51
|
Li Y, Yuan K, Guan Y, Cheng J, Bi Y, Shi S, Xue T, Lu X, Qin W, Yu D, Tian J. The implication of salience network abnormalities in young male adult smokers. Brain Imaging Behav 2016; 11:943-953. [DOI: 10.1007/s11682-016-9568-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
52
|
Sutherland MT, Riedel MC, Flannery JS, Yanes JA, Fox PT, Stein EA, Laird AR. Chronic cigarette smoking is linked with structural alterations in brain regions showing acute nicotinic drug-induced functional modulations. Behav Brain Funct 2016; 12:16. [PMID: 27251183 PMCID: PMC4890474 DOI: 10.1186/s12993-016-0100-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Whereas acute nicotine administration alters brain function which may, in turn, contribute to enhanced attention and performance, chronic cigarette smoking is linked with regional brain atrophy and poorer cognition. However, results from structural magnetic resonance imaging (MRI) studies comparing smokers versus nonsmokers have been inconsistent and measures of gray matter possess limited ability to inform functional relations or behavioral implications. The purpose of this study was to address these interpretational challenges through meta-analytic techniques in the service of clarifying the impact of chronic smoking on gray matter integrity and more fully contextualizing such structural alterations. Methods We first conducted a coordinate-based meta-analysis of structural MRI studies to identify consistent structural alterations associated with chronic smoking. Subsequently, we conducted two additional meta-analytic assessments to enhance insight into potential functional and behavioral relations. Specifically, we performed a multimodal meta-analytic assessment to test the structural–functional hypothesis that smoking-related structural alterations overlapped those same regions showing acute nicotinic drug-induced functional modulations. Finally, we employed database driven tools to identify pairs of structurally impacted regions that were also functionally related via meta-analytic connectivity modeling, and then delineated behavioral phenomena associated with such functional interactions via behavioral decoding. Results Across studies, smoking was associated with convergent structural decreases in the left insula, right cerebellum, parahippocampus, multiple prefrontal cortex (PFC) regions, and the thalamus. Indicating a structural–functional relation, we observed that smoking-related gray matter decreases overlapped with the acute functional effects of nicotinic agonist administration in the left insula, ventromedial PFC, and mediodorsal thalamus. Suggesting structural-behavioral implications, we observed that the left insula’s task-based, functional interactions with multiple other structurally impacted regions were linked with pain perception, the right cerebellum’s interactions with other regions were associated with overt body movements, interactions between the parahippocampus and thalamus were linked with memory processes, and interactions between medial PFC regions were associated with face processing. Conclusions Collectively, these findings emphasize brain regions (e.g., ventromedial PFC, insula, thalamus) critically linked with cigarette smoking, suggest neuroimaging paradigms warranting additional consideration among smokers (e.g., pain processing), and highlight regions in need of further elucidation in addiction (e.g., cerebellum). Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0100-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew T Sutherland
- Department of Psychology, Florida International University, AHC-4, RM 312, 11200 S.W. 8th St, Miami, FL, 33199, USA.
| | - Michael C Riedel
- Department of Psychology, Florida International University, AHC-4, RM 312, 11200 S.W. 8th St, Miami, FL, 33199, USA.,Department of Physics, Florida International University, Miami, FL, USA
| | - Jessica S Flannery
- Department of Psychology, Florida International University, AHC-4, RM 312, 11200 S.W. 8th St, Miami, FL, 33199, USA
| | - Julio A Yanes
- Department of Psychology, Auburn University, Auburn, AL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA.,State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH/DHHS, Baltimore, MD, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| |
Collapse
|
53
|
Shen Z, Huang P, Qian W, Wang C, Yu H, Yang Y, Zhang M. Severity of dependence modulates smokers' functional connectivity in the reward circuit: a preliminary study. Psychopharmacology (Berl) 2016; 233:2129-2137. [PMID: 26955839 DOI: 10.1007/s00213-016-4262-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/24/2016] [Indexed: 12/01/2022]
Abstract
RATIONALE Nicotine dependence is characterized as a neural circuit dysfunction, particularly with regard to the reward circuit. Although dependence severity moderates cue reactivity in the brain regions involved in reward processing, the direction of its influence remains controversial. OBJECTIVES Investigating the functional organization of the reward circuit may provide complementary information. Here, we used resting-state functional connectivity (rsFC) to evaluate the integrity of the reward circuit in smokers with different severities of nicotine dependence. METHODS Totals of 65 smokers and 37 non-smokers underwent resting-state functional magnetic resonance imaging (fMRI). The smokers were divided into low-dependent (FTND < 5, n = 26) and high-dependent smoker groups (FTND ≥ 5, n = 39) based on their nicotine-dependence severity (as measured by the Fagerström test for nicotine dependence [FTND]). The region of interest (ROI)-wise rsFC within the reward circuit was compared between smokers and non-smokers as well as between low-dependent and high-dependent smokers and then correlated with smokers' FTND scores. RESULTS Widespread rsFC attenuation was observed in the reward circuit of smokers compared with non-smokers. Compared with low-dependent smokers, high-dependent smokers showed greater rsFC between the right amygdala and the left nucleus accumbens (NAcc) as well as between the bilateral hippocampus. Furthermore, a positive correlation between the inter-hippocampus rsFC and the severity of nicotine dependence (FTND) was detected among all smokers (r = 0.416, p = 0.001). CONCLUSIONS Our results indicate a dysfunction of the reward circuit in nicotine-dependent individuals. Moreover, our study improves the understanding of the neuroplastic changes that occur during the development of nicotine dependence.
Collapse
Affiliation(s)
- Zhujing Shen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Peiyu Huang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Wei Qian
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Hualiang Yu
- Department of Psychiatry, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
54
|
The effects of chronic smoking on the pathology of alcohol-related brain damage. Alcohol 2016; 53:35-44. [PMID: 27286935 DOI: 10.1016/j.alcohol.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/16/2023]
Abstract
Both pathological and neuroimaging studies demonstrate that chronic alcohol abuse causes brain atrophy with widespread white matter loss limited gray matter loss. Recent neuroimaging studies suggest that tobacco smoking also causes brain atrophy in both alcoholics and neurologically normal individuals; however, this has not been confirmed pathologically. In this study, the effects of smoking and the potential additive effects of concomitant alcohol and tobacco consumption were investigated in autopsied human brains. A total of 44 cases and controls were divided into four groups: 16 non-smoking controls, nine smoking controls, eight non-smoking alcoholics, and 11 smoking alcoholics. The volumes of 26 gray and white matter regions were measured using an established point-counting technique. The results showed trends for widespread white matter loss in alcoholics (p < 0.007) but no effect on gray matter regions. In contrast, smoking alone had no effect on brain atrophy and the combination of smoking and alcohol showed no additional effect. Neuronal density was analyzed as a more sensitive assay of gray matter integrity. Similar to the volumetric analysis, there was a reduction in neurons (29%) in the prefrontal cortex of alcoholics, albeit this was only a trend when adjusted for potential confounders (p < 0.06). There were no smoking or combinatorial effects on neuronal density in any of the three regions examined. These results do not support the hypothesis that smoking exacerbates alcohol-related brain damage. The trends here support previous studies that alcohol-related brain damage is characterized by focal neuronal loss and generalized white matter atrophy. These disparate effects suggest that two different pathogenic mechanisms may be operating in the alcoholic brain. Future studies using ultrastructural or molecular techniques will be required to determine if smoking has more subtle effects on the brain and how chronic alcohol consumption leads to widespread white matter loss.
Collapse
|
55
|
Abstract
OBJECTIVE Migrant tobacco farmworkers experience regular occupational exposure to pesticides and nicotine. The present study was designed to determine whether there are differences in brain anatomy between Latino farmworkers and non-farmworkers. METHODS Magnetic resonance brain images were compared between farmworkers and non-farmworkers. In addition, blood cholinesterase activity and urinary cotinine levels were also used to identify associations with pesticide and nicotine exposure. RESULTS Farmworkers had greater gray matter signal in putamen and cerebellum, and lower gray matter signal in frontal and temporal lobes. Urinary cotinine was associated with the observed differences in brain anatomy, but blood cholinesterase activity was not. CONCLUSIONS Nicotine exposure was associated with neuroanatomical differences between Latino farmworkers and non-farmworkers. Future studies are needed to differentiate iron deposition from brain atrophy and to further assess the potential role of nicotine and pesticide exposure.
Collapse
|
56
|
Voxelwise meta-analysis of gray matter anomalies in chronic cigarette smokers. Behav Brain Res 2016; 311:39-45. [PMID: 27173432 DOI: 10.1016/j.bbr.2016.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Evidence from previous voxel-based morphometry (VBM) studies revealed that widespread brain regions are involved in chronic smoking. However, the spatial localization reported for gray matter (GM) abnormalities is heterogeneous. The aim of the present study was quantitatively to integrate studies on GM abnormalities observed in chronic smokers. METHODS A systematic search of the PubMed, Web of Knowledge and Science Direct databases from January 1, 2000 to July 31, 2015 was performed to identify eligible whole-brain VBM studies. Comprehensive meta-analyses to investigate regional GM abnormalities in chronic smokers were conducted with the Seed-based d Mapping software package. RESULTS Eleven studies comprising 686 chronic cigarette smokers and 1024 nonsmokers were included in the meta-analyses. Consistently across studies, the chronic smokers showed a robust GM decrease in the bilateral prefrontal cortex and a GM increase in the right lingual cortex. Moreover, meta-regression demonstrated that smoking years and cigarettes per day were partly correlated with GM anomalies in chronic cigarette smokers. CONCLUSIONS The convergent findings of this quantitative meta-analysis reveal a characteristic neuroanatomical pattern in chronic smokers. Future longitudinal studies should investigate whether this brain morphometric pattern can serve as a useful target and a prognostic marker for smoking intervention.
Collapse
|
57
|
Altered resting state functional connectivity of anterior insula in young smokers. Brain Imaging Behav 2016; 11:155-165. [DOI: 10.1007/s11682-016-9511-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
58
|
Abstract
The aim of Addiction Biology is to advance our understanding of the action of drugs of abuse and addictive processes via the publication of high-impact clinical and pre-clinical findings resulting from behavioral, molecular, genetic, biochemical, neurobiological and pharmacological research. As of 2013, Addiction Biology is ranked number 1 in the category of Substance Abuse journals (SCI). Occasionally, Addiction Biology likes to highlight via review important findings focused on a particular topic and recently published in the journal. The current review summarizes a number of key publications from Addiction Biology that have contributed to the current knowledge of nicotine research, comprising a wide spectrum of approaches, both clinical and pre-clinical, at the cellular, molecular, systems and behavioral levels. A number of findings from human studies have identified, using imaging techniques, alterations in common brain circuits, as well as morphological and network activity changes, associated with tobacco use. Furthermore, both clinical and pre-clinical studies have characterized a number of mechanistic targets critical to understanding the effects of nicotine and tobacco addiction. Together, these findings will undoubtedly drive future studies examining the dramatic impact of tobacco use and the development of treatments to counter nicotine dependence.
Collapse
Affiliation(s)
- Rick E. Bernardi
- Institute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim/Heidelberg University; Germany
| |
Collapse
|
59
|
Wetherill RR, Jagannathan K, Hager N, Childress AR, Rao H, Franklin TR. Cannabis, Cigarettes, and Their Co-Occurring Use: Disentangling Differences in Gray Matter Volume. Int J Neuropsychopharmacol 2015; 18:pyv061. [PMID: 26045474 PMCID: PMC4648161 DOI: 10.1093/ijnp/pyv061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/25/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Structural magnetic resonance imaging techniques are powerful tools for examining the effects of drug use on the brain. The nicotine and cannabis literature has demonstrated differences between nicotine cigarette smokers and cannabis users compared to controls in brain structure; however, less is known about the effects of co-occurring cannabis and tobacco use. METHODS We used voxel-based morphometry to examine gray matter volume differences between four groups: (1) cannabis-dependent individuals who do not smoke tobacco (Cs); (2) cannabis-dependent individuals who smoke tobacco (CTs); (3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (Ts); and (4) healthy controls (HCs). We also explored associations between gray matter volume and measures of cannabis and tobacco use. RESULTS A significant group effect was observed in the left putamen, thalamus, right precentral gyrus, and left cerebellum. Compared to HCs, the Cs, CTs, and Ts exhibited larger gray matter volumes in the left putamen. Cs also had larger gray matter volume than HCs in the right precentral gyrus. Cs and CTs exhibited smaller gray matter volume than HCs in the thalamus, and CTs and Ts had smaller left cerebellar gray matter volume than HCs. CONCLUSIONS This study extends previous research that independently examined the effects of cannabis or tobacco use on brain structure by including an examination of co-occurring cannabis and tobacco use, and provides evidence that cannabis and tobacco exposure are associated with alterations in brain regions associated with addiction.
Collapse
Affiliation(s)
- Reagan R Wetherill
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager).
| | - Kanchana Jagannathan
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Nathan Hager
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Anna Rose Childress
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Hengyi Rao
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Teresa R Franklin
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| |
Collapse
|
60
|
Li Y, Yuan K, Cai C, Feng D, Yin J, Bi Y, Shi S, Yu D, Jin C, von Deneen KM, Qin W, Tian J. Reduced frontal cortical thickness and increased caudate volume within fronto-striatal circuits in young adult smokers. Drug Alcohol Depend 2015; 151:211-9. [PMID: 25865908 DOI: 10.1016/j.drugalcdep.2015.03.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/21/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Smoking during early adulthood results in neurophysiological and brain structural changes that may promote nicotine dependence later in life. Previous studies have revealed the important roles of fronto-striatal circuits in the pathology of nicotine dependence; however, few studies have focused on both cortical thickness and subcortical striatal volume differences between young adult smokers and nonsmokers. METHODS Twenty-seven young male adult smokers and 22 age-, education- and gender-matched nonsmokers were recruited in the present study. The cortical thickness and striatal volume differences of young adult smokers and age-matched nonsmokers were investigated in the present study and then correlated with pack-years and Fagerström Test for Nicotine Dependence (FTND). RESULTS The following results were obtained: (1) young adult smokers showed significant cortical thinning in the frontal cortex (left caudal anterior cingulate cortex (ACC), right lateral orbitofrontal cortex (OFC)), left insula, left middle temporal gyrus, right inferior parietal lobule, and right parahippocampus; (2) in regards to subcortical striatal volume, the volume of the right caudate was larger in young adult smokers than nonsmokers; and (3) the cortical thickness of the right dorsolateral prefrontal cortex (DLPFC) and OFC were associated with nicotine dependence severity (FTND) and cumulative amount of nicotine intake (pack-years) in smokers, respectively. CONCLUSIONS This study revealed reduced frontal cortical thickness and increased caudate volume in the fronto-striatal circuits in young adult smokers compared to nonsmokers. These deficits suggest an imbalance between cognitive control (reduced protection factors) and reward drive behaviours (increased risk factors) associated with nicotine addiction and relapse.
Collapse
Affiliation(s)
- Yangding Li
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, PR China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, PR China.
| | - Chenxi Cai
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, PR China
| | - Dan Feng
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, PR China
| | - Junsen Yin
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, PR China
| | - Yanzhi Bi
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, PR China
| | - Sha Shi
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, PR China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, PR China
| | - Chenwang Jin
- Department of Medical Imaging, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Karen M von Deneen
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, PR China
| | - Wei Qin
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, PR China
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, PR China; Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|