51
|
Haskett TL, Geddes BA, Paramasivan P, Green P, Chitnavis S, Mendes MD, Jorrín B, Knights HE, Bastholm TR, Ramsay JP, Oldroyd GED, Poole PS. Rhizopine biosensors for plant-dependent control of bacterial gene expression. Environ Microbiol 2023; 25:383-396. [PMID: 36428208 PMCID: PMC10107442 DOI: 10.1111/1462-2920.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Engineering signalling between plants and microbes could be exploited to establish host-specificity between plant-growth-promoting bacteria and target crops in the environment. We previously engineered rhizopine-signalling circuitry facilitating exclusive signalling between rhizopine-producing (RhiP) plants and model bacterial strains. Here, we conduct an in-depth analysis of rhizopine-inducible expression in bacteria. We characterize two rhizopine-inducible promoters and explore the bacterial host-range of rhizopine biosensor plasmids. By tuning the expression of rhizopine uptake genes, we also construct a new biosensor plasmid pSIR05 that has minimal impact on host cell growth in vitro and exhibits markedly improved stability of expression in situ on RhiP barley roots compared to the previously described biosensor plasmid pSIR02. We demonstrate that a sub-population of Azorhizobium caulinodans cells carrying pSIR05 can sense rhizopine and activate gene expression when colonizing RhiP barley roots. However, these bacteria were mildly defective for colonization of RhiP barley roots compared to the wild-type parent strain. This work provides advancement towards establishing more robust plant-dependent control of bacterial gene expression and highlights the key challenges remaining to achieve this goal.
Collapse
Affiliation(s)
| | - Barney A Geddes
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | | | - Patrick Green
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Samir Chitnavis
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Marta D Mendes
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Beatriz Jorrín
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | - Tahlia R Bastholm
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Joshua P Ramsay
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Crop Science Centre, University of Cambridge, Cambridge, UK
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
52
|
Xiong C, Lu Y. Microbiomes in agroecosystem: Diversity, function and assembly mechanisms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:833-849. [PMID: 36184075 DOI: 10.1111/1758-2229.13126] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Soils are a main repository of biodiversity harbouring immense diversity of microbial species that plays a central role in fundamental ecological processes and acts as the seed bank for emergence of the plant microbiome in cropland ecosystems. Crop-associated microbiomes play an important role in shaping plant performance, which includes but not limited to nutrient uptake, disease resistance, and abiotic stress tolerance. Although our understanding of structure and function of soil and plant microbiomes has been rapidly advancing, most of our knowledge comes from ecosystems in natural environment. In this review, we present an overview of the current knowledge of diversity and function of microbial communities along the soil-plant continuum in agroecosystems. To characterize the ecological mechanisms for community assembly of soil and crop microbiomes, we explore how crop host and environmental factors such as plant species and developmental stage, pathogen invasion, and land management shape microbiome structure, microbial co-occurrence patterns, and crop-microbiome interactions. Particularly, the relative importance of deterministic and stochastic processes in microbial community assembly is illustrated under different environmental conditions, and potential sources and keystone taxa of the crop microbiome are described. Finally, we highlight a few important questions and perspectives in future crop microbiome research.
Collapse
Affiliation(s)
- Chao Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing, People's Republic of China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
53
|
Kumari M, Qureshi KA, Jaremko M, White J, Singh SK, Sharma VK, Singh KK, Santoyo G, Puopolo G, Kumar A. Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production. FRONTIERS IN PLANT SCIENCE 2022; 13:1026575. [PMID: 36466226 PMCID: PMC9716317 DOI: 10.3389/fpls.2022.1026575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
As endophytes are widely distributed in the plant's internal compartments and despite having enormous potential as a biocontrol agent against postharvest diseases of fruits, the fruit-endophyte-pathogen interactions have not been studied detail. Therefore, this review aims to briefly discuss the colonization patterns of endophytes and pathogens in the host tissue, the diversity and distribution patterns of endophytes in the carposphere of fruits, and host-endophyte-pathogen interactions and the molecular mechanism of the endophytic microbiome in postharvest disease management in fruits. Postharvest loss management is one of the major concerns of the current century. It is considered a critical challenge to food security for the rising global population. However, to manage the postharvest loss, still, a large population relies on chemical fungicides, which affect food quality and are hazardous to health and the surrounding environment. However, the scientific community has searched for alternatives for the last two decades. In this context, endophytic microorganisms have emerged as an economical, sustainable, and viable option to manage postharvest pathogens with integral colonization properties and eliciting a defense response against pathogens. This review extensively summarizes recent developments in endophytic interactions with harvested fruits and pathogens-the multiple biocontrol traits of endophytes and colonization and diversity patterns of endophytes. In addition, the upscale commercial production of endophytes for postharvest disease treatment is discussed.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and Technology (K.A.U.S.T.), Thuwal, Saudi Arabia
| | - James White
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Vijay Kumar Sharma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gerardo Puopolo
- Center Agriculture Food Environment, University of Trento, Trentino, TN, Italy
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
54
|
Tian L, Hu S, Wang X, Guo Y, Huang L, Wang L, Li W. Antagonism of Rhizosphere Streptomyces yangpuensis CM253 against the Pathogenic Fungi Causing Corm Rot in Saffron ( Crocus sativus L.). Pathogens 2022; 11:1195. [PMID: 36297252 PMCID: PMC9607649 DOI: 10.3390/pathogens11101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Plant diseases lead to a significant decline in the output and quality of Chinese herbal medicines. Actinomycetes play a vital role in the rhizosphere ecosystem. This is especially true for Streptomyces, which have become a valuable biological control resource because of their advantages in producing various secondary metabolites with novel structures and remarkable biological activities. The purpose of this study was to isolate an effective antagonistic actinomycete against the pathogen of corm rot in saffron. An antagonistic actinomycete, CM253, was screened from the rhizosphere soil samples of Crocus sativus, by plate co-culture with four pathogenic fungi (Fusarium oxysporum, Fusarium solani, Penicillium citreosulfuratum, and Penicillium citrinum). CM253 inhibited the growth and development of F. oxysporum hyphae by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Furthermore, by analyzing the degrading enzyme, the growth-promoting performance, and the whole genome of strain CM253, it was identified as Streptomyces yangpuensis, which produces NH3, protease, glucanase, cellulase, IAA, and ACC deaminase. In addition, 24 secondary metabolite synthesis gene clusters were predicted in antiSMASH. We identified genes encoding 2,3-butanediol; methionine; isoprene (metH, mmuM, ispEFH, gcpE, idi, and ilvABCDEH); biofilm formation; and colonization (upp, rfbBC, efp, aftA, pssA, pilD, fliA, and dhaM). Above all, S. yangpuensis CM253 showed the potential for future development as a biocontrol agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Lili Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wankui Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
55
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
56
|
Rico‐Jiménez M, Roca A, Krell T, Matilla MA. A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. Environ Microbiol 2022; 24:3580-3597. [PMID: 35088505 PMCID: PMC9543091 DOI: 10.1111/1462-2920.15920] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Indole-3-acetic acid (IAA) is the main naturally occurring auxin and is produced by organisms of all kingdoms of life. In addition to the regulation of plant growth and development, IAA plays an important role in the interaction between plants and growth-promoting and phytopathogenic bacteria by regulating bacterial gene expression and physiology. We show here that an IAA metabolizing plant-associated Pseudomonas putida isolate exhibits chemotaxis to IAA that is independent of auxin metabolism. We found that IAA chemotaxis is based on the activity of the PcpI chemoreceptor and heterologous expression of pcpI conferred IAA taxis to different environmental and human pathogenic isolates of the Pseudomonas genus. Using ligand screening, microcalorimetry and quantitative chemotaxis assays, we found that PcpI failed to bind IAA directly, but recognized and mediated chemoattractions to various aromatic compounds, including the phytohormone salicylic acid. The expression of pcpI and its role in the interactions with plants was also investigated. PcpI extends the range of central signal molecules recognized by chemoreceptors. To our knowledge, this is the first report on a bacterial receptor that responds to two different phytohormones. Our study reinforces the multifunctional role of IAA and salicylic acid as intra- and inter-kingdom signal molecules.
Collapse
Affiliation(s)
- Miriam Rico‐Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Amalia Roca
- Department of Microbiology, Facultad de FarmaciaCampus Universitario de Cartuja, Universidad de GranadaGranada18071Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
57
|
Motility Suppression and Trapping Bacteria by ZnO Nanostructures. CRYSTALS 2022. [DOI: 10.3390/cryst12081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulating the swimming motility of bacteria near surfaces is essential to suppress or avoid bacterial contamination and infection in catheters and medical devices with wall surfaces. However, the motility of bacteria near walls strongly depends on the combination of the local physicochemical properties of the surfaces. To unravel how nanostructures and their local chemical microenvironment dynamically affect the bacterial motility near surfaces, here, we directly visualize the bacterial swimming and systematically analyze the motility of Escherichia coli swimming on ZnO nanoparticle films and nanowire arrays with further ultraviolet irradiation. The results show that the ZnO nanowire arrays reduce the swimming motility, thus significantly enhancing the trapping ability for motile bacteria. Additionally, thanks to the wide bandgap nature of a ZnO semiconductor, the ultraviolet irradiation rapidly reduces the bacteria locomotion due to the hydroxyl and singlet oxygen produced by the photodynamic effects of ZnO nanowire arrays in an aqueous solution. The findings quantitatively reveal how the combination of geometrical nanostructured surfaces and local tuning of the steric microenvironment are able to regulate the motility of swimming bacteria and suggest the efficient inhibition of bacterial translocation and infection by nanostructured coatings.
Collapse
|
58
|
Differential Genetic Strategies of Burkholderia vietnamiensis and Paraburkholderia kururiensis for Root Colonization of Oryza sativa subsp.
japonica
and O. sativa subsp.
indica
, as Revealed by Transposon Mutagenesis Sequencing. Appl Environ Microbiol 2022; 88:e0064222. [DOI: 10.1128/aem.00642-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Burkholderiaceae
are frequent and abundant colonizers of the rice rhizosphere and interesting candidates to investigate for growth promotion. Species of
Paraburkholderia
have repeatedly been described to stimulate plant growth.
Collapse
|
59
|
Kuhl-Nagel T, Rodriguez PA, Gantner I, Chowdhury SP, Schwehn P, Rosenkranz M, Weber B, Schnitzler JP, Kublik S, Schloter M, Rothballer M, Falter-Braun P. Novel Pseudomonas sp. SCA7 Promotes Plant Growth in Two Plant Families and Induces Systemic Resistance in Arabidopsis thaliana. Front Microbiol 2022; 13:923515. [PMID: 35875540 PMCID: PMC9297469 DOI: 10.3389/fmicb.2022.923515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas sp. SCA7, characterized in this study, was isolated from roots of the bread wheat Triticum aestivum. Sequencing and annotation of the complete SCA7 genome revealed that it represents a potential new Pseudomonas sp. with a remarkable repertoire of plant beneficial functions. In vitro and in planta experiments with the reference dicot plant A. thaliana and the original monocot host T. aestivum were conducted to identify the functional properties of SCA7. The isolate was able to colonize roots, modify root architecture, and promote growth in A. thaliana. Moreover, the isolate increased plant fresh weight in T. aestivum under unchallenged conditions. Gene expression analysis of SCA7-inoculated A. thaliana indicated a role of SCA7 in nutrient uptake and priming of plants. Moreover, confrontational assays of SCA7 with fungal and bacterial plant pathogens revealed growth restriction of the pathogens by SCA7 in direct as well as indirect contact. The latter indicated involvement of microbial volatile organic compounds (mVOCs) in this interaction. Gas chromatography-mass spectrometry (GC-MS) analyses revealed 1-undecene as the major mVOC, and octanal and 1,4-undecadiene as minor abundant compounds in the emission pattern of SCA7. Additionally, SCA7 enhanced resistance of A. thaliana against infection with the plant pathogen Pseudomonas syringae pv. tomato DC3000. In line with these results, SA- and JA/ET-related gene expression in A. thaliana during infection with Pst DC3000 was upregulated upon treatment with SCA7, indicating the ability of SCA7 to induce systemic resistance. The thorough characterization of the novel Pseudomonas sp. SCA7 showed a remarkable genomic and functional potential of plant beneficial traits, rendering it a promising candidate for application as a biocontrol or a biostimulation agent.
Collapse
Affiliation(s)
- Theresa Kuhl-Nagel
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patricia Antonia Rodriguez
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Isabella Gantner
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patrick Schwehn
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Baris Weber
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Rothballer
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
60
|
Li Z, Zheng Y, Li Y, Cheng X, Huang S, Yang X, Qin Y. Genotype-Specific Recruitment of Rhizosphere Bacteria From Sandy Loam Soil for Growth Promotion of Cucumis sativus var. hardwickii. Front Microbiol 2022; 13:910644. [PMID: 35832804 PMCID: PMC9271904 DOI: 10.3389/fmicb.2022.910644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
The composition and structure of the rhizosphere microbiome is affected by many factors, including soil type, genotype, and cultivation time of the plant. However, the interaction mechanisms among these factors are largely unclear. We use culture-independent 16S rRNA amplicon sequencing to investigate the rhizosphere bacterial composition and the structure of cultivated cucumber Xintaimici (XT) and wild-type cucumber Cucumis sativus var. hardwickii (HD) in four kinds of soils. We found that soil type, cultivation time, and genotype affected the composition and structure of cucumber rhizosphere bacterial communities. Notably, HD showed better physiological features in sandy soil and sandy loam soil than it did in black soil and farm soil at 50 days post-sowing, which was due to its stronger recruitment ability to Nitrospira, Nocardioides, Bacillus, and Gaiella in sandy soil, and more Tumebacillus, Nitrospira, and Paenibacillus in sandy loam soil. Meanwhile, we also found that HD showed a better recruiting capacity for these bacterial genera than XT in both sandy soil and sandy loam soil. Functional predictions indicated that these bacteria might have had stronger root colonization ability and then promoted the growth of cucumbers by enhancing nitrogen metabolism and active metabolite secretion. In this study, our findings provided a better insight into the relationship between cucumber phenotype, genotype, and the rhizosphere bacterial community, which will offer valuable theoretical references for rhizosphere microbiota studies and its future application in agriculture.
Collapse
Affiliation(s)
- Zeyang Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingying Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yansu Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xu Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- *Correspondence: Sanwen Huang,
| | - Xueyong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Xueyong Yang,
| | - Yuxuan Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Yuxuan Qin,
| |
Collapse
|
61
|
Control of nitrogen fixation and ammonia excretion in Azorhizobium caulinodans. PLoS Genet 2022; 18:e1010276. [PMID: 35727841 PMCID: PMC9249168 DOI: 10.1371/journal.pgen.1010276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022] Open
Abstract
Due to the costly energy demands of nitrogen (N) fixation, diazotrophic bacteria have evolved complex regulatory networks that permit expression of the catalyst nitrogenase only under conditions of N starvation, whereas the same condition stimulates upregulation of high-affinity ammonia (NH3) assimilation by glutamine synthetase (GS), preventing excess release of excess NH3 for plants. Diazotrophic bacteria can be engineered to excrete NH3 by interference with GS, however control is required to minimise growth penalties and prevent unintended provision of NH3 to non-target plants. Here, we tested two strategies to control GS regulation and NH3 excretion in our model cereal symbiont Azorhizobium caulinodans AcLP, a derivative of ORS571. We first attempted to recapitulate previous work where mutation of both PII homologues glnB and glnK stimulated GS shutdown but found that one of these genes was essential for growth. Secondly, we expressed unidirectional adenylyl transferases (uATs) in a ΔglnE mutant of AcLP which permitted strong GS shutdown and excretion of NH3 derived from N2 fixation and completely alleviated negative feedback regulation on nitrogenase expression. We placed a uAT allele under control of the NifA-dependent promoter PnifH, permitting GS shutdown and NH3 excretion specifically under microaerobic conditions, the same cue that initiates N2 fixation, then deleted nifA and transferred a rhizopine nifAL94Q/D95Q-rpoN controller plasmid into this strain, permitting coupled rhizopine-dependent activation of N2 fixation and NH3 excretion. This highly sophisticated and multi-layered control circuitry brings us a step closer to the development of a "synthetic symbioses” where N2 fixation and NH3 excretion could be specifically activated in diazotrophic bacteria colonising transgenic rhizopine producing cereals, targeting delivery of fixed N to the crop while preventing interaction with non-target plants. Inoculation of cereal crops with associative diazotrophic bacteria that convert atmospheric nitrogen (N2) into ammonia (NH3) could be used to sustainably improve delivery of nitrogen to crops. However, due to the costly energy demands of N2 fixation, bacteria restrict excess production of NH3 and release to the plants. Diazotrophs can be engineered for excess NH3 production and release, however genetic control is required to minimise growth penalties and prevent unintended provision of NH3 to non-target weed species. Here, we engineer coupled control of N2 fixation and NH3 release in response to the signalling molecule rhizopine supplemented in vitro. This control circuitry represents a prototype for the future development of a “synthetic symbiosis” where bacterial N2 fixation and NH3 excretion could be specifically activated following colonisation of transgenic rhizopine producing cereals in the field, minimising bacterial energy requirements and preventing provision of NH3 to non-target plants.
Collapse
|
62
|
Abstract
Inoculation of cereals with diazotrophic (N2-fixing) bacteria offers a sustainable alternative to the application of nitrogen fertilizers in agriculture. While natural diazotrophs have evolved multilayered regulatory mechanisms that couple N2 fixation with assimilation of the product NH3 and prevent release to plants, genetic modifications can permit excess production and excretion of NH3. However, a lack of stringent host-specificity for root colonization by the bacteria would allow growth promotion of target and nontarget plants species alike. Here, we exploit synthetic transkingdom signaling to establish plant host-specific control of the N2-fixation catalyst nitrogenase in Azorhizobium caulinodans occupying barley roots. This work demonstrates how partner-specific interactions can be established to avoid potential growth promotion of nontarget plants. Engineering N2-fixing symbioses between cereals and diazotrophic bacteria represents a promising strategy to sustainably deliver biologically fixed nitrogen (N) in agriculture. We previously developed novel transkingdom signaling between plants and bacteria, through plant production of the bacterial signal rhizopine, allowing control of bacterial gene expression in association with the plant. Here, we have developed both a homozygous rhizopine producing (RhiP) barley line and a hybrid rhizopine uptake system that conveys upon our model bacterium Azorhizobium caulinodans ORS571 (Ac) 103-fold improved sensitivity for rhizopine perception. Using this improved genetic circuitry, we established tight rhizopine-dependent transcriptional control of the nitrogenase master regulator nifA and the N metabolism σ-factor rpoN, which drove nitrogenase expression and activity in vitro and in situ by bacteria colonizing RhiP barley roots. Although in situ nitrogenase activity was suboptimally effective relative to the wild-type strain, activation was specific to RhiP barley and was not observed on the roots of wild-type plants. This work represents a key milestone toward the development of a synthetic plant-controlled symbiosis in which the bacteria fix N2 only when in contact with the desired host plant and are prevented from interaction with nontarget plant species.
Collapse
|
63
|
Soil Origin and Plant Genotype Modulate Switchgrass Aboveground Productivity and Root Microbiome Assembly. mBio 2022; 13:e0007922. [PMID: 35384699 PMCID: PMC9040762 DOI: 10.1128/mbio.00079-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Switchgrass (Panicum virgatum) is a model perennial grass for bioenergy production that can be productive in agricultural lands that are not suitable for food production. There is growing interest in whether its associated microbiome may be adaptive in low- or no-input cultivation systems. However, the relative impact of plant genotype and soil factors on plant microbiome and biomass are a challenge to decouple. To address this, a common garden greenhouse experiment was carried out using six common switchgrass genotypes, which were each grown in four different marginal soils collected from long-term bioenergy research sites in Michigan and Wisconsin. We characterized the fungal and bacterial root communities with high-throughput amplicon sequencing of the ITS and 16S rDNA markers, and collected phenological plant traits during plant growth, as well as soil chemical traits. At harvest, we measured the total plant aerial dry biomass. Significant differences in richness and Shannon diversity across soils but not between plant genotypes were found. Generalized linear models showed an interaction between soil and genotype for fungal richness but not for bacterial richness. Community structure was also strongly shaped by soil origin and soil origin × plant genotype interactions. Overall, plant genotype effects were significant but low. Random Forest models indicate that important factors impacting switchgrass biomass included NO3−, Ca2+, PO43−, and microbial biodiversity. We identified 54 fungal and 52 bacterial predictors of plant aerial biomass, which included several operational taxonomic units belonging to Glomeraceae and Rhizobiaceae, fungal and bacterial lineages that are involved in provisioning nutrients to plants.
Collapse
|
64
|
Shi W, Xing Y, Zhu Y, Gao N, Ying Y. Diverse responses of pqqC- and phoD-harbouring bacterial communities to variation in soil properties of Moso bamboo forests. Microb Biotechnol 2022; 15:2097-2111. [PMID: 35298867 PMCID: PMC9249317 DOI: 10.1111/1751-7915.14029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphate‐mobilizing bacteria (PMB) play a critical role in the regulation of phosphorus availability in the soil. The microbial genes pqqC and phoD encode pyrroloquinoline quinone synthase and bacterial alkaline phosphatase, respectively, which regulate inorganic and organic phosphorus mobilization, and are therefore used as PMB markers. We examined the effects of soil properties in three Moso bamboo forest sites on the PMB communities that were profiled using high‐throughput sequencing. We observed differentiated responses of pqqC‐ and phoD‐harbouring PMB communities to various soil conditions. There was significant variation among the sites in the diversity and structure of the phoD‐harbouring community, which correlated with variation in phosphorus levels and non‐capillary porosity; soil organic carbon and soil water content also affected the structure of the phoD‐harbouring community. However, no significant difference in the diversity of pqqC‐harbouring community was observed among different sites, while the structure of the pqqC‐harbouring bacteria community was affected by soil organic carbon and soil total nitrogen, but not soil phosphorus levels. Overall, changes in soil conditions affected the phoD‐harbouring community more than the pqqC‐harbouring community. These findings provide a new insight to explore the effects of soil conditions on microbial communities that solubilize inorganic phosphate and mineralize organic phosphate.
Collapse
Affiliation(s)
- Wenhui Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yijing Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ying Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yeqing Ying
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
65
|
Nazari M, Bickel S, Benard P, Mason-Jones K, Carminati A, Dippold MA. Biogels in Soils: Plant Mucilage as a Biofilm Matrix That Shapes the Rhizosphere Microbial Habitat. FRONTIERS IN PLANT SCIENCE 2022; 12:798992. [PMID: 35095970 PMCID: PMC8792611 DOI: 10.3389/fpls.2021.798992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Mucilage is a gelatinous high-molecular-weight substance produced by almost all plants, serving numerous functions for plant and soil. To date, research has mainly focused on hydraulic and physical functions of mucilage in the rhizosphere. Studies on the relevance of mucilage as a microbial habitat are scarce. Extracellular polymeric substances (EPS) are similarly gelatinous high-molecular-weight substances produced by microorganisms. EPS support the establishment of microbial assemblages in soils, mainly through providing a moist environment, a protective barrier, and serving as carbon and nutrient sources. We propose that mucilage shares physical and chemical properties with EPS, functioning similarly as a biofilm matrix covering a large extent of the rhizosphere. Our analyses found no evidence of consistent differences in viscosity and surface tension between EPS and mucilage, these being important physical properties. With regard to chemical composition, polysaccharide, protein, neutral monosaccharide, and uronic acid composition also showed no consistent differences between these biogels. Our analyses and literature review suggest that all major functions known for EPS and required for biofilm formation are also provided by mucilage, offering a protected habitat optimized for nutrient mobilization. Mucilage enables high rhizo-microbial abundance and activity by functioning as carbon and nutrient source. We suggest that the role of mucilage as a biofilm matrix has been underestimated, and should be considered in conceptual models of the rhizosphere.
Collapse
Affiliation(s)
- Meisam Nazari
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Samuel Bickel
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Pascal Benard
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | | |
Collapse
|
66
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
67
|
Li E, Zhang H, Jiang H, Pieterse CMJ, Jousset A, Bakker PAHM, de Jonge R. Experimental-Evolution-Driven Identification of Arabidopsis Rhizosphere Competence Genes in Pseudomonas protegens. mBio 2021; 12:e0092721. [PMID: 34101491 PMCID: PMC8262913 DOI: 10.1128/mbio.00927-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Beneficial plant root-associated microorganisms carry out a range of functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming several challenges, including competition with neighboring microorganisms and host immunity. Forward and reverse genetics have led to the identification of mechanisms that are used by beneficial microorganisms to overcome these challenges, such as the production of iron-chelating compounds, the formation of strong biofilms, or the concealment of characteristic microbial molecular patterns that trigger the host immune system. However, how such mechanisms arose from an evolutionary perspective is much less understood. To study bacterial adaptation in the rhizosphere, we employed experimental evolution to track the physiological and genetic dynamics of root-dwelling Pseudomonas protegens in the Arabidopsis thaliana rhizosphere under axenic conditions. This simplified binary one plant/one bacterium system allows for the amplification of key adaptive mechanisms for bacterial rhizosphere colonization. We identified 35 mutations, including single-nucleotide polymorphisms, insertions, and deletions, distributed over 28 genes. We found that mutations in genes encoding global regulators and in genes for siderophore production, cell surface decoration, attachment, and motility accumulated in parallel, underlining the finding that bacterial adaptation to the rhizosphere follows multiple strategies. Notably, we observed that motility increased in parallel across multiple independent evolutionary lines. All together, these results underscore the strength of experimental evolution in identifying key genes, pathways, and processes for bacterial rhizosphere colonization and a methodology for the development of elite beneficial microorganisms with enhanced root-colonizing capacities that can support sustainable agriculture in the future. IMPORTANCE Beneficial root-associated microorganisms carry out many functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming many challenges. Previously, diverse mechanisms that are used by beneficial microorganisms to overcome these challenges were identified. However, how such mechanisms have developed from an evolutionary perspective is much less understood. Here, we employed experimental evolution to track the evolutionary dynamics of a root-dwelling pseudomonad on the root of Arabidopsis. We found that mutations in global regulators, as well as in genes for siderophore production, cell surface decoration, attachment, and motility, accumulate in parallel, emphasizing these strategies for bacterial adaptation to the rhizosphere. We identified 35 mutations distributed over 28 genes. All together, our results demonstrate the power of experimental evolution in identifying key pathways for rhizosphere colonization and a methodology for the development of elite beneficial microorganisms that can support sustainable agriculture.
Collapse
Affiliation(s)
- Erqin Li
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Hao Zhang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Henan Jiang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Alexandre Jousset
- Ecology and Biodiversity, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|