51
|
Bao G, Zeng Z, Shen Y. Region stability analysis and tracking control of memristive recurrent neural network. Neural Netw 2018; 98:51-58. [DOI: 10.1016/j.neunet.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/05/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
|
52
|
Qiu B, Li L, Peng H, Yang Y. Asymptotic and finite-time synchronization of memristor-based switching networks with multi-links and impulsive perturbation. Neural Comput Appl 2018. [DOI: 10.1007/s00521-017-3312-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
New results for exponential stability of complex-valued memristive neural networks with variable delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.08.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
54
|
Sheng Y, Shen Y, Zhu M. Delay-Dependent Global Exponential Stability for Delayed Recurrent Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:2974-2984. [PMID: 27705864 DOI: 10.1109/tnnls.2016.2608879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper deals with the global exponential stability for delayed recurrent neural networks (DRNNs). By constructing an augmented Lyapunov-Krasovskii functional and adopting the reciprocally convex combination approach and Wirtinger-based integral inequality, delay-dependent global exponential stability criteria are derived in terms of linear matrix inequalities. Meanwhile, a general and effective method on global exponential stability analysis for DRNNs is given through a lemma, where the exponential convergence rate can be estimated. With this lemma, some global asymptotic stability criteria of DRNNs acquired in previous studies can be generalized to global exponential stability ones. Finally, a frequently utilized numerical example is carried out to illustrate the effectiveness and merits of the proposed theoretical results.
Collapse
|
55
|
Zhang F, Zeng Z. Multistability and instability analysis of recurrent neural networks with time-varying delays. Neural Netw 2017; 97:116-126. [PMID: 29096200 DOI: 10.1016/j.neunet.2017.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 08/07/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022]
Abstract
This paper provides new theoretical results on the multistability and instability analysis of recurrent neural networks with time-varying delays. It is shown that such n-neuronal recurrent neural networks have exactly [Formula: see text] equilibria, [Formula: see text] of which are locally exponentially stable and the others are unstable, where k0 is a nonnegative integer such that k0≤n. By using the combination method of two different divisions, recurrent neural networks can possess more dynamic properties. This method improves and extends the existing results in the literature. Finally, one numerical example is provided to show the superiority and effectiveness of the presented results.
Collapse
Affiliation(s)
- Fanghai Zhang
- School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Zhigang Zeng
- School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| |
Collapse
|
56
|
Wang L, Shen Y, Zhang G. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:2648-2659. [PMID: 28113640 DOI: 10.1109/tnnls.2016.2598598] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.
Collapse
Affiliation(s)
- Leimin Wang
- School of Automation, China University of Geosciences, Wuhan, China
| | - Yi Shen
- School of Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Guodong Zhang
- College of Mathematics and Statistics, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
57
|
Wang Y, Shen H, Duan D. On Stabilization of Quantized Sampled-Data Neural-Network-Based Control Systems. IEEE TRANSACTIONS ON CYBERNETICS 2017; 47:3124-3135. [PMID: 27362992 DOI: 10.1109/tcyb.2016.2581220] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper investigates the problem of stabilization of sampled-data neural-network-based systems with state quantization. Different with previous works, the communication limitation of state quantization is considered for the first time. More specifically, it is assumed that the sampled state measurements from sensor to the controller are quantized via a quantizer. To reduce conservativeness, a novel piecewise Lyapunov-Krasovskii functional (LKF) is constructed by introducing a line-integral type Lyapunov function and some useful terms that take full advantage of the available information about the actual sampling pattern. Based on the new LKF, much less conservative stabilization conditions are derived to obtain the maximal sampling period and the minimal guaranteed cost control performance. The desired quantized sampled-data three-layer fully connected feedforward neural-network-based controllers are designed by a linear matrix inequality approach. A search algorithm is given to find the optimal values of tuning parameters. The effectiveness and advantage of proposed method are demonstrated by the numerical simulation of an inverted pendulum.
Collapse
|
58
|
Yang Z, Luo B, Liu D, Li Y. Pinning synchronization of memristor-based neural networks with time-varying delays. Neural Netw 2017; 93:143-151. [DOI: 10.1016/j.neunet.2017.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 11/17/2022]
|
59
|
Finite-Time Lag Synchronization for Memristive Mixed Delays Neural Networks with Parameter Mismatch. Neural Process Lett 2017. [DOI: 10.1007/s11063-017-9653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
60
|
Wang X, She K, Zhong S, Cheng J. Exponential synchronization of memristor-based neural networks with time-varying delay and stochastic perturbation. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.02.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Feng J, Ma Q, Qin S. Exponential Stability of Periodic Solution for Impulsive Memristor-Based Cohen–Grossberg Neural Networks with Mixed Delays. INT J PATTERN RECOGN 2017. [DOI: 10.1142/s0218001417500227] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Memristor, as the future of artificial intelligence, has been widely used in pattern recognition or signal processing from sensor arrays. Memristor-based recurrent neural network (MRNN) is an ideal model to mimic the functionalities of the human brain due to the physical properties of memristor. In this paper, the periodicity for memristor-based Cohen–Grossberg neural networks (MCGNNs) is studied. The neural network (NN) considered in this paper is based on the memristor and involves time-varying delays, distributed delays and impulsive effects. The boundedness and monotonicity of the activation function are not assumed. By some inequality technique and contraction mapping principle, we prove the existence, uniqueness and exponential stability of periodic solution for MCGNNs. Finally, some numeral examples and comparisons are provided to illustrate the validation of our results.
Collapse
Affiliation(s)
- Jiqiang Feng
- Institute of Intelligent Computing Science, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiang Ma
- Department of Mathematics, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Sitian Qin
- Department of Mathematics, Harbin Institute of Technology, Weihai 264209, P. R. China
| |
Collapse
|
62
|
Controller design for global fixed-time synchronization of delayed neural networks with discontinuous activations. Neural Netw 2017; 87:122-131. [DOI: 10.1016/j.neunet.2016.12.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 11/20/2022]
|
63
|
Liu D, Zhu S, Chang W. Input-to-state stability of memristor-based complex-valued neural networks with time delays. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.09.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Zheng M, Li L, Peng H, Xiao J, Yang Y, Zhao H. Parameters estimation and synchronization of uncertain coupling recurrent dynamical neural networks with time-varying delays based on adaptive control. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2822-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
65
|
Wang Z, Ding S, Huang Z, Zhang H. Exponential Stability and Stabilization of Delayed Memristive Neural Networks Based on Quadratic Convex Combination Method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:2337-2350. [PMID: 26513808 DOI: 10.1109/tnnls.2015.2485259] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper is concerned with the exponential stability and stabilization of memristive neural networks (MNNs) with delays. First, we present some generalized double-integral inequalities, which include some existing inequalities as their special cases. Second, combining with quadratic convex combination method, these double-integral inequalities are employed to formulate a delay-dependent stability condition for MNNs with delays. Third, a state-dependent switching control law is obtained for MNNs with delays based on the proposed stability conditions. The desired feedback gain matrices are accomplished by solving a set of linear matrix inequalities. Finally, the feasibility and effectiveness of the proposed results are tested by two numerical examples.
Collapse
|
66
|
Abdurahman A, Jiang H. New results on exponential synchronization of memristor-based neural networks with discontinuous neuron activations. Neural Netw 2016; 84:161-171. [PMID: 27721204 DOI: 10.1016/j.neunet.2016.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/09/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
Abstract
This paper investigates the exponential synchronization of delayed memristor-based neural networks (MNNs) with discontinuous activation functions. Based on the framework of Filippov solution and differential inclusion theory, using new analytical techniques and introducing suitable Lyapunov functionals, some novel sufficient conditions ensuring the exponential synchronization of considered networks are established via two types of discontinuous controls: linear feedback control and adaptive control. In particular, we extend the discontinuous control strategies for neural networks with continuous dynamics to MNNs with discontinuous activations. Numerical simulations are given to show the effectiveness of the theoretical results. Our approach and theoretical results have a leading significance in the design of synchronized MNN circuits involving discontinuous activations and time-varying delays.
Collapse
Affiliation(s)
- Abdujelil Abdurahman
- College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, Xinjiang, PR China
| | - Haijun Jiang
- College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| |
Collapse
|
67
|
Wang L, Shen Y, Zhang G. Synchronization of a Class of Switched Neural Networks with Time-Varying Delays via Nonlinear Feedback Control. IEEE TRANSACTIONS ON CYBERNETICS 2016; 46:2300-2310. [PMID: 26390507 DOI: 10.1109/tcyb.2015.2475277] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper is concerned with the synchronization problem for a class of switched neural networks (SNNs) with time-varying delays. First, a new crucial lemma which includes and extends the classical exponential stability theorem is constructed. Then by using the lemma, new algebraic criteria of ψ -type synchronization (synchronization with general decay rate) for SNNs are established via the designed nonlinear feedback control. The ψ -type synchronization which is in a general framework is obtained by introducing a ψ -type function. It contains exponential synchronization, polynomial synchronization, and other synchronization as its special cases. The results of this paper are general, and they also complement and extend some previous results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.
Collapse
|
68
|
Finite-time stabilization of uncertain neural networks with distributed time-varying delays. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2421-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
69
|
Lag quasi-synchronization for memristive neural networks with switching jumps mismatch. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2291-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
70
|
Finite-time robust stabilization of uncertain delayed neural networks with discontinuous activations via delayed feedback control. Neural Netw 2016; 76:46-54. [DOI: 10.1016/j.neunet.2016.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/17/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022]
|
71
|
Ding Z, Shen Y. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw 2016; 76:97-105. [DOI: 10.1016/j.neunet.2016.01.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/15/2015] [Accepted: 01/13/2016] [Indexed: 11/25/2022]
|
72
|
Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.11.079] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
73
|
Wang L, Shen Y, Zhang G. General decay synchronization stability for a class of delayed chaotic neural networks with discontinuous activations. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.11.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
74
|
Wang L, Shen Y. Finite-Time Stabilizability and Instabilizability of Delayed Memristive Neural Networks With Nonlinear Discontinuous Controller. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015; 26:2914-2924. [PMID: 26277003 DOI: 10.1109/tnnls.2015.2460239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper is concerned about the finite-time stabilizability and instabilizability for a class of delayed memristive neural networks (DMNNs). Through the design of a new nonlinear controller, algebraic criteria based on M -matrix are established for the finite-time stabilizability of DMNNs, and the upper bound of the settling time for stabilization is estimated. In addition, finite-time instabilizability algebraic criteria are also established by choosing different parameters of the same nonlinear controller. The effectiveness and the superiority of the obtained results are supported by numerical simulations.
Collapse
|
75
|
Soudry D, Di Castro D, Gal A, Kolodny A, Kvatinsky S. Memristor-based multilayer neural networks with online gradient descent training. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015; 26:2408-21. [PMID: 25594981 DOI: 10.1109/tnnls.2014.2383395] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Learning in multilayer neural networks (MNNs) relies on continuous updating of large matrices of synaptic weights by local rules. Such locality can be exploited for massive parallelism when implementing MNNs in hardware. However, these update rules require a multiply and accumulate operation for each synaptic weight, which is challenging to implement compactly using CMOS. In this paper, a method for performing these update operations simultaneously (incremental outer products) using memristor-based arrays is proposed. The method is based on the fact that, approximately, given a voltage pulse, the conductivity of a memristor will increment proportionally to the pulse duration multiplied by the pulse magnitude if the increment is sufficiently small. The proposed method uses a synaptic circuit composed of a small number of components per synapse: one memristor and two CMOS transistors. This circuit is expected to consume between 2% and 8% of the area and static power of previous CMOS-only hardware alternatives. Such a circuit can compactly implement hardware MNNs trainable by scalable algorithms based on online gradient descent (e.g., backpropagation). The utility and robustness of the proposed memristor-based circuit are demonstrated on standard supervised learning tasks.
Collapse
|