51
|
Wan P, Chen F, Liu C, Kong W, Zhang D. Hierarchical Temporal Attention Network for Thyroid Nodule Recognition Using Dynamic CEUS Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1646-1660. [PMID: 33651687 DOI: 10.1109/tmi.2021.3063421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) has emerged as a popular imaging modality in thyroid nodule diagnosis due to its ability to visualize vascular distribution in real time. Recently, a number of learning-based methods are dedicated to mine pathological-related enhancement dynamics and make prediction at one step, ignoring a native diagnostic dependency. In clinics, the differentiation of benign or malignant nodules always precedes the recognition of pathological types. In this paper, we propose a novel hierarchical temporal attention network (HiTAN) for thyroid nodule diagnosis using dynamic CEUS imaging, which unifies dynamic enhancement feature learning and hierarchical nodules classification into a deep framework. Specifically, this method decomposes the diagnosis of nodules into an ordered two-stage classification task, where diagnostic dependency is modeled by Gated Recurrent Units (GRUs). Besides, we design a local-to-global temporal aggregation (LGTA) operator to perform a comprehensive temporal fusion along the hierarchical prediction path. Particularly, local temporal information is defined as typical enhancement patterns identified with the guidance of perfusion representation learned from the differentiation level. Then, we leverage an attention mechanism to embed global enhancement dynamics into each identified salient pattern. In this study, we evaluate the proposed HiTAN method on the collected CEUS dataset of thyroid nodules. Extensive experimental results validate the efficacy of dynamic patterns learning, fusion and hierarchical diagnosis mechanism.
Collapse
|
52
|
Xu M, Sanz DL, Garces P, Maestu F, Li Q, Pantazis D. A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease Progression With MEG Brain Networks. IEEE Trans Biomed Eng 2021; 68:1579-1588. [PMID: 33400645 PMCID: PMC8162933 DOI: 10.1109/tbme.2021.3049199] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Characterizing the subtle changes of functional brain networks associated with the pathological cascade of Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression prior to clinical symptoms. We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G), which can learn highly informative network features by mapping high-dimensional resting-state brain networks into a low-dimensional latent space. These latent distribution-based embeddings enable a quantitative characterization of subtle and heterogeneous brain connectivity patterns at different regions, and can be used as input to traditional classifiers for various downstream graph analytic tasks, such as AD early stage prediction, and statistical evaluation of between-group significant alterations across brain regions. We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
Collapse
|
53
|
Wang M, Huang J, Liu M, Zhang D. Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI. Med Image Anal 2021; 71:102063. [PMID: 33910109 DOI: 10.1016/j.media.2021.102063] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/06/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023]
Abstract
Dynamic network analysis using resting-state functional magnetic resonance imaging (rs-fMRI) provides a great insight into fundamentally dynamic characteristics of human brains, thus providing an efficient solution to automated brain disease identification. Previous studies usually pay less attention to evolution of global network structures over time in each brain's rs-fMRI time series, and also treat network-based feature extraction and classifier training as two separate tasks. To address these issues, we propose a temporal dynamics learning (TDL) method for network-based brain disease identification using rs-fMRI time-series data, through which network feature extraction and classifier training are integrated into the unified framework. Specifically, we first partition rs-fMRI time series into a sequence of segments using overlapping sliding windows, and then construct longitudinally ordered functional connectivity networks. To model the global temporal evolution patterns of these successive networks, we introduce a group-fused Lasso regularizer in our TDL framework, while the specific network architecture is induced by an ℓ1-norm regularizer. Besides, we develop an efficient optimization algorithm to solve the proposed objective function via the Alternating Direction Method of Multipliers (ADMM). Compared with previous studies, the proposed TDL model can not only explicitly model the evolving connectivity patterns of global networks over time, but also capture unique characteristics of each network defined at each segment. We evaluate our TDL on three real autism spectrum disorder (ASD) datasets with rs-fMRI data, achieving superior results in ASD identification compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China; College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiashuang Huang
- School of Information Science and Technology, Nantong University, Nantong 226019, China; College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| |
Collapse
|
54
|
Yao D, Sui J, Wang M, Yang E, Jiaerken Y, Luo N, Yap PT, Liu M, Shen D. A Mutual Multi-Scale Triplet Graph Convolutional Network for Classification of Brain Disorders Using Functional or Structural Connectivity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1279-1289. [PMID: 33444133 PMCID: PMC8238125 DOI: 10.1109/tmi.2021.3051604] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Brain connectivity alterations associated with mental disorders have been widely reported in both functional MRI (fMRI) and diffusion MRI (dMRI). However, extracting useful information from the vast amount of information afforded by brain networks remains a great challenge. Capturing network topology, graph convolutional networks (GCNs) have demonstrated to be superior in learning network representations tailored for identifying specific brain disorders. Existing graph construction techniques generally rely on a specific brain parcellation to define regions-of-interest (ROIs) to construct networks, often limiting the analysis into a single spatial scale. In addition, most methods focus on the pairwise relationships between the ROIs and ignore high-order associations between subjects. In this letter, we propose a mutual multi-scale triplet graph convolutional network (MMTGCN) to analyze functional and structural connectivity for brain disorder diagnosis. We first employ several templates with different scales of ROI parcellation to construct coarse-to-fine brain connectivity networks for each subject. Then, a triplet GCN (TGCN) module is developed to learn functional/structural representations of brain connectivity networks at each scale, with the triplet relationship among subjects explicitly incorporated into the learning process. Finally, we propose a template mutual learning strategy to train different scale TGCNs collaboratively for disease classification. Experimental results on 1,160 subjects from three datasets with fMRI or dMRI data demonstrate that our MMTGCN outperforms several state-of-the-art methods in identifying three types of brain disorders.
Collapse
|
55
|
Xu M, Zhang T, Li Z, Liu M, Zhang D. Towards evaluating the robustness of deep diagnostic models by adversarial attack. Med Image Anal 2021; 69:101977. [PMID: 33550005 DOI: 10.1016/j.media.2021.101977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Deep learning models (with neural networks) have been widely used in challenging tasks such as computer-aided disease diagnosis based on medical images. Recent studies have shown deep diagnostic models may not be robust in the inference process and may pose severe security concerns in clinical practice. Among all the factors that make the model not robust, the most serious one is adversarial examples. The so-called "adversarial example" is a well-designed perturbation that is not easily perceived by humans but results in a false output of deep diagnostic models with high confidence. In this paper, we evaluate the robustness of deep diagnostic models by adversarial attack. Specifically, we have performed two types of adversarial attacks to three deep diagnostic models in both single-label and multi-label classification tasks, and found that these models are not reliable when attacked by adversarial example. We have further explored how adversarial examples attack the models, by analyzing their quantitative classification results, intermediate features, discriminability of features and correlation of estimated labels for both original/clean images and those adversarial ones. We have also designed two new defense methods to handle adversarial examples in deep diagnostic models, i.e., Multi-Perturbations Adversarial Training (MPAdvT) and Misclassification-Aware Adversarial Training (MAAdvT). The experimental results have shown that the use of defense methods can significantly improve the robustness of deep diagnostic models against adversarial attacks.
Collapse
Affiliation(s)
- Mengting Xu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Tao Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Zhongnian Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| |
Collapse
|
56
|
Segato A, Marzullo A, Calimeri F, De Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng 2020; 4:041503. [PMID: 33094213 PMCID: PMC7556883 DOI: 10.1063/5.0011697] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is a major branch of computer science that is fruitfully used for analyzing complex medical data and extracting meaningful relationships in datasets, for several clinical aims. Specifically, in the brain care domain, several innovative approaches have achieved remarkable results and open new perspectives in terms of diagnosis, planning, and outcome prediction. In this work, we present an overview of different artificial intelligent techniques used in the brain care domain, along with a review of important clinical applications. A systematic and careful literature search in major databases such as Pubmed, Scopus, and Web of Science was carried out using "artificial intelligence" and "brain" as main keywords. Further references were integrated by cross-referencing from key articles. 155 studies out of 2696 were identified, which actually made use of AI algorithms for different purposes (diagnosis, surgical treatment, intra-operative assistance, and postoperative assessment). Artificial neural networks have risen to prominent positions among the most widely used analytical tools. Classic machine learning approaches such as support vector machine and random forest are still widely used. Task-specific algorithms are designed for solving specific problems. Brain images are one of the most used data types. AI has the possibility to improve clinicians' decision-making ability in neuroscience applications. However, major issues still need to be addressed for a better practical use of AI in the brain. To this aim, it is important to both gather comprehensive data and build explainable AI algorithms.
Collapse
Affiliation(s)
- Alice Segato
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Aldo Marzullo
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Francesco Calimeri
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| |
Collapse
|
57
|
Zhang L, Wang M, Liu M, Zhang D. A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis. Front Neurosci 2020; 14:779. [PMID: 33117114 PMCID: PMC7578242 DOI: 10.3389/fnins.2020.00779] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Deep learning has recently been used for the analysis of neuroimages, such as structural magnetic resonance imaging (MRI), functional MRI, and positron emission tomography (PET), and it has achieved significant performance improvements over traditional machine learning in computer-aided diagnosis of brain disorders. This paper reviews the applications of deep learning methods for neuroimaging-based brain disorder analysis. We first provide a comprehensive overview of deep learning techniques and popular network architectures by introducing various types of deep neural networks and recent developments. We then review deep learning methods for computer-aided analysis of four typical brain disorders, including Alzheimer's disease, Parkinson's disease, Autism spectrum disorder, and Schizophrenia, where the first two diseases are neurodegenerative disorders and the last two are neurodevelopmental and psychiatric disorders, respectively. More importantly, we discuss the limitations of existing studies and present possible future directions.
Collapse
Affiliation(s)
- Li Zhang
- College of Computer Science and Technology, Nanjing Forestry University, Nanjing, China
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Mingliang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
58
|
Yao D, Sui J, Yang E, Yap PT, Shen D, Liu M. Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder Using Resting-State fMRI. MACHINE LEARNING IN MEDICAL IMAGING. MLMI (WORKSHOP) 2020; 12436:1-10. [PMID: 36383497 PMCID: PMC9645786 DOI: 10.1007/978-3-030-59861-7_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extensive studies focus on analyzing human brain functional connectivity from a network perspective, in which each network contains complex graph structures. Based on resting-state functional MRI (rs-fMRI) data, graph convolutional networks (GCNs) enable comprehensive mapping of brain functional connectivity (FC) patterns to depict brain activities. However, existing studies usually characterize static properties of the FC patterns, ignoring the time-varying dynamic information. In addition, previous GCN methods generally use fixed group-level (e.g., patients or controls) representation of FC networks, and thus, cannot capture subject-level FC specificity. To this end, we propose a Temporal-Adaptive GCN (TAGCN) framework that can not only take advantage of both spatial and temporal information using resting-state FC patterns and time-series but also explicitly characterize subject-level specificity of FC patterns. Specifically, we first segment each ROI-based time-series into multiple overlapping windows, then employ an adaptive GCN to mine topological information. We further model the temporal patterns for each ROI along time to learn the periodic brain status changes. Experimental results on 533 major depressive disorder (MDD) and health control (HC) subjects demonstrate that the proposed TAGCN outperforms several state-of-the-art methods in MDD vs. HC classification, and also can be used to capture dynamic FC alterations and learn valid graph representations.
Collapse
Affiliation(s)
- Dongren Yao
- Brainentome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jing Sui
- Brainentome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erkun Yang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
59
|
Huang J, Zhu Q, Wang M, Zhou L, Zhang Z, Zhang D. Coherent Pattern in Multi-Layer Brain Networks: Application to Epilepsy Identification. IEEE J Biomed Health Inform 2020; 24:2609-2620. [PMID: 31899443 DOI: 10.1109/jbhi.2019.2962519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Currently, how to conjointly fuse structural connectivity (SC) and functional connectivity (FC) for identifying brain diseases is a hot topic in the area of brain network analysis. Most of the existing works combine two types of connectivity in decision level, thus ignoring the underlying relationship between SC and FC. To solve this problem, in this paper, we model the brain network as the multi-layer network formed by the SC and FC, and then propose a coherent pattern to represent structural information of the multi-layer network for the brain disease identification. The proposed coherent pattern consists of a paired-subgraph extracted from the FC and SC within the same node-set. Compared with the previous methods, this coherent pattern not only describes the connectivity information of both SC and FC by subgraphs at each layer, but also reflects their intrinsic relationship by the co-occurrence pattern of the paired-subgraph. Based on this coherent pattern, we further develop a framework for identifying brain diseases. Specifically, we first construct multi-layer networks by using SC and FC for each subject and then mine coherent patterns that frequently appear in each group. Next, we select the discriminative coherent pattern from these frequent coherent patterns according to their frequency of occurrence. Finally, we construct a feature matrix for each subject based on the binary indicator vector and then use the support vector machine (SVM) as its classifier. Experimental results on real epilepsy datasets demonstrate that our method outperforms several state-of-the-art approaches in the tasks of brain disease classification.
Collapse
|
60
|
Sheu YH. Illuminating the Black Box: Interpreting Deep Neural Network Models for Psychiatric Research. Front Psychiatry 2020; 11:551299. [PMID: 33192663 PMCID: PMC7658441 DOI: 10.3389/fpsyt.2020.551299] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Psychiatric research is often confronted with complex abstractions and dynamics that are not readily accessible or well-defined to our perception and measurements, making data-driven methods an appealing approach. Deep neural networks (DNNs) are capable of automatically learning abstractions in the data that can be entirely novel and have demonstrated superior performance over classical machine learning models across a range of tasks and, therefore, serve as a promising tool for making new discoveries in psychiatry. A key concern for the wider application of DNNs is their reputation as a "black box" approach-i.e., they are said to lack transparency or interpretability of how input data are transformed to model outputs. In fact, several existing and emerging tools are providing improvements in interpretability. However, most reviews of interpretability for DNNs focus on theoretical and/or engineering perspectives. This article reviews approaches to DNN interpretability issues that may be relevant to their application in psychiatric research and practice. It describes a framework for understanding these methods, reviews the conceptual basis of specific methods and their potential limitations, and discusses prospects for their implementation and future directions.
Collapse
Affiliation(s)
- Yi-Han Sheu
- Psychiatric Neurodevelopmental and Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,The Stanley Center, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
| |
Collapse
|