51
|
$$H_{\infty }$$ H ∞ Estimation for Markovian Jump Neural Networks With Quantization, Transmission Delay and Packet Dropout. Neural Process Lett 2015. [DOI: 10.1007/s11063-015-9460-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
52
|
Syed Ali M, Arik S, Saravanakumar R. Delay-dependent stability criteria of uncertain Markovian jump neural networks with discrete interval and distributed time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.01.056] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
53
|
Zheng CD, Zhang X, Wang Z. Mode-dependent stochastic stability criteria of fuzzy Markovian jumping neural networks with mixed delays. ISA TRANSACTIONS 2015; 56:8-17. [PMID: 25496760 DOI: 10.1016/j.isatra.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 09/02/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
This paper investigates the stochastic stability of fuzzy Markovian jumping neural networks with mixed delays in mean square. The mixed delays include time-varying delay and continuously distributed delay. By using the Lyapunov functional method, Jensen integral inequality, the generalized Jensen integral inequality, linear convex combination technique and the free-weight matrix method, several novel sufficient conditions are derived to ensure the global asymptotic stability of the equilibrium point of the considered networks in mean square. The proposed results, which do not require the differentiability of the activation functions, can be easily checked via Matlab software. Finally, two numerical examples are given to demonstrate the effectiveness and less conservativeness of our theoretical results over existing literature.
Collapse
Affiliation(s)
- Cheng-De Zheng
- School of Science, Dalian Jiaotong University, Dalian 116028, PR China.
| | - Xiaoyu Zhang
- School of Science, Dalian Jiaotong University, Dalian 116028, PR China
| | - Zhanshan Wang
- School of Information Science and Engineering, Northeastern University, Shenyang 110004, PR China.
| |
Collapse
|
54
|
The stability of impulsive stochastic Cohen-Grossberg neural networks with mixed delays and reaction-diffusion terms. Cogn Neurodyn 2015; 9:213-20. [PMID: 25834649 DOI: 10.1007/s11571-014-9316-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/23/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022] Open
Abstract
The global asymptotic stability of impulsive stochastic Cohen-Grossberg neural networks with mixed delays and reaction-diffusion terms is investigated. Under some suitable assumptions and using Lyapunov-Krasovskii functional method, we apply the linear matrix inequality technique to propose some new sufficient conditions for the global asymptotic stability of the addressed model in the stochastic sense. The mixed time delays comprise both the time-varying and continuously distributed delays. The effectiveness of the theoretical result is illustrated by a numerical example.
Collapse
|
55
|
Mode and Delay-dependent Stochastic Stability Conditions of Fuzzy Neural Networks with Markovian Jump Parameters. Neural Process Lett 2015. [DOI: 10.1007/s11063-015-9413-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
56
|
Shi P, Zhang Y, Agarwal RK. Stochastic finite-time state estimation for discrete time-delay neural networks with Markovian jumps. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.09.059] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
57
|
Wu A, Zeng Z. An improved criterion for stability and attractability of memristive neural networks with time-varying delays. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
58
|
Wu A, Zeng Z. New global exponential stability results for a memristive neural system with time-varying delays. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
59
|
Finite-time boundedness for uncertain discrete neural networks with time-delays and Markovian jumps. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.12.054] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
60
|
Wang G, Shen Y, Yin Q. Synchronization Analysis of Coupled Stochastic Neural Networks with On–Off Coupling and Time-Delay. Neural Process Lett 2014. [DOI: 10.1007/s11063-014-9369-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
61
|
Exponential synchronization of Markovian jumping neural networks with partly unknown transition probabilities via stochastic sampled-data control. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.12.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
62
|
Chen H, Wang J, Wang L. New Criteria on Delay-Dependent Robust Stability for Uncertain Markovian Stochastic Delayed Neural Networks. Neural Process Lett 2014. [DOI: 10.1007/s11063-014-9356-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
63
|
Rakkiyappan R, Chandrasekar A, Lakshmanan S, Park JH. Exponential stability of Markovian jumping stochastic Cohen–Grossberg neural networks with mode-dependent probabilistic time-varying delays and impulses. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
64
|
Ganesh B, Kumar VV, Rani KY. Modeling of batch processes using explicitly time-dependent artificial neural networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2014; 25:970-979. [PMID: 24808042 DOI: 10.1109/tnnls.2013.2285242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A neural network architecture incorporating time dependency explicitly, proposed recently, for modeling nonlinear nonstationary dynamic systems is further developed in this paper, and three alternate configurations are proposed to represent the dynamics of batch chemical processes. The first configuration consists of L subnets, each having M inputs representing the past samples of process inputs and output; each subnet has a hidden layer with polynomial activation function; the outputs of the hidden layer are combined and acted upon by an explicitly time-dependent modulation function. The outputs of all the subnets are summed to obtain the output prediction. In the second configuration, additional weights are incorporated to obtain a more generalized model. In the third configuration, the subnets are eliminated by incorporating an additional hidden layer consisting of L nodes. Backpropagation learning algorithm is formulated for each of the proposed neural network configuration to determine the weights, the polynomial coefficients, and the modulation function parameters. The modeling capability of the proposed neural network configuration is evaluated by employing it to represent the dynamics of a batch reactor in which a consecutive reaction takes place. The results show that all the three time-varying neural networks configurations are able to represent the batch reactor dynamics accurately, and it is found that the third configuration is exhibiting comparable or better performance over the other two configurations while requiring much smaller number of parameters. The modeling ability of the third configuration is further validated by applying to modeling a semibatch polymerization reactor challenge problem. This paper illustrates that the proposed approach can be applied to represent dynamics of any batch/semibatch process.
Collapse
|
65
|
Wu A, Zeng Z. Lagrange stability of memristive neural networks with discrete and distributed delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2014; 25:690-703. [PMID: 24807947 DOI: 10.1109/tnnls.2013.2280458] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Memristive neuromorphic system is a good candidate for creating artificial brain. In this paper, a general class of memristive neural networks with discrete and distributed delays is introduced and studied. Some Lagrange stability criteria dependent on the network parameters are derived via nonsmooth analysis and control theory. In particular, several succinct criteria are provided to ascertain the Lagrange stability of memristive neural networks with and without delays. The proposed Lagrange stability criteria are the improvement and extension of the existing results in the literature. Three numerical examples are given to show the superiority of theoretical results.
Collapse
|
66
|
Luo W, Zhong K, Zhu S, Shen Y. Further results on robustness analysis of global exponential stability of recurrent neural networks with time delays and random disturbances. Neural Netw 2014; 53:127-33. [PMID: 24613807 DOI: 10.1016/j.neunet.2014.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/08/2014] [Accepted: 02/16/2014] [Indexed: 10/25/2022]
Abstract
In this paper, further results on robustness analysis of global exponential stability of recurrent neural networks (RNNs) subjected to time delays and random disturbances are provided. Novel exponential stability criteria for the RNNs are derived, and upper bounds of the time delay and noise intensity are characterized by solving transcendental equations containing adjustable parameters. Through the selection of the adjustable parameters, the upper bounds are improved. It shows that our results generalize and improve the corresponding results of recent works. In addition, some numerical examples are given to show the effectiveness of the results we obtained.
Collapse
Affiliation(s)
- Weiwei Luo
- College of Sciences, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Kai Zhong
- College of Sciences, China University of Mining and Technology, Xuzhou, 221116, China
| | - Song Zhu
- College of Sciences, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Yi Shen
- School of Automation, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
67
|
Wu X, Tang Y, Zhang W. Stability analysis of switched stochastic neural networks with time-varying delays. Neural Netw 2014; 51:39-49. [DOI: 10.1016/j.neunet.2013.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/30/2013] [Accepted: 12/03/2013] [Indexed: 11/17/2022]
|
68
|
Li D, Zhu Q. Comparison principle and stability of stochastic delayed neural networks with Markovian switching. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.07.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
69
|
New LMI-based conditions for global exponential stability to a class of Cohen–Grossberg BAM networks with delays. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2013.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Wu ZG, Shi P, Su H, Chu J. Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data. IEEE TRANSACTIONS ON CYBERNETICS 2013; 43:1796-1806. [PMID: 23757573 DOI: 10.1109/tsmcb.2012.2230441] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, the problem of sampled-data synchronization for Markovian jump neural networks with time-varying delay and variable samplings is considered. In the framework of the input delay approach and the linear matrix inequality technique, two delay-dependent criteria are derived to ensure the stochastic stability of the error systems, and thus, the master systems stochastically synchronize with the slave systems. The desired mode-independent controller is designed, which depends upon the maximum sampling interval. The effectiveness and potential of the obtained results is verified by two simulation examples.
Collapse
|
71
|
Robust Stability of Markovian Jump Stochastic Neural Networks with Time Delays in the Leakage Terms. Neural Process Lett 2013. [DOI: 10.1007/s11063-013-9331-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
72
|
Exponential synchronization of stochastic chaotic neural networks with mixed time delays and Markovian switching. Neural Comput Appl 2013. [DOI: 10.1007/s00521-013-1507-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
73
|
Huang H, Du Q, Kang X. Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays. ISA TRANSACTIONS 2013; 52:759-767. [PMID: 23953509 DOI: 10.1016/j.isatra.2013.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/15/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results.
Collapse
Affiliation(s)
- Haiying Huang
- Shijiazhuang Ordnance Engineering College, Shijiazhuang 050000, PR China.
| | | | | |
Collapse
|
74
|
A mode-dependent approach to state estimation of recurrent neural networks with Markovian jumping parameters and mixed delays. Neural Netw 2013; 46:50-61. [DOI: 10.1016/j.neunet.2013.04.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 11/23/2022]
|
75
|
Attractor and Stochastic Boundedness for Stochastic Infinite Delay Neural Networks with Markovian Switching. Neural Process Lett 2013. [DOI: 10.1007/s11063-013-9314-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
76
|
Exponential $$p$$ p -Synchronization of Non-autonomous Cohen–Grossberg Neural Networks with Reaction-Diffusion Terms via Periodically Intermittent Control. Neural Process Lett 2013. [DOI: 10.1007/s11063-013-9313-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
77
|
Luo C, Wang X. Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation. PLoS One 2013; 8:e66491. [PMID: 23785502 PMCID: PMC3681962 DOI: 10.1371/journal.pone.0066491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/06/2013] [Indexed: 11/19/2022] Open
Abstract
A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs). In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.
Collapse
Affiliation(s)
- Chao Luo
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Xingyuan Wang
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
- * E-mail:
| |
Collapse
|
78
|
Zheng CD, Shan QH, Zhang H, Wang Z. On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2013; 24:800-811. [PMID: 24808429 DOI: 10.1109/tnnls.2013.2244613] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The globally exponential stabilization problem is investigated for a general class of stochastic Cohen-Grossberg neural networks with both Markovian jumping parameters and mixed mode-dependent time-delays. The mixed time-delays consist of both discrete and distributed delays. This paper aims to design a memoryless state feedback controller such that the closed-loop system is stochastically exponentially stable in the mean square sense. By introducing a new Lyapunov-Krasovskii functional that accounts for the mode-dependent mixed delays, stochastic analysis is conducted in order to derive delay-dependent criteria for the exponential stabilization problem. Three numerical examples are carried out to demonstrate the feasibility of our delay-dependent stabilization criteria.
Collapse
|
79
|
Wu A, Zeng Z, Chen J. Analysis and design of winner-take-all behavior based on a novel memristive neural network. Neural Comput Appl 2013. [DOI: 10.1007/s00521-013-1395-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
80
|
|
81
|
Kao Y, Wang C, Zhang L. Delay-Dependent Robust Exponential Stability of Impulsive Markovian Jumping Reaction-Diffusion Cohen-Grossberg Neural Networks. Neural Process Lett 2012. [DOI: 10.1007/s11063-012-9269-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Neural-Network-Based Decentralized Adaptive Output-Feedback Control for Large-Scale Stochastic Nonlinear Systems. ACTA ACUST UNITED AC 2012; 42:1608-19. [DOI: 10.1109/tsmcb.2012.2196432] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
83
|
Global exponential estimates of delayed stochastic neural networks with Markovian switching. Neural Netw 2012; 36:136-45. [DOI: 10.1016/j.neunet.2012.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/30/2012] [Accepted: 10/07/2012] [Indexed: 11/30/2022]
|
84
|
Zhu S, Shen Y. Robustness analysis for connection weight matrices of global exponential stability of stochastic recurrent neural networks. Neural Netw 2012. [PMID: 23201555 DOI: 10.1016/j.neunet.2012.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper analyzes the robustness of global exponential stability of stochastic recurrent neural networks (SRNNs) subject to parameter uncertainty in connection weight matrices. Given a globally exponentially stable stochastic recurrent neural network, the problem to be addressed here is how much parameter uncertainty in the connection weight matrices that the neural network can remain to be globally exponentially stable. We characterize the upper bounds of the parameter uncertainty for the recurrent neural network to sustain global exponential stability. A numerical example is provided to illustrate the theoretical result.
Collapse
Affiliation(s)
- Song Zhu
- College of Sciences, China University of Mining and Technology, Xuzhou, 221116, China.
| | | |
Collapse
|
85
|
|
86
|
Stability analysis for a class of neutral-type neural networks with Markovian jumping parameters and mode-dependent mixed delays. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
87
|
Zhu S, Shen Y. Robustness analysis of global exponential stability of neural networks with Markovian switching in the presence of time-varying delays or noises. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-1105-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
88
|
Global exponential stability of impulsive fuzzy Cohen–Grossberg neural networks with mixed delays and reaction–diffusion terms. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
89
|
State estimation of recurrent neural networks with interval time-varying delay: an improved delay-dependent approach. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-1061-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
90
|
Wang C, Kao Y, Yang G. Exponential stability of impulsive stochastic fuzzy reaction–diffusion Cohen–Grossberg neural networks with mixed delays. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.01.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
91
|
Huang T, Li C, Duan S, Starzyk JA. Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2012; 23:866-875. [PMID: 24806759 DOI: 10.1109/tnnls.2012.2192135] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper focuses on the hybrid effects of parameter uncertainty, stochastic perturbation, and impulses on global stability of delayed neural networks. By using the Ito formula, Lyapunov function, and Halanay inequality, we established several mean-square stability criteria from which we can estimate the feasible bounds of impulses, provided that parameter uncertainty and stochastic perturbations are well-constrained. Moreover, the present method can also be applied to general differential systems with stochastic perturbation and impulses.
Collapse
|
92
|
Zhu Q, Cao J. Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2012; 23:467-479. [PMID: 24808552 DOI: 10.1109/tnnls.2011.2182659] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper discusses the issue of stability analysis for a class of impulsive stochastic bidirectional associative memory neural networks with both Markovian jump parameters and mixed time delays. The jumping parameters are modeled as a continuous-time discrete-state Markov chain. Based on a novel Lyapunov-Krasovskii functional, the generalized Itô's formula, mathematical induction, and stochastic analysis theory, a linear matrix inequality approach is developed to derive some novel sufficient conditions that guarantee the exponential stability in the mean square of the equilibrium point. At the same time, we also investigate the robustly exponential stability in the mean square of the corresponding system with unknown parameters. It should be mentioned that our stability results are delay-dependent, which depend on not only the upper bounds of time delays but also their lower bounds. Moreover, the derivatives of time delays are not necessarily zero or smaller than one since several free matrices are introduced in our results. Consequently, the results obtained in this paper are not only less conservative but also generalize and improve many earlier results. Finally, two numerical examples and their simulations are provided to show the effectiveness of the theoretical results.
Collapse
|
93
|
Further results on delay-dependent exponential stability for uncertain stochastic neural networks with mixed delays and Markovian jump parameters. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-0810-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Improved Stability Results for Stochastic Cohen–Grossberg Neural Networks with Discrete and Distributed Delays. Neural Process Lett 2011. [DOI: 10.1007/s11063-011-9206-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
95
|
Ma Q, Xu S, Zou Y. Stability and synchronization for Markovian jump neural networks with partly unknown transition probabilities. Neurocomputing 2011. [DOI: 10.1016/j.neucom.2011.05.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
96
|
Zheng-Guang Wu, Peng Shi, Hongye Su, Jian Chu. Passivity Analysis for Discrete-Time Stochastic Markovian Jump Neural Networks With Mixed Time Delays. ACTA ACUST UNITED AC 2011; 22:1566-75. [DOI: 10.1109/tnn.2011.2163203] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
97
|
Adaptive neural control for uncertain stochastic nonlinear strict-feedback systems with time-varying delays: A Razumikhin functional method. Neurocomputing 2011. [DOI: 10.1016/j.neucom.2010.12.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
98
|
|
99
|
Deng F, Hua M, Liu X, Peng Y, Fei J. Robust delay-dependent exponential stability for uncertain stochastic neural networks with mixed delays. Neurocomputing 2011. [DOI: 10.1016/j.neucom.2010.08.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
100
|
Zhu S, Shen Y. Passivity analysis of stochastic delayed neural networks with Markovian switching. Neurocomputing 2011. [DOI: 10.1016/j.neucom.2011.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|