52
|
Jun C, Lim S, Wolinsky JP, Garzon-Muvdi T, Petrisor D, Cleary K, Stoianovici D. MR Safe Robot Assisted Needle Access of the Brain: Preclinical Study. ACTA ACUST UNITED AC 2018. [DOI: 10.1142/s2424905x18500034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report the results of preclinical experiments for direct MRI-guided needle interventions in the brain. An MR Safe robot was incorporated into an intraoperative MRI system. Deep regions of the brain simulated in a cranial mockup were targeted with a needle under robotic assistance. The 3D accuracy of in-scanner targeting at an average depth of 95[Formula: see text]mm was 1.55[Formula: see text]mm, with no manual corrections.
Collapse
Affiliation(s)
- Changhan Jun
- Robotics Laboratory, Urology Department, Johns Hopkins University, Baltimore, MD, USA
| | - Sunghwan Lim
- Robotics Laboratory, Urology Department, Johns Hopkins University, Baltimore, MD, USA
| | | | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Doru Petrisor
- Robotics Laboratory, Urology Department, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Cleary
- Children’s National Health System, Washington, DC, USA
| | - Dan Stoianovici
- Robotics Laboratory, Urology Department, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
53
|
Cleary K, Lim S, Jun C, Monfaredi R, Sharma K, Fricke ST, Vargas L, Petrisor D, Stoianovici D. Robotically Assisted Long Bone Biopsy Under MRI Imaging: Workflow and Preclinical Study. Acad Radiol 2018; 25:74-81. [PMID: 29074334 PMCID: PMC5723222 DOI: 10.1016/j.acra.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVES Our research team has developed a magnetic resonance imaging (MRI)-compatible robot for long bone biopsy. The robot is intended to enable a new workflow for bone biopsy in pediatrics under MRI imaging. Our long-term objectives are to minimize trauma and eliminate radiation exposure when diagnosing children with bone cancers and bone infections. This article presents our robotic systems, phantom accuracy studies, and workflow analysis. MATERIALS AND METHODS This section describes several aspects of our work including the envisioned clinical workflow, the MRI-compatible robot, and the experimental setup. The workflow consists of five steps and is intended to enable the entire procedure to be completed in the MRI suite. The MRI-compatible robot is MR Safe, has 3 degrees of freedom, and a remote center of motion mechanism for orienting a needle guide. The accuracy study was done in a Siemens Aera 1.5T scanner with a long bone phantom. Four targeting holes were drilled in the phantom. RESULTS Each target was approached twice at slightly oblique angles using the robot needle guide for a total of eight attempts. A workflow analysis showed the average time for each targeting attempt was 32 minutes, including robot setup time. The average 3D targeting error was 1.39 mm with a standard deviation of 0.40 mm. All of the targets were successfully reached. CONCLUSION The results showed the ability of the robotic system in assisting the radiologist to precisely target a bone phantom in the MRI environment. The robot system has several potential advantages for clinical application, including the ability to work at the MRI isocenter and serve as a steady and precise guide.
Collapse
Affiliation(s)
- Kevin Cleary
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, 111 Michigan Avenue, Washington, DC 20010.
| | - Sunghwan Lim
- Johns Hopkins University, Brady Urological Institute, Urobotics Laboratory, Baltimore, Maryland
| | - Changhan Jun
- Johns Hopkins University, Brady Urological Institute, Urobotics Laboratory, Baltimore, Maryland
| | - Reza Monfaredi
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, 111 Michigan Avenue, Washington, DC 20010
| | - Karun Sharma
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, 111 Michigan Avenue, Washington, DC 20010
| | - Stanley Thomas Fricke
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, 111 Michigan Avenue, Washington, DC 20010
| | - Luis Vargas
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, 111 Michigan Avenue, Washington, DC 20010
| | - Doru Petrisor
- Johns Hopkins University, Brady Urological Institute, Urobotics Laboratory, Baltimore, Maryland
| | - Dan Stoianovici
- Johns Hopkins University, Brady Urological Institute, Urobotics Laboratory, Baltimore, Maryland
| |
Collapse
|
54
|
Verma S, Choyke PL, Eberhardt SC, Oto A, Tempany CM, Turkbey B, Rosenkrantz AB. The Current State of MR Imaging-targeted Biopsy Techniques for Detection of Prostate Cancer. Radiology 2017; 285:343-356. [PMID: 29045233 DOI: 10.1148/radiol.2017161684] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systematic transrectal ultrasonography (US)-guided biopsy is the standard approach for histopathologic diagnosis of prostate cancer. However, this technique has multiple limitations because of its inability to accurately visualize and target prostate lesions. Multiparametric magnetic resonance (MR) imaging of the prostate is more reliably able to localize significant prostate cancer. Targeted prostate biopsy by using MR imaging may thus help to reduce false-negative results and improve risk assessment. Several commercial devices are now available for targeted prostate biopsy, including in-gantry MR imaging-targeted biopsy and real-time transrectal US-MR imaging fusion biopsy systems. This article reviews the current status of MR imaging-targeted biopsy platforms, including technical considerations, as well as advantages and challenges of each technique. © RSNA, 2017.
Collapse
Affiliation(s)
- Sadhna Verma
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Peter L Choyke
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Steven C Eberhardt
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Aytekin Oto
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Clare M Tempany
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Baris Turkbey
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| | - Andrew B Rosenkrantz
- From the Department of Radiology, University of Cincinnati Medical Center, 234 Goodman St, Cincinnati, OH 45267-0761 (S.V.); National Cancer Institute, National Institutes of Health, Bethesda, Md (P.L.C.); Department of Radiology, University of New Mexico, Albuquerque, NM (S.C.E.); Department of Radiology, University of Chicago Medicine, Chicago, Ill (A.O.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (C.M.T.); Center for Cancer Research, National Cancer Institute, Bethesda, Md (B.T.); and Department of Radiology, New York University School of Medicine, NYU Langone Medical Center, New York, NY (A.B.R.)
| |
Collapse
|
55
|
Ball MW, Ross AE, Ghabili K, Kim C, Jun C, Petrisor D, Pan L, Epstein JI, Macura KJ, Stoianovici DS, Allaf ME. Safety and Feasibility of Direct Magnetic Resonance Imaging-guided Transperineal Prostate Biopsy Using a Novel Magnetic Resonance Imaging-safe Robotic Device. Urology 2017; 109:216-221. [PMID: 28735018 DOI: 10.1016/j.urology.2017.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate safety and feasibility in a first-in-human trial of a direct magnetic resonance imaging (MRI)-guided prostate biopsy using a novel robotic device. METHODS MrBot is an MRI-safe robotic device constructed entirely with nonconductive, nonmetallic, and nonmagnetic materials and developed by our group. A safety and feasibility clinical trial was designed to assess the safety and feasibility of a direct MRI-guided biopsy with MrBot and to determine its targeting accuracy. Men with elevated prostate-specific antigen levels, prior negative prostate biopsies, and cancer-suspicious regions (CSRs) on MRI were enrolled in the study. Biopsies targeting CSRs, in addition to sextant locations, were performed. RESULTS Five men underwent biopsy with MrBot. Two men required Foley catheter insertion after the procedure, with no other complications or adverse events. Even though this was not a study designed to detect prostate cancer, biopsies confirmed the presence of a clinically significant cancer in 2 patients. On a total of 30 biopsy sites, the robot achieved an MRI-based targeting accuracy of 2.55 mm and a precision of 1.59 mm normal to the needle, with no trajectory corrections and no unsuccessful attempts to target a site. CONCLUSION Robot-assisted MRI-guided prostate biopsy appears safe and feasible. This study confirms that a clinically significant prostate cancer (≥5-mm radius, 0.5 cm3) depicted in MRI may be accurately targeted. Direct confirmation of needle placement in the CSR may present an advantage over fusion-based technology and gives more confidence in a negative biopsy result. Additional study is warranted to evaluate the efficacy of this approach.
Collapse
Affiliation(s)
- Mark W Ball
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ashley E Ross
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kamyar Ghabili
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chunwoo Kim
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Changhan Jun
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Doru Petrisor
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Li Pan
- Siemens Healthcare, Baltimore, MD
| | - Jonathan I Epstein
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katarzyna J Macura
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dan S Stoianovici
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mohamad E Allaf
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
56
|
Stoianovici D, Jun C, Lim S, Li P, Petrisor D, Fricke S, Sharma K, Cleary K. Multi-Imager Compatible, MR Safe, Remote Center of Motion Needle-Guide Robot. IEEE Trans Biomed Eng 2017; 65:165-177. [PMID: 28459678 DOI: 10.1109/tbme.2017.2697766] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the development of a new robotic system for direct image-guided interventions (DIGI; images acquired at the time of the intervention). The manipulator uses our previously reported pneumatic step motors and is entirely made of electrically nonconductive, nonmetallic, and nonmagnetic materials. It orients a needle-guide with two degrees of freedom (DoF) about a fulcrum point located below the guide using an innovative remote center of motion parallelogram type mechanism. The depth of manual needle insertion is preset with a third DoF, located remotely of the manipulator. Special consideration was given to the kinematic accuracy and the structural stiffness. The manipulator includes registration markers for image-to-robot registration. Based on the images, it may guide needles, drills, or other slender instruments to a target (OD < 10 mm). Comprehensive preclinical tests were performed. The manipulator is MR safe (ASTM F2503-13). Electromagnetic compatibility (EMC) testing (IEC 60601-1-2) of the system shows that it does not conduct or radiate EM emissions. The change in the signal to noise ratio of the MRI due to the presence and motion of the robot in the scanner is below 1%. The structural stiffness at the needle-guide is 33 N/mm. The angular accuracy and precision of the manipulator itself are 0.177° and 0.077°. MRI-guided targeting accuracy and precision in vitro were 1.71 mm and 0.51 mm, at an average target depth of ∼38 mm, with no adjustments. The system may be suitable for DIGI where [mm] accuracy lateral to the needle (2D) or [mm] in 3D is acceptable. The system is also multi-imager compatible and could be used with other imaging modalities.
Collapse
|