51
|
Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathog 2019; 15:e1007655. [PMID: 30921434 PMCID: PMC6456217 DOI: 10.1371/journal.ppat.1007655] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022] Open
Abstract
Many persistent transmitted plant viruses, including rice stripe virus (RSV), cause serious damage to crop production worldwide. Although many reports have indicated that a successful insect-mediated virus transmission depends on a proper interaction between the virus and its insect vector, the mechanism(s) controlling this interaction remained poorly understood. In this study, we used RSV and its small brown planthopper (SBPH) vector as a working model to elucidate the molecular mechanisms underlying the entrance of RSV virions into SBPH midgut cells for virus circulative and propagative transmission. We have determined that this non-enveloped tenuivirus uses its non-structural glycoprotein NSvc2 as a helper component to overcome the midgut barrier(s) for RSV replication and transmission. In the absence of this glycoprotein, purified RSV virions were unable to enter SBPH midgut cells. In the RSV-infected cells, this glycoprotein was processed into two mature proteins: an amino-terminal protein (NSvc2-N) and a carboxyl-terminal protein (NSvc2-C). Both NSvc2-N and NSvc2-C interact with RSV virions. Our results showed that the NSvc2-N could bind directly to the surface of midgut lumen via its N-glycosylation sites. Upon recognition, the midgut cells underwent endocytosis followed by compartmentalization of RSV virions and NSvc2 into early and then late endosomes. The NSvc2-C triggered cell membrane fusion via its highly conserved fusion loop motifs under the acidic condition inside the late endosomes, leading to the release of RSV virions from endosomes into cytosol. In summary, our results showed for the first time that a rice tenuivirus utilized its glycoprotein NSvc2 as a helper component to ensure a proper interaction between its virions and SBPH midgut cells for its circulative and propagative transmission. Over 75% of the known plant viruses are insect transmitted. Understanding how plant viruses interact with their insect vectors during virus transmission is a key step towards the successful management of plant viruses worldwide. Several models for the direct or indirect virus–insect vector interactions have been proposed for the non-persistent or semi-persistent virus transmissions. However, the mechanisms controlling the interactions between viruses and their insect vector midgut barriers are poorly understood. In this study, we demonstrated that the circulative and propagative transmitted rice stripe virus (RSV) utilized its glycoprotein NSvc2 as a helper component to ensure a specific interaction between its virions and SBPH midgut cells to overcome the midgut barriers inside this vector. This is the first report of a viral helper component mediated mechanism for persistent-propagative virus transmission. Our new findings and working model should expand our knowledge on the molecular mechanism(s) controlling the interaction between virus and its insect vector during virus circulative and propagative transmission in nature.
Collapse
|
52
|
Jeger M, Bragard C. The Epidemiology of Xylella fastidiosa; A Perspective on Current Knowledge and Framework to Investigate Plant Host-Vector-Pathogen Interactions. PHYTOPATHOLOGY 2019; 109:200-209. [PMID: 30365394 DOI: 10.1094/phyto-07-18-0239-fi] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insect-transmitted plant diseases caused by viruses, phytoplasmas, and bacteria share many features in common regardless of the causal agent. This perspective aims to show how a model framework, developed originally for plant virus diseases, can be modified for the case of diseases incited by Xylella fastidiosa. In particular, the model framework enables the specification of a simple but quite general invasion criterion defined in terms of key plant, pathogen, and vector parameters and, importantly, their interactions, which determine whether or not an incursion or isolated outbreak of a pathogen will lead to establishment, persistence, and subsequent epidemic development. Hence, this approach is applicable to the wide range of X. fastidiosa-incited diseases that have recently emerged in southern Europe, each with differing host plant, pathogen subspecies, and vector identities. Of particular importance are parameters relating to vector abundance and activity, transmission characteristics, and behavior in relation to preferences for host infection status. Some gaps in knowledge with regard to the developing situation in Europe are noted.
Collapse
Affiliation(s)
- Michael Jeger
- First author: Centre for Environmental Policy, Imperial College London, Silwood Park Campus, Ascot SL7 9LU, United Kingdom; and second author: Earth and Life Institute, UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Claude Bragard
- First author: Centre for Environmental Policy, Imperial College London, Silwood Park Campus, Ascot SL7 9LU, United Kingdom; and second author: Earth and Life Institute, UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
53
|
Li H, Liu X, Liu X, Michaud JP, Zhi H, Li K, Li X, Li Z. Host Plant Infection by Soybean Mosaic Virus Reduces the Fitness of Its Vector, Aphis glycines (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2017-2023. [PMID: 29945216 DOI: 10.1093/jee/toy165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Coevolutionary interactions between pathogens and their insect vectors can dramatically impact the fitness of herbivorous insects and patterns of plant disease transmission. Soybean mosaic virus (SMV) is a common disease in soybean production worldwide. Infected seed is the primary source of inoculum in fields and the virus is secondarily spread among plants by the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in a nonpersistent manner. In this study, we compared the biological fitness of A. glycines colonizing both SMV-infected and uninfected soybean plants. Aphids feeding on SMV-infected soybean seedlings were significantly smaller and lighter than those feeding on uninfected plants across life stages. SMV infection caused delayed development of aphid nymphs on soybean seedlings, but this was more than compensated by a reduction in the pre-reproductive period of apterous adults. The fecundity of A. glycines was reduced when feeding on SMV-infected seedlings, resulting in a lower reproductive rate, a longer generation time, and a slower population doubling time. A smaller proportion of aphid offspring developed into alatae when feeding on SMV-infected soybean seedling, and these took longer to mature than their counterparts on uninfected plants. We infer that SMV infection has significantly negative effects on the biological performance of A. glycines, which may be consistent with the long-term coevolution of SMV, soybean, and A. glycines in the transmission cycle of SMV.
Collapse
Affiliation(s)
- Hui Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS
| | - Haijian Zhi
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Kai Li
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
54
|
Bergès SE, Vile D, Vazquez-Rovere C, Blanc S, Yvon M, Bédiée A, Rolland G, Dauzat M, van Munster M. Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2018; 9:703. [PMID: 29881396 PMCID: PMC5976794 DOI: 10.3389/fpls.2018.00703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
Plants suffer from a broad range of abiotic and biotic stresses that do not occur in isolation but often simultaneously. Productivity of natural and agricultural systems is frequently constrained by water limitation, and the frequency and duration of drought periods will likely increase due to global climate change. In addition, phytoviruses represent highly prevalent biotic threat in wild and cultivated plant species. Several hints support a modification of epidemiological parameters of plant viruses in response to environmental changes but a clear quantification of plant-virus interactions under abiotic stresses is still lacking. Here we report the effects of a water deficit on epidemiological parameters of Cauliflower mosaic virus (CaMV), a non-circulative virus transmitted by aphid vectors, in nine natural accessions of Arabidopsis thaliana with known contrasted responses to water deficit. Plant growth-related traits and virus epidemiological parameters were evaluated in PHENOPSIS, an automated high throughput phenotyping platform. Water deficit had contrasted effects on CaMV transmission rate and viral load among A. thaliana accessions. Under well-watered conditions, transmission rate tended to increase with viral load and with CaMV virulence across accessions. Under water deficit, transmission rate and virulence were negatively correlated. Changes in the rate of transmission under water deficit were not related to changes in viral load. Our results support the idea that optimal virulence of a given virus, as hypothesized under the transmission-virulence trade-off, is highly dependent on the environment and growth traits of the host.
Collapse
Affiliation(s)
- Sandy E. Bergès
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Denis Vile, Manuella van Munster,
| | - Cecilia Vazquez-Rovere
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- LABINTEX Europe, Instituto Nacional de Tecnología Agropecuária, Montpellier, France
| | - Stéphane Blanc
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michel Yvon
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Alexis Bédiée
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Myriam Dauzat
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Manuella van Munster
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Denis Vile, Manuella van Munster,
| |
Collapse
|