51
|
Chen Z, Feng Y, Li S, Hua K, Fu S, Chen F, Chen H, Pan L, Wu C, Jiang G. Altered functional connectivity strength in chronic insomnia associated with gut microbiota composition and sleep efficiency. Front Psychiatry 2022; 13:1050403. [PMID: 36483137 PMCID: PMC9722753 DOI: 10.3389/fpsyt.2022.1050403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND There is limited evidence on the link between gut microbiota (GM) and resting-state brain activity in patients with chronic insomnia (CI). This study aimed to explore the alterations in brain functional connectivity strength (FCS) in CI and the potential associations among altered FCS, GM composition, and neuropsychological performance indicators. MATERIALS AND METHODS Thirty CI patients and 34 age- and gender-matched healthy controls (HCs) were recruited. Each participant underwent resting-state functional magnetic resonance imaging (rs-fMRI) for the evaluation of brain FCS and was administered sleep-, mood-, and cognitive-related questionnaires for the evaluation of neuropsychological performance. Stool samples of CI patients were collected and subjected to 16S rDNA amplicon sequencing to assess the relative abundance (RA) of GM. Redundancy analysis or canonical correspondence analysis (RDA or CCA, respectively) was used to investigate the relationships between GM composition and neuropsychological performance indicators. Spearman correlation was further performed to analyze the associations among alterations in FCS, GM composition, and neuropsychological performance indicators. RESULTS The CI group showed a reduction in FCS in the left superior parietal gyrus (SPG) compared to the HC group. The correlation analysis showed that the FCS in the left SPG was correlated with sleep efficiency and some specific bacterial genera. The results of CCA and RDA showed that 38.21% (RDA) and 24.62% (CCA) of the GM composition variation could be interpreted by neuropsychological performance indicators. Furthermore, we found complex relationships between Alloprevotella, specific members of the family Lachnospiraceae, Faecalicoccus, and the FCS alteration, and neuropsychological performance indicators. CONCLUSION The brain FCS alteration of patients with CI was related to their GM composition and neuropsychological performance indicators, and there was also an association to some extent between the latter two, suggesting a specific interaction pattern among the three aspects: brain FCS alteration, GM composition, and neuropsychological performance indicators.
Collapse
Affiliation(s)
- Ziwei Chen
- Jinan University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Feng
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shumei Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Kelei Hua
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feng Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huiyu Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | | | - Caojun Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,Jinan University, Guangzhou, China
| |
Collapse
|
52
|
Zhang S, Qian Y, Li Q, Xu X, Li X, Wang C, Cai H, Zhu J, Yu Y. Metabolic and Neural Mechanisms Underlying the Associations Between Gut Bacteroides and Cognition: A Large-Scale Functional Network Connectivity Study. Front Neurosci 2021; 15:750704. [PMID: 34733135 PMCID: PMC8558260 DOI: 10.3389/fnins.2021.750704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
There is a proof-of-concept that microbial metabolites provide a molecular connection between the gut and the brain. Extensive research has established a link between gut Bacteroides and human cognition, yet the metabolic and neural mechanisms underlying this association remain largely unknown. Here, we collected fecal samples, resting-state functional MRI, and cognitive data from a large and homogeneous sample of 157 healthy young adults. 16S rRNA gene sequencing was conducted with abundances of Bacteroides and metabolic pathways quantified by species annotation and functional prediction analyses, respectively. Large-scale intra- and internetwork functional connectivity was measured using independent component analysis. Results showed that gut Bacteroides were related to multiple metabolic pathways, which in turn were associated with widespread functional network connectivity. Furthermore, functional network connectivity mediated the associations between some Bacteroides-related metabolic pathways and cognition. Remarkably, arginine and proline metabolism, phenylalanine metabolism, and biosynthesis of unsaturated fatty acids act as the key metabolic pathways that are most contributive, and the executive control and sensorimotor systems contribute most strongly at the neural level. Our findings suggest complex poly-pathway and poly-network processes linking Bacteroides to cognition, more generally yielding a novel conceptualization of targeting gut Bacteroides as an intervention strategy for individuals with cognitive impairment.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qian Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xueying Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
53
|
Huang Q, Di L, Yu F, Feng X, Liu Z, Wei M, Luo Y, Xia J. Alterations in the gut microbiome with hemorrhagic transformation in experimental stroke. CNS Neurosci Ther 2021; 28:77-91. [PMID: 34591349 PMCID: PMC8673707 DOI: 10.1111/cns.13736] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Hemorrhagic transformation (HT) is a life-threatening complication of stroke. Whether changes in gut microbial composition underlie the development of HT remains unknown. This study aimed to investigate whether the gut microbiota is altered in HT rats and examine the association between these changes and inflammatory responses. METHODS HT was successfully established in rats injected with 50% glucose (6 ml/Kg, i.p.) 15 min before middle cerebral artery occlusion (MCAO, 90 min occlusion) with reperfusion. After 5 days, rats were euthanized, and their brains used to estimate infarct volume. The inflammatory factors, the analysis of gut microbiota, and short-chain fatty acids (SCFA) were assessed. RESULTS In contrast with non-HT rats, gut microbiota sequencing showed an elevation in the relative abundance of Proteobacteria and Actinobacteria in HT rats. Total SCFAs, especially butyrate and valeric acid, were significantly lower in the cecal contents of HT rats than in those of non-HT rats. Hyperglycemia-induced HT exacerbation was not observed when rats were treated with antibiotics, suggesting that altered microbiota play a critical role in hyperglycemic HT pathogenesis. Furthermore, rats whose gut was colonized with HT rat microbiota showed increased susceptibility to HT. CONCLUSION This study provides important information about the gut microbiota profiles and SCFA levels of MCAO rats with HT or non-HT. The susceptibility to HT in MCAO rats is associated with inflammation and gut microbiota modulation.
Collapse
Affiliation(s)
- Qin Huang
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Liao Di
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Fang Yu
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Xianjing Feng
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Zeyu Liu
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Minping Wei
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Yunfang Luo
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Jian Xia
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China.,Hunan Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
54
|
Zhang X, Xue C, Cao X, Yuan Q, Qi W, Xu W, Zhang S, Huang Q. Altered Patterns of Amplitude of Low-Frequency Fluctuations and Fractional Amplitude of Low-Frequency Fluctuations Between Amnestic and Vascular Mild Cognitive Impairment: An ALE-Based Comparative Meta-Analysis. Front Aging Neurosci 2021; 13:711023. [PMID: 34531735 PMCID: PMC8438295 DOI: 10.3389/fnagi.2021.711023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Changes in the amplitude of low-frequency fluctuations (ALFF) and the fractional amplitude of low-frequency fluctuations (fALFF) have provided stronger evidence for the pathophysiology of cognitive impairment. Whether the altered patterns of ALFF and fALFF differ in amnestic cognitive impairment (aMCI) and vascular mild cognitive impairment (vMCI) is largely unknown. The purpose of this study was to explore the ALFF/fALFF changes in the two diseases and to further explore whether they contribute to the diagnosis and differentiation of these diseases. Methods: We searched PubMed, Ovid, and Web of Science databases for articles on studies using the ALFF/fALFF method in patients with aMCI and vMCI. Based on the activation likelihood estimation (ALE) method, connectivity modeling based on coordinate meta-analysis and functional meta-analysis was carried out. Results: Compared with healthy controls (HCs), patients with aMCI showed increased ALFF/fALFF in the bilateral parahippocampal gyrus/hippocampus (PHG/HG), right amygdala, right cerebellum anterior lobe (CAL), left middle temporal gyrus (MTG), left cerebrum temporal lobe sub-gyral, left inferior temporal gyrus (ITG), and left cerebrum limbic lobe uncus. Meanwhile, decreased ALFF/fALFF values were also revealed in the bilateral precuneus (PCUN), bilateral cuneus (CUN), and bilateral posterior cingulate (PC) in patients with aMCI. Compared with HCs, patients with vMCI predominantly showed decreased ALFF/fALFF in the bilateral CUN, left PCUN, left PC, and right cingulate gyrus (CG). Conclusions: The present findings suggest that ALFF and fALFF displayed remarkable altered patterns between aMCI and vMCI when compared with HCs. Thus, the findings of this study may serve as a reliable tool for distinguishing aMCI from vMCI, which may help understand the pathophysiological mechanisms of these diseases.
Collapse
Affiliation(s)
- Xulian Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Cao
- Division of Statistics and Data Science, Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shaojun Zhang
- Department of Statistics, University of Florida, Gainesville, FL, United States
| | - Qingling Huang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
55
|
Zhu Z, Zeng Q, Kong L, Luo X, Li K, Xu X, Zhang M, Huang P, Yang Y. Altered Spontaneous Brain Activity in Subjects With Different Cognitive States of Biologically Defined Alzheimer's Disease: A Surface-Based Functional Brain Imaging Study. Front Aging Neurosci 2021; 13:683783. [PMID: 34526888 PMCID: PMC8435891 DOI: 10.3389/fnagi.2021.683783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Before the apparent cognitive decline, subjects on the course of Alzheimer's disease (AD) can have significantly altered spontaneous brain activity, which could be potentially used for early diagnosis. As previous studies investigating local brain activity may suffer from the problem of cortical signal aliasing during volume-based analysis, we aimed to investigate the cortical functional alterations in the AD continuum using a surface-based approach. Methods: Based on biomarker profile "A/T," we included 11 healthy controls (HC, A-T-), 22 preclinical AD (CU, A+T+), 33 prodromal AD (MCI, A+T+), and 20 AD with dementia (d-AD, A+T+) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The amplitude of low-frequency fluctuation (ALFF) method was used to evaluate the changes of spontaneous brain activity, which was performed in the classic frequency band (0.01-0.08 Hz), slow-4 (0.027-0.073 Hz) band, and slow-5 (0.01-0.027 Hz) band. Results: Under classic frequency band and slow-4 band, analysis of covariance (ANCOVA) showed that there were significant differences of standardized ALFF (zALFF) in the left posterior cingulate cortex (PCC) among the four groups. The post-hoc analyses showed that under the classic frequency band, the AD group had significantly decreased zALFF compared with the other three groups, and the cognitively unimpaired (CU) group had decreased zALFF compared with the healthy control (HC) group. Under the slow-4 band, more group differences were detected (HC > CU/MCI > d-AD). The accuracy of classifying CU, mild cognitive impairment (MCI), and AD from HC by left PCC activity under the slow-4 band were 0.774, 0.744, and 0.920, respectively. Moreover, the zALFF values of the left PCC had significant correlations with cerebrospinal fluid (CSF) biomarkers and neuropsychological tests. Conclusions: Spontaneous brain activity in the left PCC may decrease in preclinical AD when cognitive functions were relatively normal. The combination of a surfaced-based approach and specific frequency band analysis may increase sensitivity for the identification of preclinical AD subjects.
Collapse
Affiliation(s)
- Zili Zhu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linghan Kong
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
56
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
57
|
Cui L, Chen K, Huang L, Sun J, Lv Y, Jia X, Guo Q. Changes in local brain function in mild cognitive impairment due to semantic dementia. CNS Neurosci Ther 2021; 27:587-602. [PMID: 33650764 PMCID: PMC8025655 DOI: 10.1111/cns.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS Mild cognitive impairment due to semantic dementia represents the preclinical stage, involving cognitive decline dominated by semantic impairment below the semantic dementia standard. Therefore, studying mild cognitive impairment due to semantic dementia may identify changes in patients before progression to dementia. However, whether changes in local functional activity occur in preclinical stages of semantic dementia remains unknown. Here, we explored local functional changes in patients with mild cognitive impairment due to semantic dementia using resting-state functional MRI. METHODS We administered a battery of neuropsychological tests to twenty-two patients with mild cognitive impairment due to semantic dementia (MCI-SD group) and nineteen healthy controls (HC group). We performed structural MRI to compare gray matter volumes, and resting-state functional MRI with multiple sub-bands and indicators to evaluate functional activity. RESULTS Neuropsychological tests revealed a significant decline in semantic performance in the MCI-SD group, but no decline in other cognitive domains. Resting-state functional MRI revealed local functional changes in multiple brain regions in the MCI-SD group, distributed in different sub-bands and indicators. In the normal band, local functional changes were only in the gray matter atrophic area. In the other sub-bands, more regions with local functional changes outside atrophic areas were found across various indicators. Among these, the degree centrality of the left precuneus in the MCI-SD group was positively correlated with general semantic tasks (oral sound naming, word-picture verification). CONCLUSION Our study revealed local functional changes in mild cognitive impairment due to semantic dementia, some of which were located outside the atrophic gray matter. Driven by functional connectivity changes, the left precuneus might play a role in preclinical semantic dementia. The study proved the value of frequency-dependent sub-bands, especially the slow-2 and slow-3 sub-bands.
Collapse
Affiliation(s)
- Liang Cui
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Keliang Chen
- Department of NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Lin Huang
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Jiawei Sun
- School of Information and Electronics TechnologyJiamusi UniversityJiamusiChina
| | - Yating Lv
- Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| | - Xize Jia
- Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| |
Collapse
|
58
|
Zhang X, Shi L, Sun T, Guo K, Geng S. Dysbiosis of gut microbiota and its correlation with dysregulation of cytokines in psoriasis patients. BMC Microbiol 2021; 21:78. [PMID: 33685393 PMCID: PMC7941898 DOI: 10.1186/s12866-021-02125-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Background Psoriasis is an inflammatory skin disease associated with multiple comorbidities and substantially diminishes patients’ quality of life. The gut microbiome has become a hot topic in psoriasis as it has been shown to affect both allergy and autoimmunity diseases in recent studies. Our objective was to identify differences in the fecal microbial composition of patients with psoriasis compared with healthy individuals to unravel the microbiota profiling in this autoimmune disease. Results We collected fecal samples from 30 psoriasis patients and 30 healthy controls, sequenced them by 16S rRNA high-throughput sequencing, and identified the gut microbial composition using bioinformatic analyses including Quantitative Insights into Microbial Ecology (QIIME) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Our results showed that different relative abundance of certain bacterial taxa between psoriasis patients and healthy individuals, including Faecalibacterium and Megamonas, were increased in patients with psoriasis. It’s also implicated that many cytokines act as main effect molecules in the pathology of psoriasis. We selected the inflammation-related indicators that were abnormal in psoriasis patients and found the microbiome variations were associated with the level of them, especially interleukin-2 receptor showed a positive relationship with Phascolarctobacterium and a negative relationship with the Dialister. The relative abundance of Phascolarctobacterium and Dialister can be regard as predictors of psoriasis activity. The correlation analysis based on microbiota and Inflammation-related indicators showed that microbiota dysbiosis might induce an abnormal immune response in psoriasis. Conclusions We concluded that the gut microbiome composition in psoriasis patients has been altered markedly and provides evidence to understand the relationship between gut microbiota and psoriasis. More mechanistic experiments are needed to determine whether the differences observed in gut microbiota are the cause or consequences of psoriasis and whether the relationship between gut microbiota and cytokines was involved. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02125-1.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, 157 Xiwu Road, Xi'an City, 710004, Shaanxi Province, China
| | - Linjing Shi
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, 157 Xiwu Road, Xi'an City, 710004, Shaanxi Province, China
| | - Ting Sun
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, 157 Xiwu Road, Xi'an City, 710004, Shaanxi Province, China
| | - Kun Guo
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, 157 Xiwu Road, Xi'an City, 710004, Shaanxi Province, China.
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, 157 Xiwu Road, Xi'an City, 710004, Shaanxi Province, China.
| |
Collapse
|
59
|
Liu P, Jia X, Chen Y, Yu Y, Zhang K, Lin Y, Wang B, Peng G. Gut microbiota interacts with intrinsic brain activity of patients with amnestic mild cognitive impairment. CNS Neurosci Ther 2021; 27:163-173. [PMID: 32929861 PMCID: PMC7816203 DOI: 10.1111/cns.13451] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
AIMS To explore the potential relationships among gut microbiota (GM), local brain spontaneous activity, and neuropsychological characteristics in amnestic mild cognitive impairment (aMCI) patients. METHODS Twenty aMCI and 22 healthy control (HC) subjects were recruited. The GM composition was determined by 16S ribosomal RNA gene sequencing. Resting-state functional magnetic resonance imaging scans were performed, and fractional amplitude of low-frequency fluctuations (fALFF) was calculated across different frequencies. The Spearman or Pearson correlation analysis was used to analyze the relationship between spontaneous brain activity and cognitive function, and GM composition. RESULTS aMCI patients had altered GM state and local spontaneous brain activity as compared with HC subjects. Correlation analysis showed that aMCI and HC groups had different "GM-intrinsic brain activity interaction" patterns. In aMCI group, at the typical band (0.01-0.08 Hz), the relative abundance (RA) of Bacteroides from phylum to genus level was negatively correlated with fALFF value of cerebellar vermis IV-V, and the Ruminococcaceae RA was negatively correlated with fALFF values of left lenticular nucleus and pallidum. The Clostridiaceae RA and Blautia RA were positively correlated with the left cerebellum lobules IV-V at the slow-4 band (0.027-0.073 Hz). The Veillonellaceae RA was positively correlated with fALFF values of left precentral gyrus at the slow-5 band (0.073-0.08 Hz). Correlation analysis showed that Clostridium members (Lachnospiraceae and Blautia) were positively, while Veillonellaceae was negatively, correlated with cognition test. Bacteroides was positively correlated with attention and computation, and negatively correlated with the three-stage command score. CONCLUSIONS aMCI patients have a specific GM-intrinsic brain activity-cognitive function interaction pattern.
Collapse
Affiliation(s)
- Ping Liu
- Department of NeurologyCollege of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Xi‐Ze Jia
- Center for Cognition and Brain DisordersHangzhou Normal UniversityHangzhouChina
| | - Yi Chen
- Department of NeurologyCollege of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Yang Yu
- Department of NeurologyCollege of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Kan Zhang
- Department of NeurologyCollege of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Ya‐Jie Lin
- Department of NeurologyCollege of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Bao‐Hong Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesState Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollege of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Guo‐Ping Peng
- Department of NeurologyCollege of MedicineThe First Affiliated HospitalZhejiang UniversityHangzhouChina
| |
Collapse
|
60
|
Cho J, Park YJ, Gonzales-Portillo B, Saft M, Cozene B, Sadanandan N, Borlongan CV. Gut dysbiosis in stroke and its implications on Alzheimer's disease-like cognitive dysfunction. CNS Neurosci Ther 2021; 27:505-514. [PMID: 33464726 PMCID: PMC8025625 DOI: 10.1111/cns.13613] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Various neurological disorders, such as stroke and Alzheimer's disease (AD), involve neuroinflammatory responses. The advent of the gut‐brain axis enhances our understanding of neurological disease progression and secondary cell death. Gut microbiomes, especially those associated with inflammation, may reflect the dysbiosis of both the brain and the gut, opening the possibility to utilize inflammatory microbiomes as biomarkers and therapeutic targets. The gut‐brain axis may serve as a contributing factor to disease pathology and offer innovative approaches in cell‐based regenerative medicine for the treatment of neurological diseases. In reviewing the pathogenesis of stroke and AD, we also discuss the effects of gut microbiota on cognitive decline and brain pathology. Although the underlying mechanism of primary cell death from either disease is clearly distinct, both may be linked to gut‐microbial dysfunction as a consequential aberration that is unique to each disease. Targeting peripheral cell death pathways that exacerbate disease symptoms, such as those arising from the gut, coupled with conventional central therapeutic approach, may improve stroke and AD outcomes.
Collapse
Affiliation(s)
- Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
61
|
Huang Y, Shen Z, He W. Identification of Gut Microbiome Signatures in Patients With Post-stroke Cognitive Impairment and Affective Disorder. Front Aging Neurosci 2021; 13:706765. [PMID: 34489677 PMCID: PMC8417941 DOI: 10.3389/fnagi.2021.706765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/09/2021] [Indexed: 02/05/2023] Open
Abstract
Stroke (ST), endangering human health due to its high incidence and high mortality, is a global public health problem. There is increasing evidence that there is a link between the gut microbiota (GM) and neuropsychiatric diseases. We aimed to find the GM of ST, post-ST cognitive impairment (PSCI), and post-ST affective disorder (PSTD). GM composition was analyzed, followed by GM identification. Alpha diversity estimation showed microbiota diversity in ST patients. Beta diversity analysis showed that the bacterial community structure segregated differently between different groups. At the genus level, ST patients had a significantly higher proportion of Enterococcus and lower content of Bacteroides, Escherichia-Shigella, and Megamonas. PSCI patients had a significantly higher content of Enterococcus, Bacteroides, and Escherichia-Shigella and a lower proportion of Faecalibacterium compared with patients with ST. Patients with PSTD had a significantly higher content of Bacteroides and Escherichia-Shigella and lower content of Enterococcus and Faecalibacterium. Parabacteroides and Lachnospiraceae were associated with Montreal cognitive assessment score of ST patients. Our study indicated that the characteristic GM, especially Bacteroidetes, could be used as clinical biomarkers of PSCI and PSTD.
Collapse
|