51
|
Targeting CXCR1/2: The medicinal potential as cancer immunotherapy agents, antagonists research highlights and challenges ahead. Eur J Med Chem 2019; 185:111853. [PMID: 31732253 DOI: 10.1016/j.ejmech.2019.111853] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Immune suppression in the tumor microenvironment (TME) is an intractable issue in anti-cancer immunotherapy. The chemokine receptors CXCR1 and CXCR2 recruit immune suppressive cells such as the myeloid derived suppressor cells (MDSCs) to the TME. Therefore, CXCR1/2 antagonists have aroused pharmaceutical interest in recent years. In this review, the medicinal chemistry of CXCR1/2 antagonists and their relevance in cancer immunotherapy have been summarized. The development of the drug candidates, along with their design rationale, clinical status and current challenges have also been discussed.
Collapse
|
52
|
Han X, Shi H, Sun Y, Shang C, Luan T, Wang D, Ba X, Zeng X. CXCR2 expression on granulocyte and macrophage progenitors under tumor conditions contributes to mo-MDSC generation via SAP18/ERK/STAT3. Cell Death Dis 2019; 10:598. [PMID: 31395859 PMCID: PMC6687752 DOI: 10.1038/s41419-019-1837-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) comprise a critical component of the tumor environment and CXCR2 reportedly plays a key role in the pathophysiology of various inflammatory diseases. Here, CXCR2 expression on granulocyte and macrophage progenitor cells (GMPs) was found to participate in myeloid cell differentiation within the tumor environment. In CXCR2-deficient tumor-bearing mice, GMPs exhibited fewer macrophage and dendritic cell progenitor cells than wild-type tumor-bearing mice, thereby decreasing monocytic MDSCs (mo-MDSCs) expansion. CXCR2 deficiency increased SAP18 expression in tumor-bearing mice, which reduced STAT3 phosphorylation through restraining ERK1/2 activation. Our findings reveal a critical role for CXCR2 in regulating hematopoietic progenitor cell differentiation under tumor conditions, and SAP18 is a key negative regulator in this process. Thus, inhibiting CXCR2 expression may alter the tumor microenvironment and attenuate tumor progression.
Collapse
Affiliation(s)
- Xiaoqing Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | | | - Yingying Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Tao Luan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Dake Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China.
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, Jilin, China.
| |
Collapse
|
53
|
Jurcak N, Zheng L. Signaling in the microenvironment of pancreatic cancer: Transmitting along the nerve. Pharmacol Ther 2019; 200:126-134. [PMID: 31047906 PMCID: PMC6626552 DOI: 10.1016/j.pharmthera.2019.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a dismal malignant disease with the lowest stage-combined overall survival rate compared to any other cancer type. PDA has a unique tumor microenvironment (TME) comprised of a dense desmoplastic reaction comprising over two-thirds of the total tumor volume. The TME is comprised of cellular and acellular components that all orchestrate different signaling mechanisms together to promote tumorigenesis and disease progression. Particularly, the neural portion of the TME has recently been appreciated in PDA progression. Neural remodeling and perineural invasion (PNI), the neoplastic invasion of tumor cells into nerves, are common adverse histological characteristics of PDA associated with a worsened prognosis and increased cancer aggressiveness. The TME undergoes dramatic neural hypertrophy and increased neural density that is associated with many signaling pathways to promote cell invasion. PNI is also considered one of the main routes for cancer recurrence and metastasis after surgical resection, which remains the only current cure for PDA. Recent studies have shown multiple cell types in the TME signal through autocrine and paracrine mechanisms to enhance perineural invasion, pancreatic neural remodeling and disease progression in PDA. This review summarizes the current findings of the signaling mechanisms and cellular and molecular players involved in neural signaling in the TME of PDA.
Collapse
Affiliation(s)
- Noelle Jurcak
- Graduate Program in Cellular and Molecular Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, Baltimore, MD 21287, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, Baltimore, MD 21287, USA; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
54
|
Bardi GT, Al-Rayan N, Richie JL, Yaddanapudi K, Hood JL. Detection of Inflammation-Related Melanoma Small Extracellular Vesicle (sEV) mRNA Content Using Primary Melanocyte sEVs as a Reference. Int J Mol Sci 2019; 20:ijms20051235. [PMID: 30870978 PMCID: PMC6429302 DOI: 10.3390/ijms20051235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Melanoma-derived small extracellular vesicles (sEVs) participate in tumor pathogenesis. Tumor pathogenesis is highly dependent on inflammatory processes. Given the potential for melanoma sEVs to carry tumor biomarkers, we explored the hypothesis that they may contain inflammation-related mRNA content. Biophysical characterization showed that human primary melanocyte-derived sEVs trended toward being smaller and having less negative (more neutral) zeta potential than human melanoma sEVs (A-375, SKMEL-28, and C-32). Using primary melanocyte sEVs as the control population, RT-qPCR array results demonstrated similarities and differences in gene expression between melanoma sEV types. Upregulation of pro-angiogenic chemokine ligand CXCL1, CXCL2, and CXCL8 mRNAs in A-375 and SKMEL-28 melanoma sEVs was the most consistent finding. This paralleled increased production of CXCL1, CXCL2, and CXCL8 proteins by A-375 and SKMEL-28 sEV source cells. Overall, the use of primary melanocyte sEVs as a control sEV reference population facilitated the detection of inflammation-related melanoma sEV mRNA content.
Collapse
Affiliation(s)
- Gina T Bardi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Numan Al-Rayan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Jamaal L Richie
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Kavitha Yaddanapudi
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Joshua L Hood
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
55
|
Shi H, Han X, Sun Y, Shang C, Wei M, Ba X, Zeng X. Chemokine (C-X-C motif) ligand 1 and CXCL2 produced by tumor promote the generation of monocytic myeloid-derived suppressor cells. Cancer Sci 2018; 109:3826-3839. [PMID: 30259595 PMCID: PMC6272093 DOI: 10.1111/cas.13809] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Accumulation of myeloid‐derived suppressor cells (MDSC) in tumor‐bearing hosts is a hallmark of tumor‐associated inflammation, which is thought to be a barrier to immunosurveillance. Multiple factors secreted by tumor cells and tumor stromal cells are reported to be involved in promoting the expansion of MDSC. Herein, we showed that s.c. inoculation of tumor cells and i.v. injection of tumor‐conditioned medium increased the number of MDSC. Subsequent investigation elucidated that chemokine (C‐X‐C motif) ligand 1 (CXCL1) and CXCL2, which were originally characterized as the chemokines of neutrophils, specifically promoted the expansion of monocytic MDSC (mo‐MDSC), a subtype of MDSC, in the presence of granulocyte‐macrophage colony‐stimulating factor. Depletion of CXCL1 or CXCL2 in B16F10 cells or in B16F10‐bearing mice noticeably decreased the generation of mo‐MDSC in bone marrow. Moreover, we found that, in addition to the tumor cells, tumor‐infiltrated CD11b+ myeloid cells also expressed CXCL1 and CXCL2. Furthermore, CXCL1‐ and CXCL2‐induced increase of mo‐MDSC was not correlated with chemotaxis, proliferation or apoptosis of mo‐MDSC. These findings show a novel role of CXCL1 and CXCL2 in promoting mo‐MDSC generation by favoring the differentiation of bone marrow cells in tumor‐bearing conditions, which suggests that inhibition of CXCL1 and CXCL2 could decrease mo‐MDSC generation and improve host immunosurveillance.
Collapse
Affiliation(s)
- Huifang Shi
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China.,People's Hospital of Rizhao, Rizhao, China
| | - Xiaoqing Han
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| | - Yingying Sun
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| | - Min Wei
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, China
| |
Collapse
|