion Optimization (SLnO), respectively. The noises present in the input chest x-ray (CXR) image are discarded using Region of Interest (RoI) extraction by adaptive thresholding technique. For feature extraction, the proposed MLFT is newly developed by considering various texture features for extracting the best features. Finally, the COVID-19 detection is performed using the proposed IWS-based DeepNet. Furthermore, the proposed technique achieved effective performance in terms of True Positive Rate (TPR), True Negative Rate (TNR), and accuracy with the maximum values of 0.933%, 0.890%, and 0.919%.
Collapse
Affiliation(s)
- Anandbabu Gopatoti
- Department of Electronics and Communication Engineering Hindusthan College of Engineering and Technology Coimbatore Tamil Nadu India
- Anna University Chennai Tamil Nadu India
| | - Vijayalakshmi P
- Department of Electronics and Communication Engineering Hindusthan College of Engineering and Technology Coimbatore Tamil Nadu India
| |
Collapse
|
82
|
Huang Y, Fields KG, Ma Y. A Tutorial on Generative Adversarial Networks with Application to Classification of Imbalanced Data. Stat Anal Data Min 2022; 15:543-552. [PMID: 36199763 PMCID: PMC9529000 DOI: 10.1002/sam.11570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 11/07/2022]
Abstract
A challenge unique to classification model development is imbalanced data. In a binary classification problem, class imbalance occurs when one class, the minority group, contains significantly fewer samples than the other class, the majority group. In imbalanced data, the minority class is often the class of interest (e.g., patients with disease). However, when training a classifier on imbalanced data, the model will exhibit bias towards the majority class and, in extreme cases, may ignore the minority class completely. A common strategy for addressing class imbalance is data augmentation. However, traditional data augmentation methods are associated with overfitting, where the model is fit to the noise in the data. In this tutorial we introduce an advanced method for data augmentation: Generative Adversarial Networks (GANs). The advantages of GANs over traditional data augmentation methods are illustrated using the Breast Cancer Wisconsin study. To promote the adoption of GANs for data augmentation, we present an end-to-end pipeline that encompasses the complete life cycle of a machine learning project along with alternatives and good practices both in the paper and in a separate video. Our code, data, full results and video tutorial are publicly available in the paper's github repository.
Collapse
Affiliation(s)
- Yuxiao Huang
- Data Science, Columbian College of Arts & Sciences, George Washington University, Washington, D.C., U.S.A
| | - Kara G. Fields
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusett, U.S.A
| | - Yan Ma
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, D.C., U.S.A
| |
Collapse
|
83
|
Wu X, Chen Y, Li X, Liu X, Liu Y, Wu Y, Li M, Zhou X, Wang C. IDA-MIL: Classification of Glomerular with Spike-like Projections via Multiple Instance Learning with Instance-level Data Augmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107106. [PMID: 36088891 DOI: 10.1016/j.cmpb.2022.107106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Tiny spike-like projections on the basement membrane of glomeruli are the main pathological feature of membranous nephropathy at stage II (MN II), which is the most significant stage for the diagnosis and treatment of renal disease. Pathological technology is the gold standard in the diagnosis of spike-like and other MNs, and automatic classification of spike-like projection is a crucial step in assisting pathologists in their diagnosis. However, owing to hard-to-label spile-like projections and the scarcity of patient data, classification of glomeruli with spike-like projections based on supervised learning methods is a challenging task. METHOD To overcome the aforementioned problems, the idea of integrating weakly-supervised learning and data augmentation methods is utilized in designing the classification framework. Specifically, a multiple instance learning with instance-level data augmentation (IDA-MIL) method for the classification of glomeruli with spike-like projections is established in this paper. The proposed classification framework first trains the MIL model on a dataset with image-level labels, and the well-trained MIL model is used to extract instances that include spike-like projections in the whole glomerular image. Then, rather than using an image-level generative adversarial network (ImgGAN), an instance-level generative adversarial network (InsGAN) based on the StyleGAN2-ADA model is trained on the spike-like instances obtained by the MIL model and synthesizes new spike-like projection instances. Finally, the synthesized spike-like instances are extended to the training dataset to further improve the classification performance of MIL. RESULTS The designed IDA-MIL model is verified and evaluated from two aspects based on the in-house dataset. On the one hand, the performance comparisons between InsGAN and ImgGAN on five metrics, which involve FID, KID, Precision, Recall and IS, show that InsGAN obtains a better score and can synthesize effective spike-like projections. However, the proposed IDA-MIL model achieves the best classification performance with an accuracy of 0.9405. Then, to make nephrologists believe the inference result of the proposed model, we use heatmap technology to visualize the basis of the model inferences and show the top 4 probability spike-like instances per glomerulus. Furthermore, we analyze the correlation between the disease and the proportion of spike-like instances in bags from historical cases. CONCLUSION Compared with the ImgGAN, the InsGAN can synthesize natural and varied spike-like projections, which results in the classification performance of the MIL model achieving great improvement by adding synthesized instance samples into the training dataset. The heatmap of spike-like inferences and the proportion of spike-like instances can help nephrologists to make a preliminary reliable diagnosis in clinical practice. This work provides a valuable reference for medical image classification with limited data and small-scale lesions based on deep learning.
Collapse
Affiliation(s)
- Xi Wu
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yilin Chen
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Xinyu Li
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Xueyu Liu
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yifei Liu
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yongfei Wu
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China.
| | - Ming Li
- College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi, China.
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Chen Wang
- Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
84
|
Alyafei K, Ahmed R, Abir FF, Chowdhury MEH, Naji KK. A comprehensive review of COVID-19 detection techniques: From laboratory systems to wearable devices. Comput Biol Med 2022; 149:106070. [PMID: 36099862 PMCID: PMC9433350 DOI: 10.1016/j.compbiomed.2022.106070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022]
Abstract
Screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among symptomatic and asymptomatic patients offers unique opportunities for curtailing the transmission of novel coronavirus disease 2019, commonly known as COVID-19. Molecular diagnostic techniques, namely reverse transcription loop-mediated isothermal amplification (RT-LAMP), reverse transcription-polymerase chain reaction (RT-PCR), and immunoassays, have been frequently used to identify COVID-19 infection. Although these techniques are robust and accurate, mass testing of potentially infected individuals has shown difficulty due to the resources, manpower, and costs it entails. Moreover, as these techniques are typically used to test symptomatic patients, healthcare systems have failed to screen asymptomatic patients, whereas the spread of COVID-19 by these asymptomatic individuals has turned into a crucial problem. Besides, respiratory infections or cardiovascular conditions generally demonstrate changes in physiological parameters, namely body temperature, blood pressure, and breathing rate, which signifies the onset of diseases. Such vitals monitoring systems have shown promising results employing artificial intelligence (AI). Therefore, the potential use of wearable devices for monitoring asymptomatic COVID-19 individuals has recently been explored. This work summarizes the efforts that have been made in the domains from laboratory-based testing to asymptomatic patient monitoring via wearable systems.
Collapse
Affiliation(s)
- Khalid Alyafei
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar; Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, AJK, Pakistan
| | - Farhan Fuad Abir
- Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
| | | | | |
Collapse
|
85
|
Karthik R, Menaka R, Hariharan M, Kathiresan GS. AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions. Ing Rech Biomed 2022; 43:486-510. [PMID: 34336141 PMCID: PMC8312058 DOI: 10.1016/j.irbm.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Background and objective In recent years, Artificial Intelligence has had an evident impact on the way research addresses challenges in different domains. It has proven to be a huge asset, especially in the medical field, allowing for time-efficient and reliable solutions. This research aims to spotlight the impact of deep learning and machine learning models in the detection of COVID-19 from medical images. This is achieved by conducting a review of the state-of-the-art approaches proposed by the recent works in this field. Methods The main focus of this study is the recent developments of classification and segmentation approaches to image-based COVID-19 detection. The study reviews 140 research papers published in different academic research databases. These papers have been screened and filtered based on specified criteria, to acquire insights prudent to image-based COVID-19 detection. Results The methods discussed in this review include different types of imaging modality, predominantly X-rays and CT scans. These modalities are used for classification and segmentation tasks as well. This review seeks to categorize and discuss the different deep learning and machine learning architectures employed for these tasks, based on the imaging modality utilized. It also hints at other possible deep learning and machine learning architectures that can be proposed for better results towards COVID-19 detection. Along with that, a detailed overview of the emerging trends and breakthroughs in Artificial Intelligence-based COVID-19 detection has been discussed as well. Conclusion This work concludes by stipulating the technical and non-technical challenges faced by researchers and illustrates the advantages of image-based COVID-19 detection with Artificial Intelligence techniques.
Collapse
Affiliation(s)
- R Karthik
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - R Menaka
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - M Hariharan
- School of Computing Sciences and Engineering, Vellore Institute of Technology, Chennai, India
| | - G S Kathiresan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
86
|
Alsaaidah B, Al-Hadidi MR, Al-Nsour H, Masadeh R, AlZubi N. Comprehensive Survey of Machine Learning Systems for COVID-19 Detection. J Imaging 2022; 8:267. [PMID: 36286361 PMCID: PMC9604704 DOI: 10.3390/jimaging8100267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023] Open
Abstract
The last two years are considered the most crucial and critical period of the COVID-19 pandemic affecting most life aspects worldwide. This virus spreads quickly within a short period, increasing the fatality rate associated with the virus. From a clinical perspective, several diagnosis methods are carried out for early detection to avoid virus propagation. However, the capabilities of these methods are limited and have various associated challenges. Consequently, many studies have been performed for COVID-19 automated detection without involving manual intervention and allowing an accurate and fast decision. As is the case with other diseases and medical issues, Artificial Intelligence (AI) provides the medical community with potential technical solutions that help doctors and radiologists diagnose based on chest images. In this paper, a comprehensive review of the mentioned AI-based detection solution proposals is conducted. More than 200 papers are reviewed and analyzed, and 145 articles have been extensively examined to specify the proposed AI mechanisms with chest medical images. A comprehensive examination of the associated advantages and shortcomings is illustrated and summarized. Several findings are concluded as a result of a deep analysis of all the previous works using machine learning for COVID-19 detection, segmentation, and classification.
Collapse
Affiliation(s)
- Bayan Alsaaidah
- Department of Computer Science, Prince Abdullah bin Ghazi Faculty of Information Technology and Communications, Al-Balqa Applied University, Salt 19117, Jordan
| | - Moh’d Rasoul Al-Hadidi
- Department of Electrical Engineering, Electrical Power Engineering and Computer Engineering, Faculty of Engineering, Al-Balqa Applied University, Salt 19117, Jordan
| | - Heba Al-Nsour
- Department of Computer Science, Prince Abdullah bin Ghazi Faculty of Information Technology and Communications, Al-Balqa Applied University, Salt 19117, Jordan
| | - Raja Masadeh
- Computer Science Department, The World Islamic Sciences and Education University, Amman 11947, Jordan
| | - Nael AlZubi
- Department of Electrical Engineering, Electrical Power Engineering and Computer Engineering, Faculty of Engineering, Al-Balqa Applied University, Salt 19117, Jordan
| |
Collapse
|
87
|
Malik H, Anees T, Din M, Naeem A. CDC_Net: multi-classification convolutional neural network model for detection of COVID-19, pneumothorax, pneumonia, lung Cancer, and tuberculosis using chest X-rays. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:13855-13880. [PMID: 36157356 PMCID: PMC9485026 DOI: 10.1007/s11042-022-13843-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/30/2022] [Accepted: 09/06/2022] [Indexed: 05/27/2023]
Abstract
Coronavirus (COVID-19) has adversely harmed the healthcare system and economy throughout the world. COVID-19 has similar symptoms as other chest disorders such as lung cancer (LC), pneumothorax, tuberculosis (TB), and pneumonia, which might mislead the clinical professionals in detecting a new variant of flu called coronavirus. This motivates us to design a model to classify multi-chest infections. A chest x-ray is the most ubiquitous disease diagnosis process in medical practice. As a result, chest x-ray examinations are the primary diagnostic tool for all of these chest infections. For the sake of saving human lives, paramedics and researchers are working tirelessly to establish a precise and reliable method for diagnosing the disease COVID-19 at an early stage. However, COVID-19's medical diagnosis is exceedingly idiosyncratic and varied. A multi-classification method based on the deep learning (DL) model is developed and tested in this work to automatically classify the COVID-19, LC, pneumothorax, TB, and pneumonia from chest x-ray images. COVID-19 and other chest tract disorders are diagnosed using a convolutional neural network (CNN) model called CDC Net that incorporates residual network thoughts and dilated convolution. For this study, we used this model in conjunction with publically available benchmark data to identify these diseases. For the first time, a single deep learning model has been used to diagnose five different chest ailments. In terms of classification accuracy, recall, precision, and f1-score, we compared the proposed model to three CNN-based pre-trained models, such as Vgg-19, ResNet-50, and inception v3. An AUC of 0.9953 was attained by the CDC Net when it came to identifying various chest diseases (with an accuracy of 99.39%, a recall of 98.13%, and a precision of 99.42%). Moreover, CNN-based pre-trained models Vgg-19, ResNet-50, and inception v3 achieved accuracy in classifying multi-chest diseases are 95.61%, 96.15%, and 95.16%, respectively. Using chest x-rays, the proposed model was found to be highly accurate in diagnosing chest diseases. Based on our testing data set, the proposed model shows significant performance as compared to its competitor methods. Statistical analyses of the datasets using McNemar's, and ANOVA tests also showed the robustness of the proposed model.
Collapse
Affiliation(s)
- Hassaan Malik
- Department of Computer Science, University of Management and Technology, Lahore, 54000 Pakistan
| | - Tayyaba Anees
- Department of Software Engineering, University of Management and Technology, Lahore, 54000 Pakistan
| | - Muizzud Din
- Department of Computer Science, Ghazi University, Dera Ghazi Khan, 32200 Pakistan
| | - Ahmad Naeem
- Department of Computer Science, University of Management and Technology, Lahore, 54000 Pakistan
| |
Collapse
|
88
|
Bhosale YH, Patnaik KS. Application of Deep Learning Techniques in Diagnosis of Covid-19 (Coronavirus): A Systematic Review. Neural Process Lett 2022; 55:1-53. [PMID: 36158520 PMCID: PMC9483290 DOI: 10.1007/s11063-022-11023-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
Abstract
Covid-19 is now one of the most incredibly intense and severe illnesses of the twentieth century. Covid-19 has already endangered the lives of millions of people worldwide due to its acute pulmonary effects. Image-based diagnostic techniques like X-ray, CT, and ultrasound are commonly employed to get a quick and reliable clinical condition. Covid-19 identification out of such clinical scans is exceedingly time-consuming, labor-intensive, and susceptible to silly intervention. As a result, radiography imaging approaches using Deep Learning (DL) are consistently employed to achieve great results. Various artificial intelligence-based systems have been developed for the early prediction of coronavirus using radiography pictures. Specific DL methods such as CNN and RNN noticeably extract extremely critical characteristics, primarily in diagnostic imaging. Recent coronavirus studies have used these techniques to utilize radiography image scans significantly. The disease, as well as the present pandemic, was studied using public and private data. A total of 64 pre-trained and custom DL models concerning imaging modality as taxonomies are selected from the studied articles. The constraints relevant to DL-based techniques are the sample selection, network architecture, training with minimal annotated database, and security issues. This includes evaluating causal agents, pathophysiology, immunological reactions, and epidemiological illness. DL-based Covid-19 detection systems are the key focus of this review article. Covid-19 work is intended to be accelerated as a result of this study.
Collapse
Affiliation(s)
- Yogesh H. Bhosale
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 India
| | - K. Sridhar Patnaik
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 India
| |
Collapse
|
89
|
Puttagunta M, Subban R, C NKB. A Novel COVID-19 Detection Model Based on DCGAN and Deep Transfer Learning. PROCEDIA COMPUTER SCIENCE 2022; 204:65-72. [PMID: 36120410 PMCID: PMC9464299 DOI: 10.1016/j.procs.2022.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A continuing outbreak of pneumonia-related disease novel, Coronavirus has been recorded worldwide and has become a global health problem. This research aims to generate a constructive training data set for a neural network to detect COVID-19 from X-ray images. The creation of medical images is an issue in the field of deep learning. Medical image datasets are frequently unbalanced; using such datasets to train a deep neural network model to correctly classify medical conditions typically leads to over-fitting the data on majority class samples. Data augmentation is commonly used in training data to expand the dataset. Data augmentation may not be beneficial in medical domains with limited data. This paper proposed a data generation model using a Deep Convolutional Generative adversarial network (DCGAN), which generates fake instances with comparable properties to the original data. The model's Fréchet Distance of Inception (FID) was 23.78, close to the original data. Deep transfer learning-based models VGG-16, Inceptionv3 and MobilNet, were chosen as the backbone for COVID-19 detection. The present study aims to increase the dataset using the DCGAN data augmentation technique to improve classifier performance.
Collapse
Affiliation(s)
| | - Ravi Subban
- Dept of Computer Science, School of Engineering and Technology, Pondicherry University, India
| | - Nelson Kennedy Babu C
- Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
90
|
Pan T, Chen J, Zhang T, Liu S, He S, Lv H. Generative adversarial network in mechanical fault diagnosis under small sample: A systematic review on applications and future perspectives. ISA TRANSACTIONS 2022; 128:1-10. [PMID: 34953580 DOI: 10.1016/j.isatra.2021.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Intelligent fault diagnosis has been a promising way for condition-based maintenance. However, the small sample problem has limited the application of intelligent fault diagnosis into real industrial manufacturing. Recently, the generative adversarial network (GAN) is considered as a promising way to solve the problem of small sample. For this purpose, this paper reviews the related research results on small-sample-focused fault diagnosis methods using the GAN. First, a systematic description of the GAN, and its variants, including structure-focused and loss-focused improvements, are introduced in the paper. Second, the paper reviews the related GAN-based intelligent fault diagnosis methods and classifies these studies into three main categories, deep generative adversarial networks for data augmentation, adversarial training for transfer learning, and other application scenarios (including GAN for anomaly detection and semi-supervised adversarial learning). Finally, the paper discusses several limitations of existing studies and points out future perspectives of GAN-based applications.
Collapse
Affiliation(s)
- Tongyang Pan
- State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinglong Chen
- State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tianci Zhang
- State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shen Liu
- State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuilong He
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Haixin Lv
- State Key Laboratory for Manufacturing and Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
91
|
Hazra D, Byun YC, Kim WJ. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:107019. [PMID: 35878483 DOI: 10.1016/j.cmpb.2022.107019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/13/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Leukemia represents 30% of all pediatric cancers and is considered the most common malignancy affecting adults and children. Cell differential count obtained from bone marrow aspirate smears is crucial for diagnosing hematologic diseases. Classification of these cell types is an essential task towards analyzing the disease, but it is time-consuming and requires intensive manual intervention. While machine learning has shown excellent outcomes in automating medical diagnosis, it needs ample data to build an efficient model for real-world tasks. This paper aims to generate synthetic data to enhance the classification accuracy of cells obtained from bone marrow aspirate smears. METHODS A three-stage architecture has been proposed. We first collaborate with experts from the medical domain to prepare a dataset that consolidates microscopic cell images obtained from bone marrow aspirate smears from three different sources. The second stage involves a generative adversarial networks (GAN) model to generate synthetic microscopic cell images. We propose a GAN model consisting of three networks; generator discriminator and classifier. We train the GAN model with the loss function of Wasserstein GAN with gradient penalty (WGAN-GP). Since our GAN has an additional classifier and was trained using WGAN-GP, we named our model C-WGAN-GP. In the third stage, we propose a sequential convolutional neural network (CNN) to classify cells in the original and synthetic dataset to demonstrate how generating synthetic data and utilizing a simple sequential CNN model can enhance the accuracy of cell classification. RESULTS We validated the proposed C-WGAN-GP and sequential CNN model with various evaluation metrics and achieved a classification accuracy of 96.98% using the synthetic dataset. We have presented each cell type's accuracy, specificity, and sensitivity results. The sequential CNN model achieves the highest accuracy for neutrophils with an accuracy rate of 97.5%. The highest value for sensitivity and specificity are 97.1% and 97%. Our proposed GAN model achieved an inception score of 14.52 ± 0.10, significantly better than the existing GAN models. CONCLUSIONS Using three network GAN architecture produced more realistic synthetic data than existing models. Sequential CNN model with the synthetic data achieved higher classification accuracy than the original data.
Collapse
Affiliation(s)
- Debapriya Hazra
- Department of Computer Engineering, Jeju National University, Jeju 63243, South Korea
| | - Yung-Cheol Byun
- Department of Computer Engineering, Jeju National University, Jeju 63243, South Korea.
| | - Woo Jin Kim
- Department of Laboratory Medicine, EONE Laboratories, Incheon 22014, South Korea
| |
Collapse
|
92
|
Sarv Ahrabi S, Momenzadeh A, Baccarelli E, Scarpiniti M, Piazzo L. How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study. THE JOURNAL OF SUPERCOMPUTING 2022; 79:2850-2881. [PMID: 36042937 PMCID: PMC9411851 DOI: 10.1007/s11227-022-04775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Bidirectional generative adversarial networks (BiGANs) and cycle generative adversarial networks (CycleGANs) are two emerging machine learning models that, up to now, have been used as generative models, i.e., to generate output data sampled from a target probability distribution. However, these models are also equipped with encoding modules, which, after weakly supervised training, could be, in principle, exploited for the extraction of hidden features from the input data. At the present time, how these extracted features could be effectively exploited for classification tasks is still an unexplored field. Hence, motivated by this consideration, in this paper, we develop and numerically test the performance of a novel inference engine that relies on the exploitation of BiGAN and CycleGAN-learned hidden features for the detection of COVID-19 disease from other lung diseases in computer tomography (CT) scans. In this respect, the main contributions of the paper are twofold. First, we develop a kernel density estimation (KDE)-based inference method, which, in the training phase, leverages the hidden features extracted by BiGANs and CycleGANs for estimating the (a priori unknown) probability density function (PDF) of the CT scans of COVID-19 patients and, then, in the inference phase, uses it as a target COVID-PDF for the detection of COVID diseases. As a second major contribution, we numerically evaluate and compare the classification accuracies of the implemented BiGAN and CycleGAN models against the ones of some state-of-the-art methods, which rely on the unsupervised training of convolutional autoencoders (CAEs) for attaining feature extraction. The performance comparisons are carried out by considering a spectrum of different training loss functions and distance metrics. The obtained classification accuracies of the proposed CycleGAN-based (resp., BiGAN-based) models outperform the corresponding ones of the considered benchmark CAE-based models of about 16% (resp., 14%).
Collapse
Affiliation(s)
- Sima Sarv Ahrabi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Alireza Momenzadeh
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Enzo Baccarelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Michele Scarpiniti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| | - Lorenzo Piazzo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University or Rome, Via Eudossiana, 18, 00184 Roma, Italy
| |
Collapse
|
93
|
Röglin J, Ziegeler K, Kube J, König F, Hermann KG, Ortmann S. Improving classification results on a small medical dataset using a GAN; An outlook for dealing with rare disease datasets. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2022.858874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For clinical decision support systems, automated classification algorithms on medical image data have become more important in the past. For such computer vision problems, deep convolutional neural networks (DCNNs) have made breakthroughs. These often require large, annotated, and privacy-cleared datasets as a prerequisite for gaining high-quality results. This proves to be difficult with rare diseases due to limited incidences. Therefore, it is hard to sensitize clinical decision support systems to identify these diseases at an early stage. It has been shown several times, that synthetic data can improve the results of clinical decision support systems. At the same time, the greatest problem for the generation of these synthetic images is the data basis. In this paper, we present four different methods to generate synthetic data from a small dataset. The images are from 2D magnetic resonance tomography of the spine. The annotation resulted in 540 healthy, 47 conspicuously non-pathological, and 106 conspicuously pathological vertebrae. Four methods are presented to obtain optimal generation results in each of these classes. The obtained generation results are then evaluated with a classification net. With this procedure, we showed that adding synthetic annotated data has a positive impact on the classification results of the original data. In addition, one of our methods is appropriate to generate synthetic image data from <50 images. Thus, we found a general approach for dealing with small datasets in rare diseases, which can be used to build sensitized clinical decision support systems to detect and treat these diseases at an early stage.
Collapse
|
94
|
Karpiel I, Starcevic A, Urzeniczok M. Database and AI Diagnostic Tools Improve Understanding of Lung Damage, Correlation of Pulmonary Disease and Brain Damage in COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166312. [PMID: 36016071 PMCID: PMC9414394 DOI: 10.3390/s22166312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic caused a sharp increase in the interest in artificial intelligence (AI) as a tool supporting the work of doctors in difficult conditions and providing early detection of the implications of the disease. Recent studies have shown that AI has been successfully applied in the healthcare sector. The objective of this paper is to perform a systematic review to summarize the electroencephalogram (EEG) findings in patients with coronavirus disease (COVID-19) and databases and tools used in artificial intelligence algorithms, supporting the diagnosis and correlation between lung disease and brain damage, and lung damage. Available search tools containing scientific publications, such as PubMed and Google Scholar, were comprehensively evaluated and searched with open databases and tools used in AI algorithms. This work aimed to collect papers from the period of January 2019-May 2022 including in their resources the database from which data necessary for further development of algorithms supporting the diagnosis of the respiratory system can be downloaded and the correlation between lung disease and brain damage can be evaluated. The 10 articles which show the most interesting AI algorithms, trained by using open databases and associated with lung diseases, were included for review with 12 articles related to EEGs, which have/or may be related with lung diseases.
Collapse
Affiliation(s)
- Ilona Karpiel
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
- Correspondence:
| | - Ana Starcevic
- Laboratory for Multimodal Neuroimaging, Institute of Anatomy, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirella Urzeniczok
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
| |
Collapse
|
95
|
Mahaboob Basha S, Lira Neto AV, Alshathri S, Elaziz MA, Hashmitha Mohisin S, De Albuquerque VHC. Multithreshold Segmentation and Machine Learning Based Approach to Differentiate COVID-19 from Viral Pneumonia. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2728866. [PMID: 36039344 PMCID: PMC9420061 DOI: 10.1155/2022/2728866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Coronavirus disease (COVID-19) has created an unprecedented devastation and the loss of millions of lives globally. Contagious nature and fatalities invariably pose challenges to physicians and healthcare support systems. Clinical diagnostic evaluation using reverse transcription-polymerase chain reaction and other approaches are currently in use. The Chest X-ray (CXR) and CT images were effectively utilized in screening purposes that could provide relevant data on localized regions affected by the infection. A step towards automated screening and diagnosis using CXR and CT could be of considerable importance in these turbulent times. The main objective is to probe a simple threshold-based segmentation approach to identify possible infection regions in CXR images and investigate intensity-based, wavelet transform (WT)-based, and Laws based texture features with statistical measures. Further feature selection strategy using Random Forest (RF) then selected features used to create Machine Learning (ML) representation with Support Vector Machine (SVM) and a Random Forest (RF) to make different COVID-19 from viral pneumonia (VP). The results obtained clearly indicate that the intensity and WT-based features vary in the two pathologies that are better differentiated with the combined features trained using SVM and RF classifiers. Classifier performance measures like an Area Under the Curve (AUC) of 0.97 and by and large classification accuracy of 0.9 using the RF model clearly indicate that the methodology implemented is useful in characterizing COVID-19 and Viral Pneumonia.
Collapse
Affiliation(s)
- Shaik Mahaboob Basha
- Department of Electronics and Communication Engineering, Geethanjali Institute of Science and Technology, Nellore, India
- Graduation Program in Telecommunication Engineering, Federal Institute of Ceará, Fortaleza, CE, Brazil
| | - Aloísio Vieira Lira Neto
- Graduation Program in Telecommunication Engineering, Federal Institute of Ceará, Fortaleza, CE, Brazil
| | - Samah Alshathri
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Abd Elaziz
- Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt
| | - Shaik Hashmitha Mohisin
- Department of Electrical and Electronics Engineering, National Institute of Technology Calicut, Kozhikode 673601, India
| | | |
Collapse
|
96
|
La Salvia M, Torti E, Leon R, Fabelo H, Ortega S, Martinez-Vega B, Callico GM, Leporati F. Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:6145. [PMID: 36015906 PMCID: PMC9416026 DOI: 10.3390/s22166145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, researchers designed several artificial intelligence solutions for healthcare applications, which usually evolved into functional solutions for clinical practice. Furthermore, deep learning (DL) methods are well-suited to process the broad amounts of data acquired by wearable devices, smartphones, and other sensors employed in different medical domains. Conceived to serve the role of diagnostic tool and surgical guidance, hyperspectral images emerged as a non-contact, non-ionizing, and label-free technology. However, the lack of large datasets to efficiently train the models limits DL applications in the medical field. Hence, its usage with hyperspectral images is still at an early stage. We propose a deep convolutional generative adversarial network to generate synthetic hyperspectral images of epidermal lesions, targeting skin cancer diagnosis, and overcome small-sized datasets challenges to train DL architectures. Experimental results show the effectiveness of the proposed framework, capable of generating synthetic data to train DL classifiers.
Collapse
Affiliation(s)
- Marco La Salvia
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Emanuele Torti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Raquel Leon
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
| | - Himar Fabelo
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
| | - Samuel Ortega
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), 6122 Tromsø, Norway
| | - Beatriz Martinez-Vega
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
| | - Gustavo M. Callico
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
| | - Francesco Leporati
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
97
|
Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1577778. [PMID: 35990162 PMCID: PMC9388256 DOI: 10.1155/2022/1577778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value.
Collapse
|
98
|
Sharma A, Mishra PK. Image enhancement techniques on deep learning approaches for automated diagnosis of COVID-19 features using CXR images. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:42649-42690. [PMID: 35938148 PMCID: PMC9340712 DOI: 10.1007/s11042-022-13486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/16/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The outbreak of novel coronavirus (COVID-19) disease has infected more than 135.6 million people globally. For its early diagnosis, researchers consider chest X-ray examinations as a standard screening technique in addition to RT-PCR test. Majority of research work till date focused only on application of deep learning approaches that is relevant but lacking in better pre-processing of CXR images. Towards this direction, this study aims to explore cumulative effects of image denoising and enhancement approaches on the performance of deep learning approaches. Regarding pre-processing, suitable methods for X-ray images, Histogram equalization, CLAHE and gamma correction have been tested individually and along with adaptive median filter, median filter, total variation filter and gaussian denoising filters. Proposed study compared eleven combinations in exploration of most coherent approach in greedy manner. For more robust analysis, we compared ten CNN architectures for performance evaluation with and without enhancement approaches. These models are InceptionV3, InceptionResNetV2, MobileNet, MobileNetV2, Vgg19, NASNetMobile, ResNet101, DenseNet121, DenseNet169, DenseNet201. These models are trained in 4-way (COVID-19 pneumonia vs Viral vs Bacterial pneumonia vs Normal) and 3-way classification scenario (COVID-19 vs Pneumonia vs Normal) on two benchmark datasets. The proposed methodology determines with TVF + Gamma, models achieve higher classification accuracy and sensitivity. In 4-way classification MobileNet with TVF + Gamma achieves top accuracy of 93.25% with 1.91% improvement in accuracy score, COVID-19 sensitivity of 98.72% and F1-score of 92.14%. In 3-way classification our DenseNet201 with TVF + Gamma gains accuracy of 91.10% with improvement of 1.47%, COVID-19 sensitivity of 100% and F1-score of 91.09%. Proposed study concludes that deep learning modes with gamma correction and TVF + Gamma has superior performance compared to state-of-the-art models. This not only minimizes overlapping between COVID-19 and virus pneumonia but advantageous in time required to converge best possible results.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Pramod Kumar Mishra
- Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
99
|
Sasikaladevi N. Delaunay triangulation based intelligent system for the diagnosis of covid from the low radiation CXR images. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2022; 14:1-10. [PMID: 37360780 PMCID: PMC10112999 DOI: 10.1007/s12652-022-04329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/11/2022] [Indexed: 06/28/2023]
Abstract
Covid-19 is a viral infection that causes a profound impact on the lives of the World population. It is a global pandemic spreading across the world in a faster way. It made a global impact on the health, economy, and education system in all the countries. As it is a rapidly spreading disease, prevention demands a fast and accurate diagnosis system. In a highly densely populated country, the demand for fast and affordable early diagnosis is required to reduce the disaster. Within this diagnosis time, the infection spreads rapidly and worsens the infected person's status. To provide a faster and more affordable early diagnosis of covid, posterior-anterior chest radiographs (CXR) are used. Diagnosis of covid from CXR is challenging due to the images' interclass similarity and intraclass variation. This study proposes a deep learning-based robust early diagnosis method for covid. To balance the intraclass variation and interclass similarity in CXR images, the deep fused Delaunay triangulation (DT) is proposed as the CXR has low radiation and unbalanced quality images. The deep features are to be extracted to increase the robustness of the diagnosis method. Without segmentation, the proposed DT algorithm achieves the accurate visualization of the suspicious region in the CXR. The proposed model is trained and tested by the largest benchmark covid-19 radiology dataset with 3616 covid CXR images and 3500 standard CXR images. The performance of the proposed system is analyzed in terms of accuracy, sensitivity, specificity, and AUC. The proposed system yields the highest validation accuracy.
Collapse
Affiliation(s)
- N. Sasikaladevi
- Dept. of CSE, School of Computing, SASTRA Deemed University, Thanjavur, TN India
| |
Collapse
|
100
|
Latif G, Morsy H, Hassan A, Alghazo J. Novel Coronavirus and Common Pneumonia Detection from CT Scans Using Deep Learning-Based Extracted Features. Viruses 2022; 14:v14081667. [PMID: 36016288 PMCID: PMC9414828 DOI: 10.3390/v14081667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
COVID-19 which was announced as a pandemic on 11 March 2020, is still infecting millions to date as the vaccines that have been developed do not prevent the disease but rather reduce the severity of the symptoms. Until a vaccine is developed that can prevent COVID-19 infection, the testing of individuals will be a continuous process. Medical personnel monitor and treat all health conditions; hence, the time-consuming process to monitor and test all individuals for COVID-19 becomes an impossible task, especially as COVID-19 shares similar symptoms with the common cold and pneumonia. Some off-the-counter tests have been developed and sold, but they are unreliable and add an additional burden because false-positive cases have to visit hospitals and perform specialized diagnostic tests to confirm the diagnosis. Therefore, the need for systems that can automatically detect and diagnose COVID-19 automatically without human intervention is still an urgent priority and will remain so because the same technology can be used for future pandemics and other health conditions. In this paper, we propose a modified machine learning (ML) process that integrates deep learning (DL) algorithms for feature extraction and well-known classifiers that can accurately detect and diagnose COVID-19 from chest CT scans. Publicly available datasets were made available by the China Consortium for Chest CT Image Investigation (CC-CCII). The highest average accuracy obtained was 99.9% using the modified ML process when 2000 features were extracted using GoogleNet and ResNet18 and using the support vector machine (SVM) classifier. The results obtained using the modified ML process were higher when compared to similar methods reported in the extant literature using the same datasets or different datasets of similar size; thus, this study is considered of added value to the current body of knowledge. Further research in this field is required to develop methods that can be applied in hospitals and can better equip mankind to be prepared for any future pandemics.
Collapse
Affiliation(s)
- Ghazanfar Latif
- Computer Science Department, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia
- Department of Computer Sciences and Mathematics, Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada
- Correspondence: or
| | - Hamdy Morsy
- Department of Applied Natural Sciences, College of Community, Qassim University, Buraydah 52571, Saudi Arabia;
- Department of Electronics and communications, College of Engineering, Helwan University, Cairo 11792, Egypt
| | - Asmaa Hassan
- Faculty of Medicine, Helwan University, Helwan 11795, Egypt;
| | - Jaafar Alghazo
- Department of Electrical and Computer Engineering, Virginia Military Institute, Lexington, VA 24450, USA;
| |
Collapse
|