• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4697239)   Today's Articles (258)
For: He Y, Liu G, Rees D. New Delay-Dependent Stability Criteria for Neural Networks With Time-Varying Delay. ACTA ACUST UNITED AC 2007;18:310-4. [PMID: 17278483 DOI: 10.1109/tnn.2006.888373] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Number Cited by Other Article(s)
51
Dissipativity analysis of neural networks with time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.05.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
52
Ding Y, Shi K, Liu H. Improved exponential stability criteria for time-varying delayed neural networks. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.05.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
53
Dissipativity and Passivity Analysis of Markovian Jump Neural Networks with Two Additive Time-Varying Delays. Neural Process Lett 2015. [DOI: 10.1007/s11063-015-9482-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
54
Wang Z, Liu L, Shan QH, Zhang H. Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:2589-2595. [PMID: 25608313 DOI: 10.1109/tnnls.2014.2387434] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
55
Kumar RS, Sugumaran G, Raja R, Zhu Q, Raja UK. New stability criterion of neural networks with leakage delays and impulses: a piecewise delay method. Cogn Neurodyn 2015;10:85-98. [PMID: 26834863 DOI: 10.1007/s11571-015-9356-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/06/2015] [Accepted: 09/15/2015] [Indexed: 11/24/2022]  Open
56
Shi K, Zhu H, Zhong S, Zeng Y, Zhang Y, Wang W. Stability analysis of neutral type neural networks with mixed time-varying delays using triple-integral and delay-partitioning methods. ISA TRANSACTIONS 2015;58:85-95. [PMID: 25835437 DOI: 10.1016/j.isatra.2015.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/18/2014] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
57
Zeng HB, He Y, Wu M, Xiao SP. Stability analysis of generalized neural networks with time-varying delays via a new integral inequality. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.02.055] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
58
Liu Z, Lai G, Zhang Y, Chen CLP. Adaptive Neural Output Feedback Control of Output-Constrained Nonlinear Systems With Unknown Output Nonlinearity. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:1789-1802. [PMID: 25915964 DOI: 10.1109/tnnls.2015.2420661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
59
Velmurugan G, Rakkiyappan R, Cao J. Further analysis of global μ-stability of complex-valued neural networks with unbounded time-varying delays. Neural Netw 2015;67:14-27. [DOI: 10.1016/j.neunet.2015.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 11/25/2022]
60
Syed Ali M, Arik S, Saravanakumar R. Delay-dependent stability criteria of uncertain Markovian jump neural networks with discrete interval and distributed time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.01.056] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
61
Wang JA, Ma XH, Wen XY. Less conservative stability criteria for neural networks with interval time-varying delay based on delay-partitioning approach. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.12.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
62
Improved passivity analysis for neural networks with Markovian jumping parameters and interval time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
63
Chen WH, Lu X, Zheng WX. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:734-748. [PMID: 25794379 DOI: 10.1109/tnnls.2014.2322499] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
64
L2-L∞ Filtering for Takagi–Sugeno fuzzy neural networks based on Wirtinger-type inequalities. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.11.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
65
Tan H, Hua M, Chen J, Fei J. Stability analysis of stochastic Markovian switching static neural networks with asynchronous mode-dependent delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
66
Liu PL. Further improvement on delay-dependent robust stability criteria for neutral-type recurrent neural networks with time-varying delays. ISA TRANSACTIONS 2015;55:92-99. [PMID: 25440953 DOI: 10.1016/j.isatra.2014.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/05/2014] [Accepted: 09/20/2014] [Indexed: 06/04/2023]
67
Rakkiyappan R, Velmurugan G, Cao J. Multiple μ-stability analysis of complex-valued neural networks with unbounded time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
68
Zeng HB, Park JH, Shen H. Robust passivity analysis of neural networks with discrete and distributed delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.07.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
69
New approach to stability criteria for generalized neural networks with interval time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.08.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
70
Lian J, Wang J. Passivity of switched recurrent neural networks with time-varying delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:357-366. [PMID: 25576577 DOI: 10.1109/tnnls.2014.2379920] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
71
Liu Z, Lai G, Zhang Y, Chen X, Chen CLP. Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2014;25:2129-2140. [PMID: 25420237 DOI: 10.1109/tnnls.2014.2305717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
72
Muralisankar S, Gopalakrishnan N. Robust stability criteria for Takagi–Sugeno fuzzy Cohen–Grossberg neural networks of neutral type. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
73
Xia J, Park JH, Zeng H, Shen H. Delay-difference-dependent robust exponential stability for uncertain stochastic neural networks with multiple delays. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
74
New stability and tracking criteria for a class of bilateral teleoperation systems. Inf Sci (N Y) 2014. [DOI: 10.1016/j.ins.2014.03.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
75
Xie X, Ren Z. Improved delay-dependent stability analysis for neural networks with time-varying delays. ISA TRANSACTIONS 2014;53:1000-1005. [PMID: 24933354 DOI: 10.1016/j.isatra.2014.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/02/2013] [Accepted: 05/10/2014] [Indexed: 06/03/2023]
76
A systematic method for analyzing robust stability of interval neural networks with time-delays based on stability criteria. Neural Netw 2014;54:112-22. [DOI: 10.1016/j.neunet.2014.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022]
77
Xiao J, Zeng Z, Wu A. New criteria for exponential stability of delayed recurrent neural networks. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.07.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
78
Chen H, Wang J, Wang L. New Criteria on Delay-Dependent Robust Stability for Uncertain Markovian Stochastic Delayed Neural Networks. Neural Process Lett 2014. [DOI: 10.1007/s11063-014-9356-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
79
Improved delay-dependent stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.09.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
80
Hu M, Cao J, Hu A. Mean square exponential stability for discrete-time stochastic switched static neural networks with randomly occurring nonlinearities and stochastic delay. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
81
Delay-dependent stability criteria for time-varying delay neural networks in the delta domain. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2012.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
82
Hu K, Song A, Zhang Y, Wang W. Delay-range-dependent Stability Criteria of Neural Networks with Time-varying Discrete and Distributed Delays. INT J ADV ROBOT SYST 2014. [DOI: 10.5772/53817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]  Open
83
Ma Q, Feng G, Xu S. Delay-dependent stability criteria for reaction–diffusion neural networks with time-varying delays. IEEE TRANSACTIONS ON CYBERNETICS 2013;43:1913-1920. [PMID: 23757581 DOI: 10.1109/tsmcb.2012.2235178] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
84
Chen Y, Zheng WX. Stability analysis of time-delay neural networks subject to stochastic perturbations. IEEE TRANSACTIONS ON CYBERNETICS 2013;43:2122-2134. [PMID: 23757521 DOI: 10.1109/tcyb.2013.2240451] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
85
New stability criteria for recurrent neural networks with interval time-varying delay. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2013.04.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
86
Wu ZG, Shi P, Su H, Chu J. Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data. IEEE TRANSACTIONS ON CYBERNETICS 2013;43:1796-1806. [PMID: 23757573 DOI: 10.1109/tsmcb.2012.2230441] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
87
Wu ZG, Park JH. Synchronization of discrete-time neural networks with time delays subject to missing data. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2013.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
88
Wu H, Liao X, Feng W, Guo S. Mean square stability of uncertain stochastic BAM neural networks with interval time-varying delays. Cogn Neurodyn 2013;6:443-58. [PMID: 24082964 DOI: 10.1007/s11571-012-9200-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/10/2012] [Accepted: 03/25/2012] [Indexed: 11/27/2022]  Open
89
Xiao N, Jia Y. New approaches on stability criteria for neural networks with two additive time-varying delay components. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2013.02.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
90
Less conservative stability criteria for stochastic discrete-time recurrent neural networks with the time-varying delay. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2012.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
91
Jin X, Guan W, Ye D. Robust Adaptive Synchronization Control for a Class of Perturbed and Delayed Neural Networks. Neural Process Lett 2013. [DOI: 10.1007/s11063-013-9300-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
92
Wu ZG, Shi P, Su H, Chu J. Dissipativity analysis for discrete-time stochastic neural networks with time-varying delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2013;24:345-355. [PMID: 24808309 DOI: 10.1109/tnnls.2012.2232938] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
93
Chen H. New delay-dependent stability criteria for uncertain stochastic neural networks with discrete interval and distributed delays. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2012.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
94
Liu Z, Yu J, Xu D, Peng D. Triple-integral method for the stability analysis of delayed neural networks. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2012.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
95
Liu PL. Improved delay-dependent robust stability criteria for recurrent neural networks with time-varying delays. ISA TRANSACTIONS 2013;52:30-35. [PMID: 22959741 DOI: 10.1016/j.isatra.2012.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
96
Zheng M, Fei M, Li Y. Improved stability criteria for uncertain delayed neural networks. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2011.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
97
Improved exponential stability criteria for neural networks with time-varying delays. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
98
Liu Y, Ma W, Mahmoud MS. New results for global exponential stability of neural networks with varying delays. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
99
Robust stability of stochastic uncertain recurrent neural networks with Markovian jumping parameters and time-varying delays. INT J MACH LEARN CYB 2012. [DOI: 10.1007/s13042-012-0124-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
100
Tuan LA, Nam PT, Phat VN. New H ∞ Controller Design for Neural Networks with Interval Time-Varying Delays in State and Observation. Neural Process Lett 2012. [DOI: 10.1007/s11063-012-9243-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
PrevPage 2 of 4 1234Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA