51
|
Gao R, Yang H, Jing S, Liu B, Wei M, He P, Zhang N. Protective effect of chlorogenic acid on lipopolysaccharide-induced inflammatory response in dairy mammary epithelial cells. Microb Pathog 2018; 124:178-182. [PMID: 30053604 DOI: 10.1016/j.micpath.2018.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022]
Abstract
Mastitis is a major disease of dairy cattle. Given the recent emergence of antibiotics resistance to mastitis, new intramammary treatments are urgently required. In the present study, we investigated whether lipopolysaccharide (LPS) could induce the increase in the proinflammatory cytokines in bovine mammary epithelial cells (MECs), and whether a natural antimicrobial compound Chlorogenic acid (CGA) could attenuate the inflammatory responses induced by LPS and thus could be a potential therapeutic compound for bovine mastitis. Our results indicated that LPS could induce the expression of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukine (IL)-1β and IL-6, and the activation of NF-κB p65 and p-p65 in primary bovine MECs. Furthermore, CGA significantly inhibited not only the protein expression of NF-κB p65 and p-p65 but also the mRNA expression of TNF-α, IL-1β and IL-6 after LPS treatment in primary bovine MECs. These results suggested that CGA had anti-inflammatory role by inhibiting NF-κB activation. In conclusion, CGA could be possibly used as a potential therapeutic compound for bovine mastitis.
Collapse
Affiliation(s)
- Ruifeng Gao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Huidi Yang
- Basic Medical School, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Shangfei Jing
- Department of Hand and Foot Surgery, Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Mao Wei
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Pengfei He
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Jilin Province, Changchun, 130062, China.
| |
Collapse
|
53
|
Inhibition of BET bromodomains restores corticosteroid responsiveness in a mixed granulocytic mouse model of asthma. Biochem Pharmacol 2018; 154:222-233. [PMID: 29777682 DOI: 10.1016/j.bcp.2018.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/15/2018] [Indexed: 12/28/2022]
Abstract
Asthma is a heterogeneous disease characterized by different endotypes/phenotypes. Th2/Th17 driven mixed granulocytic asthma is one of them and shows resistance to corticosteroid therapy. Bromodomain and extra-terminal (BET) proteins are required for differentiation of Th17 cells which play a pivotal role in neutrophilic inflammation. Therefore, we sought to characterize the differential effects of BET inhibitor versus corticosteroids, and their potential synergism in cockroach allergen extract (CE)-induced mixed granulocytic (eosinophilic and neutrophilic) mouse model of asthma having Th2/Th17 endotype. Effects of BET inhibitor, (+)JQ-1 alone and in combination with dexamethasone (Dexa) were assessed on airway inflammation as well as Th2/Th17 related airway immune responses in CE-induced mixed granulocytic asthma. Markers of steroid resistance [histone deacetylase 2 (HDAC2), and oxidative stress] were also assessed in the lungs of mice and primary human bronchial epithelial cells (HBECs). BET inhibitor, (+)JQ-1 abolished Th17 driven neutrophilic inflammation in CE-induced mixed granulocytic asthma. Dexa had limited effect on overall airway inflammation despite having significant reductions in Th2 driven immune responses. However, combination of (+)JQ-1 with Dexa completely blocked both Th2 and /Th17 driven immune responses in the lung which led to significant reductions in eosinophils, neutrophils, and mucin secretion. (+)JQ-1 also reversed CE- and IL-17A-induced decrease in HDAC2 expression in murine and human airway epithelial cells respectively.
Collapse
|
54
|
Yang PF, Song XY, Zeng T, Ai QD, Liu DD, Zuo W, Zhang S, Xia CY, He X, Chen NH. IMM-H004, a coumarin derivative, attenuated brain ischemia/reperfusion injuries and subsequent inflammation in spontaneously hypertensive rats through inhibition of VCAM-1. RSC Adv 2017. [DOI: 10.1039/c7ra02154b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We studied the effect of IMM-H004 in treating brain I/R injury in spontaneously hypertensive rats and showed that IMM-H004 could efficiently ameliorate neurological defects and infarct volume in a time and dose dependent manner.
Collapse
Affiliation(s)
- Peng-Fei Yang
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xiu-Yun Song
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Ting Zeng
- College of Pharmacy
- Hunan University of Chinese Medicine
- Changsha
- China
| | - Qi-Di Ai
- College of Pharmacy
- Hunan University of Chinese Medicine
- Changsha
- China
| | - Dan-Dan Liu
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- China
| | - Wei Zuo
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Shuai Zhang
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Cong-Yuan Xia
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xin He
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- China
| | - Nai-Hong Chen
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|
55
|
Abstract
Aberrations in the epigenetic landscape are a hallmark of cancer. Alterations in enzymes that are “writers,” “erasers,” or “readers” of histone modification marks are common. Bromodomains are “readers” that bind acetylated lysines in histone tails. Their most important function is the regulation of gene transcription by the recruitment of different molecular partners. Moreover, proteins containing bromodomains are also epigenetic regulators, although little is known about the specific function of these domains. In recent years, there has been increasing interest in developing small molecules that can target specific bromodomains. First, this has helped clarify biological functions of bromodomain-containing proteins. Secondly, it opens a new front for combatting cancer. In this review we will describe the structures and mechanisms associated with Bromodomain and Extra-Terminal motif (BET) inhibitors and non-BET inhibitors, their current status of development, and their promising role as anti-cancer agents.
Collapse
Affiliation(s)
- Montserrat Pérez-Salvia
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain
| | - Manel Esteller
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain.,b Department of Physiological Sciences II, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain.,c Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Catalonia , Spain
| |
Collapse
|
56
|
Huang M, Zeng S, Zou Y, Shi M, Qiu Q, Xiao Y, Chen G, Yang X, Liang L, Xu H. The suppression of bromodomain and extra-terminal domain inhibits vascular inflammation by blocking NF-κB and MAPK activation. Br J Pharmacol 2016; 174:101-115. [PMID: 27774624 DOI: 10.1111/bph.13657] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE There is increasing evidence indicating that bromodomain and extra-terminal domain (BET) proteins play a critical role in the regulation of immune and inflammatory responses; however, their contribution to vascular inflammation has not yet been elucidated. In this study, we investigated the effect of inhibiting BET bromodomain on vascular inflammation and the underlying mechanisms. EXPERIMENTAL APPROACH HUVECs were isolated from fresh umbilical cords. JQ1, a specific BET bromodomain inhibitor, and Brd shRNA were used to evaluate the regulation of the BET proteins in vascular inflammation. Leukocyte adhesion to HUVECs was measure by an adhesion assay. Western blot or immunohistochemical analysis was used to detect the protein expression. Real-time PCR was used to evaluate mRNA expression. Leukocyte accumulation in vivo was determined by an acute lung inflammation model. KEY RESULTS BET bromodomain inhibition suppressed the expression of adhesion molecules induced by TNF-α- or LPS, including ICAM-1, VCAM-1 and E-selectin, and inhibited leukocyte adhesion to activated HUVEC monolayers. Treatment with JQ1 also attenuated the LPS-induced accumulation of leukocytes and expression of endothelial adhesion molecules in the acute lung inflammation model in vivo. Furthermore, BET bromodomain inhibition reduced the activity of p38 and JNK MAPKs and NF-κB in TNF-α-stimulated HUVECs. TNF-α-induced NF-κB activation was also blocked by inhibitors of p38 (SB203580) or JNK (SP600125). CONCLUSIONS AND IMPLICATIONS BET bromodomain is important for regulating endothelial inflammation. Strategies targeting endothelial BET bromodomain may provide a new therapeutic approach for controlling inflammatory-related diseases.
Collapse
Affiliation(s)
- Mingcheng Huang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaoyao Zou
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guoqiang Chen
- Department of Rheumatology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiuyan Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|