51
|
A unique tolerizing dendritic cell phenotype induced by the synthetic triterpenoid CDDO-DFPA (RTA-408) is protective against EAE. Sci Rep 2017; 7:9886. [PMID: 28851867 PMCID: PMC5575165 DOI: 10.1038/s41598-017-06907-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Tolerogenic dendritic cells (DCs) have emerged as relevant clinical targets for the treatment of multiple sclerosis and other autoimmune disorders. However, the pathways essential for conferring the tolerizing DC phenotype and optimal methods for their induction remain an intense area of research. Triterpenoids are a class of small molecules with potent immunomodulatory activity linked to activation of Nrf2 target genes, and can also suppress the manifestations of experimental autoimmune encephalomyelitis (EAE). Here we demonstrate that DCs are a principal target of the immune modulating activity of triterpenoids in the context of EAE. Exposure of DCs to the new class of triterpenoid CDDO-DFPA (RTA-408) results in the induction of HO-1, TGF-β, and IL-10, as well as the repression of NF-κB, EDN-1 and pro-inflammatory cytokines IL-6, IL-12, and TNFα. CDDO-DFPA exposed DCs retained expression of surface ligands and capacity for antigen uptake but were impaired to induce Th1 and Th17 cells. TGF-β was identified as the factor mediating suppression of T cell proliferation by CDDO-DFPA pretreated DCs, which failed to passively induce EAE. These findings demonstrate the potential therapeutic utility of CDDO-DFPA in the treatment and prevention of autoimmune disorders, and its capacity to induce tolerance via modulation of the DC phenotype.
Collapse
|
52
|
Combinatorial drug delivery approaches for immunomodulation. Adv Drug Deliv Rev 2017; 114:161-174. [PMID: 28532690 DOI: 10.1016/j.addr.2017.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Immunotherapy has been widely explored for applications to both augment and suppress intrinsic host immunity. Clinical achievements have seen a number of immunotherapeutic drugs displace established strategies like chemotherapy in treating immune-associated diseases. However, single drug approaches modulating an individual arm of the immune system are often incompletely effective. Imperfect mechanistic understanding and heterogeneity within disease pathology have seen monotherapies inadequately equipped to mediate complete disease remission. Recent success in applications of combinatorial immunotherapy has suggested that targeting multiple biological pathways simultaneously may be critical in treating complex immune pathologies. Drug delivery approaches through engineered biomaterials offer the potential to augment desired immune responses while mitigating toxic side-effects by localizing immunotherapy. This review discusses recent advances in immunotherapy and highlights newly explored combinatorial drug delivery approaches. Furthermore, prospective future directions for immunomodulatory drug delivery to exploit are provided.
Collapse
|
53
|
Li R, Zhang Y, Zheng X, Peng S, Yuan K, Zhang X, Min W. Synergistic suppression of autoimmune arthritis through concurrent treatment with tolerogenic DC and MSC. Sci Rep 2017; 7:43188. [PMID: 28230210 PMCID: PMC5322386 DOI: 10.1038/srep43188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/20/2017] [Indexed: 01/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by progressive immune-mediated joint deterioration. Current treatments are not antigen specific and are associated with various adverse. We have previously demonstrated that tolerogenic dendritic cells (Tol-DC) are potent antigen-specific immune regulators, which hold great promise in immunotherapy of autoimmune diseases. In this study, we aimed to develop new immunotherapy by combining Tol-DC and mesenchymal stem cells (MSC). We demonstrated that RelB gene silencing resulted in generation of Tol-DC that suppressed T cell responses and selectively promoted Treg generation. The combination of MSC synergized the tolerogenic capacity of Tol-DC in inhibition of T cell responses. In murine collagen-induced arthritis (CIA) model, we demonstrated that progression of arthritis was inhibited with administration of RelB gene-silenced Tol-DC or MSC. This therapeutic effect was remarkably enhanced with concurrent treatment of combination Tol-DC and MSC as demonstrated by improved clinical symptoms, decreased clinical scores and attenuated joint damage. These therapeutic effects were associated with suppression of CII-specific T cell responses, polarization of Th and inhibition of proinflammatory cytokines, and reduced cartilage degeneration. This study for the first time demonstrates a new approach to treat autoimmune inflammatory joint disease with concurrent treatment of RelB gene-silenced Tol-DC and MSC.
Collapse
Affiliation(s)
- Rong Li
- College of Basic Medical Sciences and Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yujuan Zhang
- College of Basic Medical Sciences and Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Xiufen Zheng
- Departments of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Shanshan Peng
- College of Basic Medical Sciences and Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Keng Yuan
- College of Basic Medical Sciences and Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Xusheng Zhang
- Departments of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Weiping Min
- College of Basic Medical Sciences and Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,Departments of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| |
Collapse
|