51
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
52
|
Can Light Spectrum Composition Increase Growth and Nutritional Quality of Linum usitatissimum L. Sprouts and Microgreens? HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Flaxseed could be suitable for obtaining high-quality sprouts and microgreens thanks to high amounts of nutrients and antioxidant, antidiabetic, and anticancer compound content in its seeds. Recent studies highlighted that seedling growth, nutritional compound, and secondary metabolite content can be strongly managed by regulation of the light spectrum used during germination. The present study intended to shed light on flaxseed as emerging and novel species for sprouts and microgreens and to evaluate the effect of light, with different spectrum compositions (100% blue, 100% red, 100% green, and red:green:blue—1:1:1) on the performance of flax microgreens and sprouts grown indoors under controlled conditions. Microgreens showed, compared to sprouts, a higher chlorophyll (+62.6%), carotenoid (+24.4%), and phenol content (+37.8%), antioxidant capacity (+25.1%) and a lower dry matter content (−30.7%). Besides, microgreens treated with 100% blue light were characterized by the highest content of flavonoids (2.48 mg CAE g−1 FW), total phenols (3.76 mg GAE g−1 FW), chlorogenic acid (1.10 mg g−1 FW), and antioxidant capacity (8.06 µmol TEAC g−1 FW). The paper demonstrates the feasibility of obtaining flax sprouts and microgreens indoors with a considerable antioxidant capacity and health-promoting compounds by modulating the light spectrum.
Collapse
|
53
|
Towards Sustainable Shifts to Healthy Diets and Food Security in Sub-Saharan Africa with Climate-Resilient Crops in Bread-Type Products: A Food System Analysis. Foods 2022; 11:foods11020135. [PMID: 35053868 PMCID: PMC8774613 DOI: 10.3390/foods11020135] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Massive urbanization and increasing disposable incomes favor a rapid transition in diets and lifestyle in sub-Saharan Africa (SSA). As a result, the SSA population is becoming increasingly vulnerable to the double burden of malnutrition and obesity. This, combined with the increasing pressure to produce sufficient food and provide employment for this growing population together with the threat of climate change-induced declining crop yields, requires urgent sustainable solutions. Can an increase in the cultivation of climate-resilient crops (CRCs) and their utilization to produce attractive, convenient and nutritious bread products contribute to climate change adaptation and healthy and sustainable diets? A food system analysis of the bread food value chain in SSA indicates that replacement of refined, mostly imported, wheat in attractive bread products could (1) improve food and nutrition security, (2) bring about a shift to more nutritionally balanced diets, (3) increase economic inclusiveness and equitable benefits, and (4) improve sustainability and resilience of the food system. The food system analysis also provided systematic insight into the challenges and hurdles that need to be overcome to increase the availability, affordability and uptake of CRCs. Proposed interventions include improving the agronomic yield of CRCs, food product technology, raising consumer awareness and directing policies. Overall, integrated programs involving all stakeholders in the food system are needed.
Collapse
|
54
|
Islam MZ, Park BJ, Lee YT. Influence of Temperature Conditions during Growth on Bioactive Compounds and Antioxidant Potential of Wheat and Barley Grasses. Foods 2021; 10:foods10112742. [PMID: 34829021 PMCID: PMC8619051 DOI: 10.3390/foods10112742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023] Open
Abstract
Wheat and barley grasses are freshly sprouted leaves of wheat and barley seeds, and are rich sources of phytochemicals. This study was conducted to investigate the effects of day and night temperatures on the growth, bioactive compounds, and antioxidant potential of wheat and barley grasses. Briefly, each grass was cropped in an organic growing medium at 10/5 °C, 20/15 °C, and 30/25 °C (day/night temperature) in a growth chamber by maintaining specific light (12/12 h light/dark; light intensity 150 µmol photons m−2 s−1) and humidity (60%) conditions for 8 days. The highest growth parameters (height, weight, and yield) were observed at the 20/15 °C growth conditions in both types of grass. Conversely, the lowest growth parameters were observed at 10/5 °C. However, the low growth temperature of 10/5 °C resulted in increased levels of bioactive compounds (total phenol, total flavonoid, and total vitamin C), antioxidant activities (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid and 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging activity)), and antioxidant enzymes (guaiacol peroxidase activity, catalase activity, and glutathione reductase) in both types of grass. Therefore, proper temperature growth conditions of wheat and barley grasses may be a convenient and efficient method to increase bioactive compounds and antioxidant potential in our diet to exploit the related health benefits.
Collapse
|
55
|
Canlı M, Çelik EE, Kocadağlı T, Kanmaz EÖ, Gökmen V. Formation of Bioactive Tyrosine Derivatives during Sprouting and Fermenting of Selected Whole Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12517-12526. [PMID: 34652133 DOI: 10.1021/acs.jafc.1c05064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sprouting is a popular method in cereal processing because sprouted grains are accepted to have high nutritional value. The increased proteolytic activity by sprouting increases the free amino acids in grains. It was hypothesized that an increased amount of tyrosine can be utilized by microorganisms during fermentation to form higher amounts of bioactive tyrosine derivatives. Sprouting increased the tyrosine and tyramine contents considerably, but increases and decreases in l-3,4-dihydroxyphenylalanine (l-DOPA) and dopamine were specific to the cereal. More tyramine, l-DOPA, and dopamine formation was observed during sourdough fermentation than that in yeast fermentation. As a result of the combined application of sprouting (48 h at 20 °C) and sourdough fermentation (36 h at 30 °C), the amounts of dopamine, l-DOPA, and tyramine found in rye were 27, 50, and 136 mg/kg, respectively. Cereal products rich in dopamine and l-DOPA can thus be produced as functional food ingredients with their positive effects on human health and mood.
Collapse
Affiliation(s)
- Merve Canlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Ecem Evrim Çelik
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Evrim Özkaynak Kanmaz
- Department of Nutrition and Dietetics, Artvin Çoruh University, 08100 Seyitler, Artvin, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| |
Collapse
|
56
|
Bautista-Expósito S, Vandenberg A, Peñas E, Frias J, Martínez-Villaluenga C. Lentil and Fava Bean With Contrasting Germination Kinetics: A Focus on Digestion of Proteins and Bioactivity of Resistant Peptides. FRONTIERS IN PLANT SCIENCE 2021; 12:754287. [PMID: 34759946 PMCID: PMC8575454 DOI: 10.3389/fpls.2021.754287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 05/03/2023]
Abstract
Germination offers advantages to improve legume protein digestibility as it disintegrates seed structure and hydrolyzes proteins and anti-nutrients. Seed permeability (related to polyphenol content of seed coats) is an important factor affecting the duration of seed germination and its impact on protein digestibility and bioactivity. The objective was to compare the effect of seed germination on protease activity, structure, and proteolysis of four selected legumes with contrasting seed coat polyphenol profiles (gray zero-tannin lentil [GZL], beluga lentil [BL], and dehulled red lentil [DL]; and zero tannin/low vicine-convicine fava bean [ZF]). Protein hydrolysis was characterized during germination and digestion with respect to proteins, peptides, and free amino acids (FAAs). In vitro antihypertensive and antioxidant activities of digests were investigated, and the peptidomic characterization [high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS)] and identification of bioactive fragments in intestinal digests were performed. Regardless of the seed type, germination increased protease activity and reduced the levels of phytic acid, trypsin inhibitors, and tannins (only in BL). A significant proteolysis of the 7S and 11S globulins and a concomitant increase of peptides and FAAs were observed in all sprouted legumes. Digestion kinetics in sprouts revealed a faster generation of FAAs and peptides than in dry seeds, with changes being more evident for DL, associated with a faster imbibition, germination, and sprout growth. In contrast, BL sprouts showed the lowest protein digestibility, likely due to a lower protease activity, seed structure disintegration, and higher anti-nutrient levels in comparison to GZL, DL, and ZF. Moreover, the digestion of sprouts resulted in a higher number of resistant peptides in DL and ZF that matched with previously reported bioactive sequences, suggesting a promising health potential of legume sprouts that was confirmed in vitro. The results suggested that the germination process improved protein digestibility and the health-promoting potential of lentil and fava bean proteins although these changes were more evident in DL due to its rapid imbibition, faster germination, and sprout development. This study will provide important information for either plant breeders to develop legume varieties with permeable seed coats or food producers that could use dehulled seeds for efficient production of sprouts as sustainable food sources of plant proteins with improved nutritional and healthy properties.
Collapse
Affiliation(s)
- Sara Bautista-Expósito
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Albert Vandenberg
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| |
Collapse
|
57
|
Integrated Analysis of Metabolome and Volatile Profiles of Germinated Brown Rice from the Japonica and Indica Subspecies. Foods 2021; 10:foods10102448. [PMID: 34681497 PMCID: PMC8535935 DOI: 10.3390/foods10102448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023] Open
Abstract
In the present study, germinated brown rice (GBR) from three Japonica and three Indica rice cultivars were subjected to metabolomics analysis and volatile profiling. The statistical assessment and pathway analysis of the metabolomics data demonstrated that in spite of significant metabolic changes in response to the germination treatment, the Japonica rice cultivars consistently expressed higher levels of several health-promoting compounds, such as essential amino acids and γ-aminobutyric acid (GABA), than the Indica cultivars. No clear discriminations of the volatile profiles were observed in light of the subspecies, and the concentrations of the volatile organic compounds (VOCs), including alkenes, aldehydes, furans, ketones, and alcohols, all exhibited significant reductions ranging from 26.8% to 64.1% after the germination. The results suggest that the Japonica cultivars might be desirable as the raw materials for generating and selecting GBR food products for health-conscious consumers.
Collapse
|
58
|
Nugraheni M, Purwanti S, Ekawatiningsih P. Impact of Analog Rice Derived from Different Composite Flours from Tubers, Germinated Legumes, and Cereals on Improving Serum Markers in Alloxan-Induced Diabetic Rats. Prev Nutr Food Sci 2021; 26:296-306. [PMID: 34737990 PMCID: PMC8531424 DOI: 10.3746/pnf.2021.26.3.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/07/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
This study aimed to evaluate the consumption of four types of analog rice made from different composite flours in alloxan-induced diabetic rats. Forty-two male Wistar rats were divided into seven groups and fed different food for six weeks: normal standard food (NSF), diabetic standard food (DSF), diabetic commercial rice (DCR), and diabetic analog rice (DAR) I∼IV. Total phenolic, dietary fiber, and resistant starch contents were evaluated in every analog and commercial type of rice. The parameters studied were fasting blood glucose, homeostatic model assessment (HOMA) insulin resistance (IR), HOMA β, lipid profile, atherogenic indexes (AI), weight changes, serum insulin and antioxidant activities. Total phenol, dietary fiber, and resistant starch were higher for analog rice IV than the other three analog rice. In addition, analog rice IV had a greater ability to lower fasting blood glucose, total cholesterol, triglycerides, and low-density lipoprotein levels. High density lipoprotein levels increased in all groups fed analog rice, and all diabetic rats fed four types of analog rice had improved weight, antioxidant activity, serum insulin levels, HOMA IR, HOMA β, and AI. Commercial rice consumption did not improve glucose or lipids profiles, antioxidant activity, serum insulin level, HOMA IR, HOMA β, or AI in diabetic mice. These results show that the four types of analog rice significantly improved serum markers in diabetic rats.
Collapse
Affiliation(s)
- Mutiara Nugraheni
- Culinary Art Vocational Education, Faculty of Engineering, Yogyakarta State University, Yogyakarta 55281, Indonesia
| | - Sutriyati Purwanti
- Culinary Art Vocational Education, Faculty of Engineering, Yogyakarta State University, Yogyakarta 55281, Indonesia
| | - Prihastuti Ekawatiningsih
- Culinary Art Vocational Education, Faculty of Engineering, Yogyakarta State University, Yogyakarta 55281, Indonesia
| |
Collapse
|
59
|
Cardone G, Rumler R, Speranza S, Marti A, Schönlechner R. Sprouting Time Affects Sorghum ( Sorghum bicolor [L.] Moench) Functionality and Bread-Baking Performance. Foods 2021; 10:foods10102285. [PMID: 34681334 PMCID: PMC8534832 DOI: 10.3390/foods10102285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Despite being considered a climate-resilient crop, sorghum is still underutilized in food processing because of the limited starch and protein functionality. For this reason, the objective of this study was to investigate the effect of sprouting time on sorghum functional properties and the possibility to exploit sprouted sorghum in bread making. In this context, red sorghum was sprouted for 24, 36, 48, 72, and 96 h at 27 °C. Sprouting time did not strongly affect the sorghum composition in terms of total starch, fiber, and protein contents. On the other hand, the developed proteolytic activity had a positive effect on oil-absorption capacity, pasting, and gelation properties. Conversely, the increased α-amylase activity in sprouted samples (≥36 h) altered starch functionality. As regards sorghum-enriched bread, the blends containing 48 h-sprouted sorghum showed high specific volume and low crumb firmness. In addition, enrichment in sprouted sorghum increased both the in vitro protein digestibility and the slowly digestible starch fraction of bread. Overall, this study showed that 48 h-sprouted sorghum enhanced the bread-making performance of wheat-based products.
Collapse
Affiliation(s)
- Gaetano Cardone
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via G. Celoria 2, 20133 Milan, Italy;
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| | - Rubina Rumler
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| | - Sofia Speranza
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via G. Celoria 2, 20133 Milan, Italy;
- Correspondence:
| | - Regine Schönlechner
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| |
Collapse
|
60
|
Gulkirpik E, Toc M, Atuna RA, Amagloh FK, Andrade Laborde JE. Evaluation of Oxidative Stability of Full Fat Soybean Flour in Storage and Sensory Quality of Tuo Zaafi-Enriched with Soy Flour as Influenced by Traditional Processing Methods. Foods 2021; 10:foods10092192. [PMID: 34574302 PMCID: PMC8472710 DOI: 10.3390/foods10092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
The oxidative stability of pretreated full-fat soybean flour (FFSF) was evaluated under commercial (Experiment I) and accelerated conditions (Experiment II). In Experiment I, soybeans were pretreated using germination, soaking (24 h), or roasting (110–120 °C), and the dried, milled FFSF was stored for 120 days under commercial storage conditions in two cities in Ghana. Acid value (AV) and peroxide value (PV) were determined. The proximate and sensory quality of Tuo Zaafi, a maize-only dish in northern Ghana enriched with 10–30% of the pretreated FFSF, was assessed. Before storage, all samples had similar PV (1.907–4.305 mEq/kg oil); however, the AV of the germinated sample was higher than that of the unprocessed samples (10.83 vs. 3.13 mgKOH/g oil; p < 0.001). After storage, although AV fluctuated, the PV was similar (2.39–3.74 mEq/kg oil; p = 1.00). Storage location showed no significant differences in terms of AV (4.96–4.97 mgKOH/g oil; p = 0.994), unlike PV (2.07–3.55 mEq/kg oil; p < 0.001). Increasing the levels of the pretreated FFSF in Tuo Zaafi resulted in lower consumer preference scores for all sensory attributes. In Experiment II, FFSF samples (dehulled and nondehulled) prepared from germination, soaking (18 h and 24 h) and roasting were evaluated under accelerated conditions (AC) of controlled temperature (45 ± 0.1 °C) and relative humidity (81 ± 1%) for AV, PV, p-anisidine value (pAV), lipoxygenase activity (LOX), color, and moisture. Pretreatment, condition, time, and their interaction affected the oxidative stability of all FFSF samples (p < 0.001). Roasted samples showed the highest increase in AV and pAV in both storage conditions (p < 0.05). Under room temperature conditions (RTC), the roasted and germinated samples had lower LOX activity (p < 0.05) at the end of storage time compared to that of the controls. In conclusion, germination and soaking reduced oxidation of FFSF, while roasting promotes it, despite its common use.
Collapse
Affiliation(s)
- Ece Gulkirpik
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign County, IL 61801, USA; (E.G.); (M.T.)
| | - Marco Toc
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign County, IL 61801, USA; (E.G.); (M.T.)
| | - Richard A. Atuna
- Department of Food Science and Technology, Nyankpala Campus, University for Development Studies, Tamale P.O. Box TL 1882, Ghana; (R.A.A.); (F.K.A.)
| | - Francis K. Amagloh
- Department of Food Science and Technology, Nyankpala Campus, University for Development Studies, Tamale P.O. Box TL 1882, Ghana; (R.A.A.); (F.K.A.)
| | - Juan E. Andrade Laborde
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
- Correspondence:
| |
Collapse
|
61
|
Yıltırak S, Kocadağlı T, Çelik EE, Özkaynak Kanmaz E, Gökmen V. Effects of Sprouting and Fermentation on Free Asparagine and Reducing Sugars in Wheat, Einkorn, Oat, Rye, Barley, and Buckwheat and on Acrylamide and 5-Hydroxymethylfurfural Formation during Heating. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9419-9433. [PMID: 34374283 DOI: 10.1021/acs.jafc.1c03316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Usage of sprouted grains is an increasing trend in thermally processed foods. Sprouting alters the composition of sugars and amino acids, which are Maillard reaction precursors. Free asparagine, total free amino acids, and sugars were monitored during sprouting and yeast and sourdough fermentations. Acrylamide and 5-hydroxymethylfurfural (HMF) were analyzed in heated samples. The asparagine concentration decreased up to 40% after 24-36 h of sprouting, except for buckwheat, and then increased to the initial concentration after 48 h and several folds after 72 h. The increased amount of reducing sugars after sprouting caused higher acrylamide and HMF formation even if the asparagine concentration was lower. Acrylamide and HMF formation decreased after fermentation of sprouted wholemeal because sugars and asparagine were consumed by yeast. A pH drop of 3 units by sourdough fermentation decreased acrylamide formation but increased HMF formation. Results indicated that sprouted cereal products should be produced under controlled conditions to be used in heated foods.
Collapse
Affiliation(s)
- Süleyman Yıltırak
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Ecem Evrim Çelik
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Evrim Özkaynak Kanmaz
- Department of Nutrition and Dietetics, Artvin Çoruh University, Seyitler, Artvin 08100, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| |
Collapse
|
62
|
Modulation of Phosphate Deficiency-Induced Metabolic Changes by Iron Availability in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22147609. [PMID: 34299231 PMCID: PMC8306678 DOI: 10.3390/ijms22147609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Concurrent suboptimal supply of several nutrients requires the coordination of nutrient-specific transcriptional, phenotypic, and metabolic changes in plants in order to optimize growth and development in most agricultural and natural ecosystems. Phosphate (Pi) and iron (Fe) deficiency induce overlapping but mostly opposing transcriptional and root growth responses in Arabidopsis thaliana. On the metabolite level, Pi deficiency negatively modulates Fe deficiency-induced coumarin accumulation, which is controlled by Fe as well as Pi deficiency response regulators. Here, we report the impact of Fe availability on seedling growth under Pi limiting conditions and on Pi deficiency-induced accumulation of amino acids and organic acids, which play important roles in Pi use efficiency. Fe deficiency in Pi replete conditions hardly changed growth and metabolite profiles in roots and shoots of Arabidopsis thaliana, but partially rescued growth under conditions of Pi starvation and severely modulated Pi deficiency-induced metabolic adjustments. Analysis of T-DNA insertion lines revealed the concerted coordination of metabolic profiles by regulators of Fe (FIT, bHLH104, BRUTUS, PYE) as well as of Pi (SPX1, PHR1, PHL1, bHLH32) starvation responses. The results show the interdependency of Pi and Fe availability and the interplay between Pi and Fe starvation signaling on the generation of plant metabolite profiles.
Collapse
|
63
|
Zenkova M. BIOACTIVATED BUCKWHEAT IN TERMS OF ITS NUTRITIONAL VALUEBIOACTIVATED BUCKWHEAT IN TERMS OF ITS NUTRITIONAL VALUE. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.15673/fst.v15i2.2030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Buckwheat is a gluten-free pseudocereal crop consumed as functional food in some regions. Traditionally, buckwheat grain is used to make buckwheat groats and flour. Bioactivation improves the nutritional value of buckwheat grain by activating hydrolytic enzymes that make nutrients available for the plant’s growth and for the human body. The article contains research on the content of nutrients in bioactivated buckwheat grain of the Kupava variety grown in Belarus. The study examined hulled buckwheat kernels (not steamed) of the botanical variety Kupava, cream-coloured with a greenish hue, with the humidity 12.0%, and with the proportion of sound kernels 99.4%. At the first stage of germination, bioactivated buckwheat grain was obtained in 48 hours. It had the following characteristics: humidity (39.2±1.0)%, sprout size (2.0±0.5) mm. According to the organoleptic parameters, the grain had a pleasant sweetish taste and a subtle nutty aftertaste. The components of bioactivated buckwheat grain that provide a person with the largest amounts of macronutrients are starch (31.84±0.6)%, sugars (5.1±0.3)%, and protein (5.67±0.02)%. Bioactivated buckwheat grain contains all essential amino acids (30.5% of the total quantity of amino acids). The limiting amino acid is threonine (amino acid score 31.7%). Of nonessential amino acids, there is a high content of glutamic acid (1.0972 g per 100 g). The difference ratio of the amino acid score is 54.75%, the potential biological value of the protein is 45.25%. 100 g of sprouted buckwheat grain contains 48.5% of the daily requirement of manganese, 24.0% of copper, 18.9% and 34.0% of iron (for women and for men respectively), about 23.0% of the daily requirement of vitamin B1, and 12.7% of the daily requirement of vitamin E. Besides, bioactivated buckwheat grain contains fibre (6.5% of the daily requirement on average). Bioactivated buckwheat grain can be consumed as a meal in its own right, as a side dish, as an additive to salads and fermented dairy products, or as a dessert when mixed with fruit purée, honey, or dried fruit.
Collapse
|
64
|
Impact of sprouting on physicochemical and nutritional properties of sorghum: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00969-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
65
|
Miyahira RF, Lopes JDO, Antunes AEC. The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:143-152. [PMID: 33719022 DOI: 10.1007/s11130-021-00888-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Sprouts are vegetable foods rich in phytonutrients, such as glucosinolates, phenolics, and isoflavones. Many studies have shown that sprouts also have high concentrations of vitamins and minerals. In addition to the high concentration of nutrients, sprouts can present a reduction of anti-nutritional factors such as phytates, tannins, and oxalates, which increases the bioaccessibility of minerals. However, their nutritional composition depends on several factors, such as the type of sprout and the germination conditions. In recent years, these foods have been highly demanded because they are associated to many health benefits. Moreover, germination is an easy and fast process, and does not depend on specific climatic conditions (potentially more sustainable to growth). The use of sprouts for the elaboration of food products can be a good strategy to increase the nutritional value of certain products that are widely consumed worldwide. In this sense, studies that evaluated the impact of adding sprouted grains on the nutritional value of some products, as well as the effect on their sensory properties were searched in the scientific literature. Most of them used germinated grain flours to replace wheat flour in food products. The satisfactory results of these products were associated with the type of sprout used and with the level of replacement of the wheat flour. This review briefly explored the nutritional benefits and the sensory acceptance of food products made with added sprouts.
Collapse
Affiliation(s)
- Roberta Fontanive Miyahira
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro/RJ, CEP: 20550-013, Brazil.
- School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil.
| | - Jean de Oliveira Lopes
- School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil
| | | |
Collapse
|
66
|
Seal CJ, Courtin CM, Venema K, de Vries J. Health benefits of whole grain: effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Compr Rev Food Sci Food Saf 2021; 20:2742-2768. [PMID: 33682356 DOI: 10.1111/1541-4337.12728] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Grains are important sources of carbohydrates in global dietary patterns. The majority of these carbohydrates, especially in refined-grain products, are digestible. Most carbohydrate digestion takes place in the small intestine where monosaccharides (predominantly glucose) are absorbed, delivering energy to the body. However, a considerable part of the carbohydrates, especially in whole grains, is indigestible dietary fibers. These impact gut motility and transit and are useful substrates for the gut microbiota affecting its composition and quality. For the most part, the profile of digestible and indigestible carbohydrates and their complexity determine the nutritional quality of carbohydrates. Whole grains are more complex than refined grains and are promoted as part of a healthy and sustainable diet mainly because the contribution of indigestible carbohydrates, and their co-passenger nutrients, is significantly higher. Higher consumption of whole grain is recommended because it is associated with lower incidence of, and mortality from, CVD, type 2 diabetes, and some cancers. This may be due in part to effects on the gut microbiota. Although processing of cereals during milling and food manufacturing is necessary to make them edible, it also offers the opportunity to still further improve the nutritional quality of whole-grain flours and foods made from them. Changing the composition and availability of grain carbohydrates and phytochemicals during processing may positively affect the gut microbiota and improve health.
Collapse
Affiliation(s)
- Chris J Seal
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University-Campus Venlo, St Jansweg 20, 5928 RC, Venlo, The Netherlands
| | - Jan de Vries
- Nutrition Solutions, Reuvekamp 26, 7213CE, Gorssel, The Netherlands
| |
Collapse
|
67
|
Sprouting of Sorghum ( Sorghum bicolor [L.] Moench): Effect of Drying Treatment on Protein and Starch Features. Foods 2021; 10:foods10020407. [PMID: 33673309 PMCID: PMC7917644 DOI: 10.3390/foods10020407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/21/2022] Open
Abstract
The nutritional and physicochemical properties of sorghum proteins and starch make the use of this cereal for food production challenging. Sprouting is a cost-effective technology to improve the nutritional and functional profile of grains. Two drying treatments were used after sorghum sprouting to investigate whether the drying phase could improve the protein and starch functionalities. Results showed that the drying treatment at lower temperature/longer time (40 °C for 12 h) extended the enzymatic activity that started during sprouting compared to the one performed at higher temperature/shorter time (50 °C for 6 h). An increased protein hydrolysis and water- and oil-holding capacity were found in the flour obtained by the former treatment. Higher protein matrix hydrolysis caused high exposure of starch to enzymes, thus increasing its digestibility, while worsening the technological functionality. Overall, modulating drying conditions could represent a further way, in addition to sprouting, to improve sorghum flour’s nutritional profile.
Collapse
|
68
|
Yousaf L, Hou D, Liaqat H, Shen Q. Millet: A review of its nutritional and functional changes during processing. Food Res Int 2021; 142:110197. [PMID: 33773674 DOI: 10.1016/j.foodres.2021.110197] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/17/2022]
Abstract
Millets are a major source of human food, and their production has been steadily increasing in the last decades to meet the dietary requirements of the increasing world population. Millets are an excellent source of all essential nutrients like protein, carbohydrates, fat, minerals, vitamins, and bioactive compounds. However, the nutrients, bioactive compounds, and functions of cereal grains can be influenced by the food preparation techniques such as decortication/dehulling, soaking, germination/malting, milling, fermentation, etc. This study discusses the nutritional and functional changes in millet during different traditional/modern processing techniques, based on more than 100 articles between 2013 and 2020 from Web of Science, Google Scholar, FAO, and USDA databases. Our results concluded that processing techniques could be useful to combat undernourishment and other health issues. Moreover, this review provides detailed information about millet processing, which is advantageous for industry, consumers, and researchers in this area.
Collapse
Affiliation(s)
- Laraib Yousaf
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China
| | - Dianzhi Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China
| | - Humna Liaqat
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, South Korea
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
69
|
Aljabi HR, Pawelzik E. Impact of Cultivar and Growing Conditions on Alpha‐Amylase Properties in Wheat. STARCH-STARKE 2021. [DOI: 10.1002/star.202000032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hanadi Riyad Aljabi
- Department of Crop Science, Division Quality of Plant Products University of Goettingen Carl‐Sprengel‐Weg 1 Goettingen 37075 Germany
| | - Elke Pawelzik
- Department of Crop Science, Division Quality of Plant Products University of Goettingen Carl‐Sprengel‐Weg 1 Goettingen 37075 Germany
| |
Collapse
|
70
|
Tomé-Sánchez I, Martín-Diana AB, Peñas E, Frias J, Rico D, Jiménez-Pulido I, Martínez-Villaluenga C. Bioprocessed Wheat Ingredients: Characterization, Bioaccessibility of Phenolic Compounds, and Bioactivity During in vitro Digestion. FRONTIERS IN PLANT SCIENCE 2021; 12:790898. [PMID: 35003179 PMCID: PMC8740022 DOI: 10.3389/fpls.2021.790898] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/13/2023]
Abstract
To enlarge the applications of whole wheat grain (WWG) and wheat bran (WB) as functional ingredients in foodstuffs that can promote human health, researchers have explored bioprocessing approaches to improve the bioaccessibility of phenolic compounds from these food matrices and, subsequently, their biological effects. The objective of this study was to compare the composition in nutrients, anti-nutrients, and bioactive compounds of WWG and WB, and their respective bioprocessed products: sprouted wheat (GERM) and WB hydrolysate (stabilized by spray-drying [SPD] and microencapsulated [MEC]). In addition, to evaluate the functional properties of these ingredients, the bioaccessibility of phenolic compounds and their potential antioxidant and anti-inflammatory activities were monitored in different digestion steps. GERM had increased amounts of insoluble dietary fiber, higher diversity of oligosaccharides, and higher concentration of monosaccharides, free phosphorous, and phenolic compounds than WWG. SPD had improved content of soluble dietary fiber, oligosaccharides, monosaccharides, free phosphorous, and phenolic compounds (vs. WB), whereas MEC was mainly composed of protein and had nearly 2-fold lower content of SPD components. All the ingredients showed lower amounts of phytic acid as compared with raw materials. In all samples, hydroxycinnamic acids were the most representative polyphenols followed by minor amounts of hydroxybenzoic acids and flavonoids. Gastrointestinal digestion of GERM, SPD, and MEC revealed high stability of total phenolic compounds in both gastric and intestinal phases. Hydroxycinnamic acids were the most bioaccessible compounds during digestion among the three bioprocessed wheat ingredients studied, although their bioaccessibility varied across ingredients. In this sense, the bioaccessibility of ferulic acid (FA) derivatives increased in GERM with progression of the digestion, while it was reduced in SPD and MEC up to the end of the intestinal phase. Microencapsulation of SPD with pea protein led to generally to lower bioaccessible amounts of phenolic acids. Comparison analysis of biological effects highlighted SPD for its most potent antioxidant effects in the gastrointestinal tract (3 out 4 antioxidant parameters with highest values), while no clear differences were observed with regard to in vitro anti-inflammatory activity. Overall, these results support the potential application of GERM, SPD, and MEC as functional and nutraceutical ingredients.
Collapse
Affiliation(s)
- Irene Tomé-Sánchez
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ana Belén Martín-Diana
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Elena Peñas
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Juana Frias
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Daniel Rico
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Iván Jiménez-Pulido
- Agricultural and Technical Institute of Castile and Leon (ITACyL), Sub-directorate of Research and Technology, Valladolid, Spain
| | - Cristina Martínez-Villaluenga
- Department of Characterization, Quality and Safety (DCCS), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Cristina Martínez-Villaluenga
| |
Collapse
|
71
|
Marti A, Tyl C. Capitalizing on a double crop: Recent advances in proso millet's transition to a food crop. Compr Rev Food Sci Food Saf 2020; 20:819-839. [PMID: 33443801 DOI: 10.1111/1541-4337.12681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Across the globe, strategies to adapt food production to a changing climate as well as to unforeseen events (such as a pandemic) are needed, for example, if farmers miss planting times due to abnormal weather patterns or harvests are lost. Such food security considerations represent reasons for why proso millet deserves a more prominent place at the table. It has one of the shortest growing seasons and water requirements among cereals and is already grown in rotation with other crops, for example, in the American Midwest. Yet, most consumers in the Western world are unfamiliar with it, which limits its market potential. Introducing proso millet to consumers requires development of products with acceptable textural and sensory attributes as well as convincing selling points. These can be found in its nutritional profile, as it is a gluten-free "ancient" grain and millet-based products frequently have low glycemic indices. This review presents a synthesis of recent studies that utilized processing strategies to advance proso millet functionality. Results are put into the context of the most frequently addressed compositional and functional attributes, organized in clusters. Diversity across varieties in amylose to amylopectin ratios presents an opportunity to utilize proso millet for foods with specific pasting requirements, as in bread versus pasta. Hydrothermal or pressure treatments may further adapt its functionality for baked goods. Bitterness remains an unsolved issue, even when decorticated material is used. In addition, heating dramatically lowers in vitro protein digestibility, whereas starch digestibility appears to be matrix dependent (more than raw material dependent).
Collapse
Affiliation(s)
- Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Catrin Tyl
- Department of Food Science and Technology, University of Georgia, Athens, Georgia
| |
Collapse
|
72
|
Coello KE, Frias J, Martínez-Villaluenga C, Cartea ME, Abilleira R, Peñas E. Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa ( Moringa oleifera L.). Foods 2020; 9:E1639. [PMID: 33182814 PMCID: PMC7696275 DOI: 10.3390/foods9111639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Moringa oleifera L. is greatly appreciated for its high content of phytochemicals. Although most parts of moringa tree have been widely studied, seeds remained scarcely explored. The first goal of this study was to investigate the effectiveness of germination to improve the nutritional composition (proximate composition and levels of vitamins B1 and B2), content of bioactive compounds (glucosinolates, phenolics and γ-aminobutyric acid, GABA) and antioxidant activity of moringa seed. Germination improved protein, fat, fiber, riboflavin, phenolics, some individual glucosinolates (GLS) and GABA contents, as well as the antioxidant potential in moringa sprouts, but the extent of the improvement depended on germination conditions. The second objective of this work was to identify the optimal germination conditions to maximize nutritional and bioactive quality of moringa by applying multi-response optimization (response surface methodology, RSM). RSM models indicated that 28 °C and 24 h were the optimal conditions to enhance the accumulation of riboflavin, phenolics and antioxidant activity of sprouts, while the highest GABA and total GLS contents were observed at 36 °C for 96 h and thiamine achieved the maximum content at 36 °C for 24 h. These results show that moringa sprouts are promising functional foods that might be also used as ingredients for the elaboration of novel foodstuffs.
Collapse
Affiliation(s)
- Karín E. Coello
- Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador;
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Rosaura Abilleira
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| |
Collapse
|
73
|
Muthusamy M, Kim JH, Kim SH, Kim JY, Heo JW, Lee H, Lee KS, Seo WD, Park S, Kim JA, Lee SI. Changes in Beneficial C-glycosylflavones and Policosanol Content in Wheat and Barley Sprouts Subjected to Differential LED Light Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1502. [PMID: 33172036 PMCID: PMC7694615 DOI: 10.3390/plants9111502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 05/03/2023]
Abstract
The spectral quality and intensity of light, photoperiodism, and other environmental factors have profound impacts on the metabolic composition of light-dependent higher plants. Hence, we investigate the effects of fluorescent light (96 μmol m-2s-1) and white (100 μmol m-2s-1), blue (100 μmol m-2s-1), and red (93 μmol m-2s-1) light-emitting diode (LED) light irradiation on the C-glycosylflavone and policosanol contents in young seedlings of wheat and barley. Ultra-high-performance liquid chromatography (UHPLC) analyses of C-glycosylflavone contents in barley reveal that the saponarin content is significantly enhanced under blue LED light irradiation. Under similar conditions, isoorientin and isoschaftoside contents are improved in wheat seedlings. The contents of these C-glycosylflavones differed along with the light quality and growth period. The highest accumulation was observed in sprouts after three days under blue LED light irradiation. GC/MS analyses of policosanol contents showed that 1-hexacosanol (C26:o-OH) in barley and 1-octacosanol (C28:o-OH) in wheat seedlings were reduced under LED light irradiation, compared to seedlings under fluorescent light conditions. Nonetheless, the policosanol contents gradually improved with the extension of growth times and treatments, irrespective of the light quality. Additionally, a positive correlation was observed between the expression pattern of biosynthesis-related genes and the respective metabolite content in barley. This study demonstrates that blue LED light irradiation is useful in maximizing the C-glycosylflavone content in barley and wheat sprouts.
Collapse
Affiliation(s)
- Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Jong Hee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
- Division of Horticultural Biotechnology, Hankyung National University, Anseong 17579, Korea
| | - Suk Hee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Joo Yeol Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Jeong Wook Heo
- Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea;
| | - HanGyeol Lee
- Division of Crop Foundation, National Institute of Crop Science (NICS), RDA, Wanju 55365, Korea; (H.L.); (K.-S.L.); (W.D.S.)
| | - Kwang-Sik Lee
- Division of Crop Foundation, National Institute of Crop Science (NICS), RDA, Wanju 55365, Korea; (H.L.); (K.-S.L.); (W.D.S.)
| | - Woo Duck Seo
- Division of Crop Foundation, National Institute of Crop Science (NICS), RDA, Wanju 55365, Korea; (H.L.); (K.-S.L.); (W.D.S.)
| | - Soyoung Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| |
Collapse
|
74
|
Alfeo V, Bravi E, Ceccaroni D, Sileoni V, Perretti G, Marconi O. Effect of Baking Time and Temperature on Nutrients and Phenolic Compounds Content of Fresh Sprouts Breadlike Product. Foods 2020; 9:E1447. [PMID: 33066003 PMCID: PMC7599486 DOI: 10.3390/foods9101447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022] Open
Abstract
Sprouting has received increasing attention because of the enhanced nutritional values of the derived products. Baking affects the nutrient availability of the end products. The aim of this study was to evaluate how different baking time and temperature affect the nutritional values of bakery products derived from fresh wheat sprouts. Results indicate that the breadlike products showed comparable total polyphenol content and the thermal processes affected the free and bound fractions. Low temperature and high exposure time appear to promote the availability of the free polyphenols and sugars, while high temperature and low exposure time appear to preserve bound polyphenols and starch. Sugar profiles were influenced by baking programs with a higher simple sugar content in the samples processed at low temperature. Phenolic acids showed a strong decrease following processing, and free and bound phenolic acids were positively influenced by high baking temperatures, while an opposite trend was detected at low temperatures. Significant differences in phenolic acid profiles were also observed with a redistribution of hydroxycinnamic acids among the bound and free fractions. It may be concluded that grain type, germination conditions, and the baking programs play a fundamental role for the production of high-nutritional-value bakery products.
Collapse
Affiliation(s)
- Vincenzo Alfeo
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
| | - Elisabetta Bravi
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
| | - Dayana Ceccaroni
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
| | - Valeria Sileoni
- Department of Economics, Universitas Mercatorum, Piazza Mattei 10, 00186, Rome, Italy
| | - Giuseppe Perretti
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Ombretta Marconi
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| |
Collapse
|
75
|
Gómez M, Gutkoski LC, Bravo‐Núñez Á. Understanding whole‐wheat flour and its effect in breads: A review. Compr Rev Food Sci Food Saf 2020; 19:3241-3265. [DOI: 10.1111/1541-4337.12625] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/11/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| | - Luiz C. Gutkoski
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos Universidade de Passo Fundo Passo Fundo RS Brazil
| | - Ángela Bravo‐Núñez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| |
Collapse
|
76
|
Ceccaroni D, Alfeo V, Bravi E, Sileoni V, Perretti G, Marconi O. Effect of the time and temperature of germination on the phenolic compounds of Triticum aestivum, L. and Panicum miliaceum, L. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
77
|
Tomé-Sánchez I, Martín-Diana AB, Peñas E, Bautista-Expósito S, Frias J, Rico D, González-Maillo L, Martinez-Villaluenga C. Soluble Phenolic Composition Tailored by Germination Conditions Accompany Antioxidant and Anti-inflammatory Properties of Wheat. Antioxidants (Basel) 2020; 9:E426. [PMID: 32423164 PMCID: PMC7278661 DOI: 10.3390/antiox9050426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Knowledge on the specific variation in the phenolic composition of wheat defined by germination conditions and its relationship with antioxidant and anti-inflammatory properties of sprouts would be useful to improve the functional value of wheat-derived products. Variation in soluble phenolic composition, antioxidant and anti-inflammatory potential of wheat was examined in a range of germination temperature (12-21 °C) and time (1-7 d). Response surface methodology was applied for building lineal and quadratic models to find optimal germination conditions to improve nutraceutical value of wheat sprouts using the desirability (D) function. Phenolics were determined by HPLC-DAD-ESI-MS. In vitro biochemical methods and lipopolysaccharide stimulated RAW264.7 macrophages were used to determine antiradical and anti-inflammatory activities of wheat sprouts. Accumulation of soluble phenolic acids, flavone C-glycosides and lignans in sprouts was positively influenced by germination temperature and time. Increased concentration of individual polyphenols was directly associated with improved ability of sprouts for radical scavenging and reduction of tumor necrosis factor α and interleukin 6 in macrophages. Optimal desirability (D = 0.89) for improved nutraceutical value of wheat sprouts was achieved at 21 °C for 7 d. This information would be useful for food industry aiming at producing wheat-based products with better nutritional and healthy properties.
Collapse
Affiliation(s)
- Irene Tomé-Sánchez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.T.-S.); (E.P.); (S.B.-E.); (J.F.)
| | - Ana Belén Martín-Diana
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon. Ctra. de Burgos Km.119, Finca Zamadueñas, 47071 Valladolid, Spain; (A.B.M.-D.); (D.R.); (L.G.-M.)
| | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.T.-S.); (E.P.); (S.B.-E.); (J.F.)
| | - Sara Bautista-Expósito
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.T.-S.); (E.P.); (S.B.-E.); (J.F.)
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.T.-S.); (E.P.); (S.B.-E.); (J.F.)
| | - Daniel Rico
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon. Ctra. de Burgos Km.119, Finca Zamadueñas, 47071 Valladolid, Spain; (A.B.M.-D.); (D.R.); (L.G.-M.)
| | - Lorena González-Maillo
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon. Ctra. de Burgos Km.119, Finca Zamadueñas, 47071 Valladolid, Spain; (A.B.M.-D.); (D.R.); (L.G.-M.)
| | - Cristina Martinez-Villaluenga
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.T.-S.); (E.P.); (S.B.-E.); (J.F.)
| |
Collapse
|
78
|
Melini V, Melini F, Acquistucci R. Phenolic Compounds and Bioaccessibility Thereof in Functional Pasta. Antioxidants (Basel) 2020; 9:E343. [PMID: 32331474 PMCID: PMC7222403 DOI: 10.3390/antiox9040343] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/05/2023] Open
Abstract
Consumption of food products rich in phenolic compounds has been associated to reduced risk of chronic disease onset. Daily consumed cereal-based products, such as bread and pasta, are not carriers of phenolic compounds, since they are produced with refined flour or semolina. Novel formulations of pasta have been thus proposed, in order to obtain functional products contributing to the increase in phenolic compound dietary intake. This paper aims to review the strategies used so far to formulate functional pasta, both gluten-containing and gluten-free, and compare their effect on phenolic compound content, and bioaccessibility and bioavailability thereof. It emerged that whole grain, legume and composite flours are the main substituents of durum wheat semolina in the formulation of functional pasta. Plant by-products from industrial food wastes have been also used as functional ingredients. In addition, pre-processing technologies on raw materials such as sprouting, or the modulation of extrusion/extrusion-cooking conditions, are valuable approaches to increase phenolic content in pasta. Few studies on phenolic compound bioaccessibility and bioavailability in pasta have been performed so far; however, they contribute to evaluating the usefulness of strategies used in the formulation of functional pasta.
Collapse
Affiliation(s)
- Valentina Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Roma, Italy; (F.M.); (R.A.)
| | | | | |
Collapse
|
79
|
Cardone G, D'Incecco P, Pagani MA, Marti A. Sprouting improves the bread-making performance of whole wheat flour (Triticum aestivum L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2453-2459. [PMID: 31953837 DOI: 10.1002/jsfa.10264] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pre-harvest sprouting of wheat is viewed negatively because of the high level of enzymatic activity, which leads to a deterioration in the bread-making performance of the related flours. On the other hand, improvements in bread properties (i.e. volume and crumb softness) are reported when sprouted wheat under controlled conditions is used in mixtures with a conventional unsprouted flour. However, knowledge about the effects of sprouting on gluten functionality and its relationship with bread features is still limited, especially in the case of whole wheat flour. RESULTS Under the conditions applied in this study (48 h, 20 °C and 90% relative humidity), proteins of sprouted wheat were still able to aggregate, even if changes in gluten aggregation kinetics suggested gluten weakening. On the other hand, sprouting led to an increase in gluten stretching ability, suggesting an increase in dough extensibility. In the dough system, sprouting was responsible for a decrease in water absorption, development time, and stability during mixing. However, when the values for development time and water absorption indicated by the Farinograph® were followed carefully, sprouting improved bread height (~20%), specific volume (~15%), and crumb softness (~200% after 24 h of storage), even when whole wheat flour was used. CONCLUSION It is possible to produce bread with improved volume and crumb softness using whole wheat flour from sprouted kernels. Thus, sprouting can be exploited as a pre-treatment to improve the bread-making performance of fiber-enriched systems. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gaetano Cardone
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Paolo D'Incecco
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Maria Ambrogina Pagani
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Alessandra Marti
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
80
|
Rustgi S, Shewry P, Brouns F, Deleu LJ, Delcour JA. Wheat Seed Proteins: Factors Influencing Their Content, Composition, and Technological Properties, and Strategies to Reduce Adverse Reactions. Compr Rev Food Sci Food Saf 2019; 18:1751-1769. [PMID: 33336954 DOI: 10.1111/1541-4337.12493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Wheat is the primary source of nutrition for many, especially those living in developing countries, and wheat proteins are among the most widely consumed dietary proteins in the world. However, concerns about disorders related to the consumption of wheat and/or wheat gluten proteins have increased sharply in the last 20 years. This review focuses on wheat gluten proteins and amylase trypsin inhibitors, which are considered to be responsible for eliciting most of the intestinal and extraintestinal symptoms experienced by susceptible individuals. Although several approaches have been proposed to reduce the exposure to gluten or immunogenic peptides resulting from its digestion, none have proven sufficiently effective for general use in coeliac-safe diets. Potential approaches to manipulate the content, composition, and technological properties of wheat proteins are therefore discussed, as well as the effects of using gluten isolates in various food systems. Finally, some aspects of the use of gluten-free commodities are discussed.
Collapse
Affiliation(s)
- Sachin Rustgi
- Dept. of Plant and Environmental Sciences, School of Health Research, Clemson Univ. Pee Dee Research and Education Centre, Florence, SC, U.S.A.,Dept. of Crop and Soil Sciences, Washington State Univ., Pullman, WA, U.S.A
| | - Peter Shewry
- Rothamsted Research, Harpenden, Hertfordshire, U.K
| | - Fred Brouns
- Dept. of Human Biology, School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht Univ., Universiteitssingel 50, 6200, MD, Maastricht, the Netherlands
| | - Lomme J Deleu
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
81
|
Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A. Sprouted Grains: A Comprehensive Review. Nutrients 2019; 11:E421. [PMID: 30781547 PMCID: PMC6413227 DOI: 10.3390/nu11020421] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/27/2022] Open
Abstract
In the last decade, there has been an increase in the use of sprouted grains in human diet and a parallel increase in the scientific literature dealing with their nutritional traits and phytochemical contents. This review examines the physiological and biochemical changes during the germination process, and the effects on final sprout composition in terms of macro- and micro-nutrients and bioactive compounds. The main factors affecting sprout composition are taken into consideration: genotype, environmental conditions experimented by the mother plant, germination conditions. In particular, the review deepens the recent knowledge on the possible elicitation factors useful for increasing the phytochemical contents. Microbiological risks and post-harvest technologies are also evaluated, and a brief summary is given of some important in vivo studies matching with the use of grain sprouts in the diet. All the species belonging to Poaceae (Gramineae) family as well as pseudocereals species are included.
Collapse
Affiliation(s)
- Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Beatrice Falcinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Fabio Stagnari
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Carlo Lerici 1, 64023 Teramo, Italy.
| | - Angelica Galieni
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Salaria 1, 63030 Monsampolo del Tronto, Italy.
| |
Collapse
|