51
|
Palma Medina LM, Becker AK, Michalik S, Yedavally H, Raineri EJM, Hildebrandt P, Gesell Salazar M, Surmann K, Pförtner H, Mekonnen SA, Salvati A, Kaderali L, van Dijl JM, Völker U. Metabolic Cross-talk Between Human Bronchial Epithelial Cells and Internalized Staphylococcus aureus as a Driver for Infection. Mol Cell Proteomics 2019; 18:892-908. [PMID: 30808728 PMCID: PMC6495256 DOI: 10.1074/mcp.ra118.001138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/25/2019] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is infamous for causing recurrent infections of the human respiratory tract. This is a consequence of its ability to adapt to different niches, including the intracellular milieu of lung epithelial cells. To understand the dynamic interplay between epithelial cells and the intracellular pathogen, we dissected their interactions over 4 days by mass spectrometry. Additionally, we investigated the dynamics of infection through live cell imaging, immunofluorescence and electron microscopy. The results highlight a major role of often overlooked temporal changes in the bacterial and host metabolism, triggered by fierce competition over limited resources. Remarkably, replicating bacteria reside predominantly within membrane-enclosed compartments and induce apoptosis of the host within ∼24 h post infection. Surviving infected host cells carry a subpopulation of non-replicating bacteria in the cytoplasm that persists. Altogether, we conclude that, besides the production of virulence factors by bacteria, it is the way in which intracellular resources are used, and how host and intracellular bacteria subsequently adapt to each other that determines the ultimate outcome of the infectious process.
Collapse
Affiliation(s)
- Laura M Palma Medina
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Harita Yedavally
- Division of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Groningen, The Netherlands
| | - Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Henrike Pförtner
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Solomon A Mekonnen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anna Salvati
- Division of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Groningen, The Netherlands
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands;.
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;.
| |
Collapse
|
52
|
Curcumin and its Potential for Systemic Targeting of Inflamm-Aging and Metabolic Reprogramming in Cancer. Int J Mol Sci 2019; 20:ijms20051180. [PMID: 30857125 PMCID: PMC6429141 DOI: 10.3390/ijms20051180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Pleiotropic effects of curcumin have been the subject of intensive research. The interest in this molecule for preventive medicine may further increase because of its potential to modulate inflamm-aging. Although direct data related to its effect on inflamm-aging does not exist, there is a strong possibility that its well-known anti-inflammatory properties may be relevant to this phenomenon. Curcumin's binding to various proteins, which was shown to be dependent on cellular oxidative status, is yet another feature for exploration in depth. Finally, the binding of curcumin to various metabolic enzymes is crucial to curcumin's interference with powerful metabolic machinery, and can also be crucial for metabolic reprogramming of cancer cells. This review offers a synthesis and functional links that may better explain older data, some observational, in light of the most recent findings on curcumin. Our focus is on its modes of action that have the potential to alleviate specific morbidities of the 21st century.
Collapse
|
53
|
HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc Natl Acad Sci U S A 2019; 116:5487-5492. [PMID: 30819897 PMCID: PMC6431144 DOI: 10.1073/pnas.1815365116] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
HDAC11 is the only class IV member of the histone deacetylase (HDAC) family, and very little is known about its biological function. The work here reveals its efficient and physiologically relevant activity. The regulation of SHMT2 and interferon signaling expands the known biological function of protein lysine fatty acylation, which has only recently started to be appreciated. Furthermore, a compelling molecular mechanism is proposed to connect HDAC11 to immune response. The finding opens exciting opportunities to develop HDAC11-specific inhibitors to treat human diseases that would benefit from increased type I interferon signaling, such as viral infection, multiple sclerosis, and cancer. The smallest histone deacetylase (HDAC) and the only class IV HDAC member, HDAC11, is reported to regulate immune activation and tumorigenesis, yet its biochemical function is largely unknown. Here we identify HDAC11 as an efficient lysine defatty-acylase that is >10,000-fold more efficient than its deacetylase activity. Through proteomics studies, we hypothesized and later biochemically validated SHMT2 as a defatty-acylation substrate of HDAC11. HDAC11-catalyzed defatty-acylation did not affect the enzymatic activity of SHMT2. Instead, it affects the ability of SHMT2 to regulate type I IFN receptor ubiquitination and cell surface level. Correspondingly, HDAC11 depletion increased type I IFN signaling in both cell culture and mice. This study not only demonstrates that HDAC11 has an activity that is much more efficient than the corresponding deacetylase activity, but also expands the physiological functions of HDAC11 and protein lysine fatty acylation, which opens up opportunities to develop HDAC11-specific inhibitors as therapeutics to modulate immune responses.
Collapse
|
54
|
Sodolescu A, Dian C, Terradot L, Bouzhir-Sima L, Lestini R, Myllykallio H, Skouloubris S, Liebl U. Structural and functional insight into serine hydroxymethyltransferase from Helicobacter pylori. PLoS One 2018; 13:e0208850. [PMID: 30550583 PMCID: PMC6294363 DOI: 10.1371/journal.pone.0208850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/23/2018] [Indexed: 11/19/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT), encoded by the glyA gene, is a ubiquitous pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the formation of glycine from serine. The thereby generated 5,10-methylene tetrahydrofolate (MTHF) is a major source of cellular one-carbon units and a key intermediate in thymidylate biosynthesis. While in virtually all eukaryotic and many bacterial systems thymidylate synthase ThyA, SHMT and dihydrofolate reductase (DHFR) are part of the thymidylate/folate cycle, the situation is different in organisms using flavin-dependent thymidylate synthase ThyX. Here the distinct catalytic reaction directly produces tetrahydrofolate (THF) and consequently in most ThyX-containing organisms, DHFR is absent. While the resulting influence on the folate metabolism of ThyX-containing bacteria is not fully understood, the presence of ThyX may provide growth benefits under conditions where the level of reduced folate derivatives is compromised. Interestingly, the third key enzyme implicated in generation of MTHF, serine hydroxymethyltransferase (SHMT), has a universal phylogenetic distribution, but remains understudied in ThyX-containg bacteria. To obtain functional insight into these ThyX-dependent thymidylate/folate cycles, we characterized the predicted SHMT from the ThyX-containing bacterium Helicobacter pylori. Serine hydroxymethyltransferase activity was confirmed by functional genetic complementation of a glyA-inactivated E. coli strain. A H. pylori ΔglyA strain was obtained, but exhibited markedly slowed growth and had lost the virulence factor CagA. Biochemical and spectroscopic evidence indicated formation of a characteristic enzyme-PLP-glycine-folate complex and revealed unexpectedly weak binding affinity of PLP. The three-dimensional structure of the H. pylori SHMT apoprotein was determined at 2.8Ǻ resolution, suggesting a structural basis for the low affinity of the enzyme for its cofactor. Stabilization of the proposed inactive configuration using small molecules has potential to provide a specific way for inhibiting HpSHMT.
Collapse
Affiliation(s)
- Andreea Sodolescu
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Cyril Dian
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette, France
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, CNRS, Université de Lyon, Lyon, France
| | - Latifa Bouzhir-Sima
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Roxane Lestini
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Hannu Myllykallio
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Stéphane Skouloubris
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
- Department of Biology, Université Paris-Sud, Université Paris Saclay, Orsay, France
| | - Ursula Liebl
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| |
Collapse
|
55
|
Tramonti A, Nardella C, di Salvo ML, Barile A, Cutruzzolà F, Contestabile R. Human Cytosolic and Mitochondrial Serine Hydroxymethyltransferase Isoforms in Comparison: Full Kinetic Characterization and Substrate Inhibition Properties. Biochemistry 2018; 57:6984-6996. [PMID: 30500180 DOI: 10.1021/acs.biochem.8b01074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible conversion of l-serine and tetrahydrofolate into glycine and 5,10-methylenetetrahydrofolate. This enzyme, which plays a pivotal role in one-carbon metabolism, is involved in cancer metabolic reprogramming and is a recognized target of chemotherapy intervention. In humans, two isoforms of the enzyme exist, which are commonly termed cytosolic SHMT1 and mitochondrial SHMT2. Considerable attention has been paid to the structural, mechanistic, and metabolic features of these isozymes. On the other hand, a detailed comparison of their catalytic and regulatory properties is missing, although this aspect seems to be considerably important, considering that SHMT1 and SHMT2 reside in different cellular compartments, where they play distinct roles in folate metabolism. Here we performed a full kinetic characterization of the serine hydroxymethyltransferase reaction catalyzed by SHMT1 and SHMT2, with a focus on pH dependence and substrate inhibition. Our investigation, which allowed the determination of all kinetic parameters of serine hydroxymethyltransferase forward and backward reactions, uncovered a previously unobserved substrate inhibition by l-serine and highlighted several interesting differences between SHMT1 and SHMT2. In particular, SHMT2 maintains a pronounced tetrahydrofolate substrate inhibition even at the alkaline pH characteristic of the mitochondrial matrix, whereas with SHMT1 this is almost abolished. At this pH, SHMT2 also shows a catalytic efficiency that is much higher than that of SHMT1. These observations suggest that such different properties represent an adaptation of the isoforms to the respective cellular environments and that substrate inhibition may be a form of regulation.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari , Consiglio Nazionale delle Ricerche , Piazzale Aldo Moro 5 , 00185 Roma , Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Anna Barile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| |
Collapse
|
56
|
Zhou K, Ding X, Yang J, Hu Y, Song Y, Chen M, Sun R, Dong T, Xu B, Han X, Wu K, Zhang X, Wang X, Xia Y. Metabolomics Reveals Metabolic Changes Caused by Low-Dose 4-Tert-Octylphenol in Mice Liver. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:2686. [PMID: 30487447 PMCID: PMC6313621 DOI: 10.3390/ijerph15122686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 01/16/2023]
Abstract
Background: Humans are constantly exposed to low concentrations of 4-tert-octylphenol (OP). However, studies investigating the effects of low-dose OP on the liver are scarce, and the mechanism of these effects has not been thoroughly elucidated to date. Methods: Adult male institute of cancer research (ICR) mice were exposed to low-dose OP (0, 0.01 and 1 μg/kg/day) for 7 consecutive days. Weights of mice were recorded daily during the experiment. Blood serum levels of OP, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined, and haematoxylin-eosin (HE) staining of the liver was performed. We applied an integrated metabolomic and enzyme gene expression analysis to investigate liver metabolic changes, and the gene expression of related metabolic enzymes was determined by real-time PCR and ELISA. Results: OP in blood serum was increased after OP exposure, while body weights of mice were unchanged. Liver weight and its organ coefficient were decreased significantly in the OP (1 μg/kg/day) group, but ALT and AST, as well as the HE staining results, were unchanged after OP treatment. The levels of cytidine, uridine, purine and N-acetylglutamine were increased significantly, and the level of vitamin B6 was decreased significantly in mice treated with OP (1 μg/kg/day). The mRNA and protein levels of Cda and Shmt1 were both increased significantly in OP (1 μg/kg/day)-treated mice. Conclusions: Through metabolomic analysis, our study firstly found that pyrimidine and purine synthesis were promoted and that N-acetylglutamine was upregulated after low-dose OP treatment, indicating that the treatment disturbed nucleic acid and amino acid metabolism in mice liver.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jing Yang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yanhui Hu
- Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug of Jiangsu Province, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yun Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Keqin Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xiaoling Zhang
- Department of Hygienic Analysis and Detection, Nanjing Medical University, Nanjing 211166, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
57
|
Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat Commun 2018; 9:4468. [PMID: 30367038 PMCID: PMC6203763 DOI: 10.1038/s41467-018-06812-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
The conversion of serine and glycine that is accomplished by serine hydroxymethyltransferase 2 (SHMT2) in mitochondria is significantly upregulated in various cancers to support cancer cell proliferation. In this study, we observed that SHMT2 is acetylated at K95 in colorectal cancer (CRC) cells. SIRT3, the major deacetylase in mitochondria, is responsible for SHMT2 deacetylation. SHMT2-K95-Ac disrupts its functional tetramer structure and inhibits its enzymatic activity. SHMT2-K95-Ac also promotes its degradation via the K63-ubiquitin–lysosome pathway in a glucose-dependent manner. TRIM21 acts as an E3 ubiquitin ligase for SHMT2. SHMT2-K95-Ac decreases CRC cell proliferation and tumor growth in vivo through attenuation of serine consumption and reduction in NADPH levels. Finally, SHMT2-K95-Ac is significantly decreased in human CRC samples and is inversely associated with increased SIRT3 expression, which is correlated with poorer postoperative overall survival. Our study reveals the unknown mechanism of SHMT2 regulation by acetylation which is involved in colorectal carcinogenesis. Serine hydroxymethyltransferase 2 (SHMT2) converts serine to glycine in mitochondria and is upregulated in a variety of cancers. Here the authors show that acetylation of the lysine-95 (K95) residue negatively regulates SHMT2 expression and activity and is deacetylated by SIRT3 in colorectal cancer.
Collapse
|
58
|
Giardina G, Paone A, Tramonti A, Lucchi R, Marani M, Magnifico MC, Bouzidi A, Pontecorvi V, Guiducci G, Zamparelli C, Rinaldo S, Paiardini A, Contestabile R, Cutruzzolà F. The catalytic activity of serine hydroxymethyltransferase is essential for de novo nuclear dTMP synthesis in lung cancer cells. FEBS J 2018; 285:3238-3253. [PMID: 30035852 DOI: 10.1111/febs.14610] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/04/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022]
Abstract
Cancer cells reprogramme one-carbon metabolism (OCM) to sustain growth and proliferation. Depending on cell demands, serine hydroxymethyltransferase (SHMT) dynamically changes the fluxes of OCM by reversibly converting serine and tetrahydrofolate (THF) into 5,10-methylene-THF and glycine. SHMT is a tetrameric enzyme that mainly exists in three isoforms; two localize in the cytosol (SHMT1/SHMT2α) and one (SHMT2) in the mitochondria. Both the cytosolic isoforms can also translocate to the nucleus to sustain de novo thymidylate synthesis and support cell proliferation. Finally, the expression levels of the different isoforms are regulated to a certain extent by a yet unknown crosstalk mechanism. We have designed and fully characterized a set of three SHMT1 mutants, which uncouple the oligomeric state of the enzyme from its catalytic activity. We have then investigated the effects of the mutations on SHMT1 nuclear localization, cell viability and crosstalk in lung cancer cells (A549; H1299). Our data reveal that in these cell lines de novo thymidylate synthesis requires SHMT1 to be active, regardless of its oligomeric state. We have also confirmed that the crosstalk between the cytosolic and mitochondrial SHMT actually takes place and regulates the expression of the two isoforms. Apparently, the crosstalk mechanism is independent from the oligomeric state and the catalytic activity of SHMT1. DATABASE Structural data are available in the PDB under the accession number 6FL5.
Collapse
Affiliation(s)
- Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Lucchi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Marina Marani
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | | | - Amani Bouzidi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | | | - Giulia Guiducci
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | | | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | | | | | | |
Collapse
|
59
|
Machover D, Goldschmidt E, Mollicone R, Haghighi-Rad F, Desterke C, Gaston-Mathé Y, Saffroy R, Boucheix C, Dairou J. Enhancement of 5-Fluorouracil Cytotoxicity by Pyridoxal 5'-Phosphate and Folinic Acid in Tandem. J Pharmacol Exp Ther 2018; 366:238-243. [PMID: 29858389 DOI: 10.1124/jpet.118.249367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/29/2018] [Indexed: 11/22/2022] Open
Abstract
The current study originates from the assumption that, in tumors, levels of naturally occurring pyridoxal 5'-phosphate (PLP) are too small to allow conversion of tetra hydro pteroylglutamate (H4PteGlu) into methylene tetra hydro pteroylglutamate (CH2-H4PteGlu) in amounts required to improve inhibition of thymidylate synthase by 5-fluorouracil (FUra) through ternary complex stabilization. The hypothesis relates to the low affinity for cofactor of the PLP-dependent serine hydroxymethyl transferase (SHMT), the enzyme that catalyzes formation of CH2-H4PteGlu by transfer of the Cβ of serine to H4PteGlu. Intracellular concentrations of PLP are smaller than the dissociation constant of SHMT for cofactor, which suggests that enzyme activity should be sensitive to PLP level changes. Three cancer cell lines were supplemented with PLP to investigate the influence of this cofactor on FUra cytotoxicity. Cells were exposed to FUra, FUra and folinic acid (FA), FUra and PLP, and FUra combined with both FA and PLP. The median-effect principle for concentration-effect analysis and combination indices were used to determine interactions on cytotoxicity. FUra cytotoxicity in vitro was enhanced by FA and PLP in tandem. Synergistic cytotoxic interaction of FUra with FA and PLP was demonstrated in HT29 and L1210 cells. Summation was found in HCT116 cells. Parenteral pyridoxamine was administered in mice to explore erythrocyte production of PLP in vivo. Cofactor attained levels in the range of the KD for binding to SHMT, and it was rapidly cleared from cells. Pharmacokinetics of pyridoxamine suggests that modulation of FUra by vitamin B6 could be achieved in vivo.
Collapse
Affiliation(s)
- David Machover
- Assistance Publique-Hôpitaux de Paris, Hospital Paul-Brousse, Villejuif, France (D.M., E.G., R.S.); INSERM U935, Villejuif, France (D.M., F.H.-R., C.D., C.B.); University Paris-Sud, Villejuif, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); University Paris-Saclay, Paris, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); INSERM U1193, Villejuif, France (R.S.); INSERM U1197, Villejuif, France (R.M.); YGM Consult SAS, Paris, France (Y.G.-M.); CNRS UMR 8601, Paris, France (J.D.); and University Paris-Descartes, Paris, France (J.D.)
| | - Emma Goldschmidt
- Assistance Publique-Hôpitaux de Paris, Hospital Paul-Brousse, Villejuif, France (D.M., E.G., R.S.); INSERM U935, Villejuif, France (D.M., F.H.-R., C.D., C.B.); University Paris-Sud, Villejuif, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); University Paris-Saclay, Paris, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); INSERM U1193, Villejuif, France (R.S.); INSERM U1197, Villejuif, France (R.M.); YGM Consult SAS, Paris, France (Y.G.-M.); CNRS UMR 8601, Paris, France (J.D.); and University Paris-Descartes, Paris, France (J.D.)
| | - Rosella Mollicone
- Assistance Publique-Hôpitaux de Paris, Hospital Paul-Brousse, Villejuif, France (D.M., E.G., R.S.); INSERM U935, Villejuif, France (D.M., F.H.-R., C.D., C.B.); University Paris-Sud, Villejuif, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); University Paris-Saclay, Paris, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); INSERM U1193, Villejuif, France (R.S.); INSERM U1197, Villejuif, France (R.M.); YGM Consult SAS, Paris, France (Y.G.-M.); CNRS UMR 8601, Paris, France (J.D.); and University Paris-Descartes, Paris, France (J.D.)
| | - Farhad Haghighi-Rad
- Assistance Publique-Hôpitaux de Paris, Hospital Paul-Brousse, Villejuif, France (D.M., E.G., R.S.); INSERM U935, Villejuif, France (D.M., F.H.-R., C.D., C.B.); University Paris-Sud, Villejuif, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); University Paris-Saclay, Paris, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); INSERM U1193, Villejuif, France (R.S.); INSERM U1197, Villejuif, France (R.M.); YGM Consult SAS, Paris, France (Y.G.-M.); CNRS UMR 8601, Paris, France (J.D.); and University Paris-Descartes, Paris, France (J.D.)
| | - Christophe Desterke
- Assistance Publique-Hôpitaux de Paris, Hospital Paul-Brousse, Villejuif, France (D.M., E.G., R.S.); INSERM U935, Villejuif, France (D.M., F.H.-R., C.D., C.B.); University Paris-Sud, Villejuif, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); University Paris-Saclay, Paris, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); INSERM U1193, Villejuif, France (R.S.); INSERM U1197, Villejuif, France (R.M.); YGM Consult SAS, Paris, France (Y.G.-M.); CNRS UMR 8601, Paris, France (J.D.); and University Paris-Descartes, Paris, France (J.D.)
| | - Yann Gaston-Mathé
- Assistance Publique-Hôpitaux de Paris, Hospital Paul-Brousse, Villejuif, France (D.M., E.G., R.S.); INSERM U935, Villejuif, France (D.M., F.H.-R., C.D., C.B.); University Paris-Sud, Villejuif, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); University Paris-Saclay, Paris, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); INSERM U1193, Villejuif, France (R.S.); INSERM U1197, Villejuif, France (R.M.); YGM Consult SAS, Paris, France (Y.G.-M.); CNRS UMR 8601, Paris, France (J.D.); and University Paris-Descartes, Paris, France (J.D.)
| | - Raphaël Saffroy
- Assistance Publique-Hôpitaux de Paris, Hospital Paul-Brousse, Villejuif, France (D.M., E.G., R.S.); INSERM U935, Villejuif, France (D.M., F.H.-R., C.D., C.B.); University Paris-Sud, Villejuif, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); University Paris-Saclay, Paris, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); INSERM U1193, Villejuif, France (R.S.); INSERM U1197, Villejuif, France (R.M.); YGM Consult SAS, Paris, France (Y.G.-M.); CNRS UMR 8601, Paris, France (J.D.); and University Paris-Descartes, Paris, France (J.D.)
| | - Claude Boucheix
- Assistance Publique-Hôpitaux de Paris, Hospital Paul-Brousse, Villejuif, France (D.M., E.G., R.S.); INSERM U935, Villejuif, France (D.M., F.H.-R., C.D., C.B.); University Paris-Sud, Villejuif, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); University Paris-Saclay, Paris, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); INSERM U1193, Villejuif, France (R.S.); INSERM U1197, Villejuif, France (R.M.); YGM Consult SAS, Paris, France (Y.G.-M.); CNRS UMR 8601, Paris, France (J.D.); and University Paris-Descartes, Paris, France (J.D.)
| | - Julien Dairou
- Assistance Publique-Hôpitaux de Paris, Hospital Paul-Brousse, Villejuif, France (D.M., E.G., R.S.); INSERM U935, Villejuif, France (D.M., F.H.-R., C.D., C.B.); University Paris-Sud, Villejuif, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); University Paris-Saclay, Paris, France (D.M., R.M., F.H.-R., C.D., R.S., C.B.); INSERM U1193, Villejuif, France (R.S.); INSERM U1197, Villejuif, France (R.M.); YGM Consult SAS, Paris, France (Y.G.-M.); CNRS UMR 8601, Paris, France (J.D.); and University Paris-Descartes, Paris, France (J.D.)
| |
Collapse
|
60
|
Tramonti A, Paiardini A, Paone A, Bouzidi A, Giardina G, Guiducci G, Magnifico MC, Rinaldo S, McDermott L, Menendez JA, Contestabile R, Cutruzzolà F. Differential inhibitory effect of a pyrazolopyran compound on human serine hydroxymethyltransferase-amino acid complexes. Arch Biochem Biophys 2018; 653:71-79. [PMID: 29991441 DOI: 10.1016/j.abb.2018.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/05/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a pivotal enzyme in one-carbon metabolism that catalyses the reversible conversion of serine and tetrahydrofolate into glycine and methylenetetrahydrofolate. It exists in cytosolic (SHMT1) and mitochondrial (SHMT2) isoforms. Research on one-carbon metabolism in cancer cell lines has shown that SHMT1 preferentially catalyses serine synthesis, whereas in mitochondria SHMT2 is involved in serine breakdown. Recent research has focused on the identification of inhibitors that bind at the folate pocket. We have previously found that a representative derivative of the pyrazolopyran scaffold, namely 2.12, inhibits both SHMT isoforms, with a preference for SHMT1, causing apoptosis in lung cancer cell lines. Here we show that the affinity of 2.12 for SHMT depends on the identity of the amino acid substrate bound to the enzyme. The dissociation constant of 2.12 is 50-fold lower when it binds to SHMT1 enzyme-serine complex, as compared to the enzyme-glycine complex. Evidence is presented for a similar behaviour of compound 2.12 in the cellular environment. These findings suggest that the presence and identity of the amino acid substrate should be considered when designing SHMT inhibitors. Moreover, our data provide the proof-of-concept that SHMT inhibitors selectively targeting the directionality of one-carbon metabolism flux could be designed.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185, Roma, Italy; Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Alessandro Paiardini
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Alessio Paone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Amani Bouzidi
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Giorgio Giardina
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Giulia Guiducci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Maria Chiara Magnifico
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Serena Rinaldo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Lee McDermott
- Department of Pharmaceutical Sciences and Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain; Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy.
| | - Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy.
| |
Collapse
|
61
|
Ruszkowski M, Sekula B, Ruszkowska A, Dauter Z. Chloroplastic Serine Hydroxymethyltransferase From Medicago truncatula: A Structural Characterization. FRONTIERS IN PLANT SCIENCE 2018; 9:584. [PMID: 29868052 PMCID: PMC5958214 DOI: 10.3389/fpls.2018.00584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/13/2018] [Indexed: 05/25/2023]
Abstract
Serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the reversible serine-to-glycine conversion in either a tetrahydrofolate-dependent or -independent manner. The enzyme is also responsible for the tetrahydrofolate-independent cleavage of other β-hydroxy amino acids. In addition to being an essential player in the serine homeostasis, SHMT action is the main source of activated one-carbon units, which links SHMT activity with the control of cell proliferation. In plants, studies of SHMT enzymes are more complicated than of those of, e.g., bacterial or mammalian origins because plant genomes encode multiple SHMT isozymes that are targeted to different subcellular compartments: cytosol, mitochondria, plastids, and nucleus. Here we report crystal structures of chloroplast-targeted SHMT from Medicago truncatula (MtSHMT3). MtSHMT3 is a tetramer in solution, composed of two tight and obligate dimers. Our complexes with PLP internal aldimine, PLP-serine and PLP-glycine external aldimines, and PLP internal aldimine with a free glycine reveal structural details of the MtSHMT3-catalyzed reaction. Capturing the enzyme in different stages along the course of the slow tetrahydrofolate-independent serine-to-glycine conversion allowed to observe a unique conformation of the PLP-serine γ-hydroxyl group, and a concerted movement of two tyrosine residues in the active site.
Collapse
Affiliation(s)
- Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, United States
| | - Bartosz Sekula
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, United States
| | - Agnieszka Ruszkowska
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, United States
| |
Collapse
|
62
|
Sahoo S, Podder S, Garai A, Majumdar S, Mukherjee N, Basu U, Nandi D, Chakravarty AR. Iron(III) Complexes of Vitamin B6
Schiff Base with Boron-Dipyrromethene Pendants for Lysosome-Selective Photocytotoxicity. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Somarupa Sahoo
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Santosh Podder
- Department of Biochemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Shamik Majumdar
- Department of Biochemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Nandini Mukherjee
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Uttara Basu
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Dipankar Nandi
- Department of Biochemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| |
Collapse
|
63
|
Zhang M, Wu W, Chen Z. Structure and function of cytoplasmic serine hydroxymethyltransferase from Pichia pastoris. Biochem Biophys Res Commun 2018; 496:753-757. [DOI: 10.1016/j.bbrc.2018.01.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|
64
|
Mukherjee N, Podder S, Mitra K, Majumdar S, Nandi D, Chakravarty AR. Targeted photodynamic therapy in visible light using BODIPY-appended copper(ii) complexes of a vitamin B6Schiff base. Dalton Trans 2018; 47:823-835. [DOI: 10.1039/c7dt03976j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BODIPY-appended copper(ii) complexes of vitamin B6derivatives localize in mitochondria and exhibit cancer cell selective photocytotoxicity by1O2mediated apoptosis.
Collapse
Affiliation(s)
- Nandini Mukherjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Santosh Podder
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Koushambi Mitra
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Shamik Majumdar
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Dipankar Nandi
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
65
|
Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, Chen S, Ren M, Wang Y, Yu M, Wang B, Zou J, Zhu WG, Yin Y, Gu W, Luo J. SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation. Cancer Res 2017; 78:372-386. [PMID: 29180469 DOI: 10.1158/0008-5472.can-17-1912] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
The mitochondrial serine hydroxymethyltransferase SHMT2, which catalyzes the rate-limiting step in serine catabolism, drives cancer cell proliferation, but how this role is regulated is undefined. Here, we report that the sirtuin SIRT5 desuccinylates SHMT2 to increase its activity and drive serine catabolism in tumor cells. SIRT5 interaction directly mediated desuccinylation of lysine 280 on SHMT2, which was crucial for activating its enzymatic activity. Conversely, hypersuccinylation of SHMT2 at lysine 280 was sufficient to inhibit its enzymatic activity and downregulate tumor cell growth in vitro and in vivo Notably, SIRT5 inactivation led to SHMT2 enzymatic downregulation and to abrogated cell growth under metabolic stress. Our results reveal that SHMT2 desuccinylation is a pivotal signal in cancer cells to adapt serine metabolic processes for rapid growth, and they highlight SIRT5 as a candidate target for suppressing serine catabolism as a strategy to block tumor growth.Significance: These findings reveal a novel mechanism for controlling cancer cell proliferation by blocking serine catabolism, as a general strategy to impede tumor growth. Cancer Res; 78(2); 372-86. ©2017 AACR.
Collapse
Affiliation(s)
- Xin Yang
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Zhe Wang
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Xin Li
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Boya Liu
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Lu Liu
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Shuaiyi Chen
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Mengmeng Ren
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Yankun Wang
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Miao Yu
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Junhua Zou
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Wei Gu
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China. .,Department of Medical & Research Technology, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
66
|
Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 2017; 114:11404-11409. [PMID: 29073064 DOI: 10.1073/pnas.1706617114] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The enzyme serine hydroxymethyltransferse (SHMT) converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Folate one-carbon units support purine and thymidine synthesis, and thus cell growth. Mammals have both cytosolic SHMT1 and mitochondrial SHMT2, with the mitochondrial isozyme strongly up-regulated in cancer. Here we show genetically that dual SHMT1/2 knockout blocks HCT-116 colon cancer tumor xenograft formation. Building from a pyrazolopyran scaffold that inhibits plant SHMT, we identify small-molecule dual inhibitors of human SHMT1/2 (biochemical IC50 ∼ 10 nM). Metabolomics and isotope tracer studies demonstrate effective cellular target engagement. A cancer cell-line screen revealed that B-cell lines are particularly sensitive to SHMT inhibition. The one-carbon donor formate generally rescues cells from SHMT inhibition, but paradoxically increases the inhibitor's cytotoxicity in diffuse large B-cell lymphoma (DLBCL). We show that this effect is rooted in defective glycine uptake in DLBCL cell lines, rendering them uniquely dependent upon SHMT enzymatic activity to meet glycine demand. Thus, defective glycine import is a targetable metabolic deficiency of DLBCL.
Collapse
|
67
|
Montioli R, Zamparelli C, Borri Voltattorni C, Cellini B. Oligomeric State and Thermal Stability of Apo- and Holo- Human Ornithine δ-Aminotransferase. Protein J 2017; 36:174-185. [PMID: 28345116 PMCID: PMC5432616 DOI: 10.1007/s10930-017-9710-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human ornithine δ-aminotransferase (hOAT) (EC 2.6.1.13) is a mitochondrial pyridoxal 5′-phosphate (PLP)-dependent aminotransferase whose deficit is associated with gyrate atrophy, a rare autosomal recessive disorder causing progressive blindness and chorioretinal degeneration. Here, both the apo- and holo-form of recombinant hOAT were characterized by means of spectroscopic, kinetic, chromatographic and computational techniques. The results indicate that apo and holo-hOAT (a) show a similar tertiary structure, even if apo displays a more pronounced exposure of hydrophobic patches, (b) exhibit a tetrameric structure with a tetramer-dimer equilibrium dissociation constant about fivefold higher for the apoform with respect to the holoform, and (c) have apparent Tm values of 46 and 67 °C, respectively. Moreover, unlike holo-hOAT, apo-hOAT is prone to unfolding and aggregation under physiological conditions. We also identified Arg217 as an important hot-spot at the dimer–dimer interface of hOAT and demonstrated that the artificial dimeric variant R217A exhibits spectroscopic properties, Tm values and catalytic features similar to those of the tetrameric species. This finding indicates that the catalytic unit of hOAT is the dimer. However, under physiological conditions the apo-tetramer is slightly less prone to unfolding and aggregation than the apo-dimer. The possible implications of the data for the intracellular stability and regulation of hOAT are discussed.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neuroscience, Biomedicine and Movement Sciences (Section of Biological Chemistry), University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | | | - Carla Borri Voltattorni
- Department of Neuroscience, Biomedicine and Movement Sciences (Section of Biological Chemistry), University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Barbara Cellini
- Department of Neuroscience, Biomedicine and Movement Sciences (Section of Biological Chemistry), University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| |
Collapse
|
68
|
SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability. G3-GENES GENOMES GENETICS 2017; 7:1861-1873. [PMID: 28404662 PMCID: PMC5473764 DOI: 10.1534/g3.117.041194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25. Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1Δ hem25Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components.
Collapse
|
69
|
Giovannercole F, Mérigoux C, Zamparelli C, Verzili D, Grassini G, Buckle M, Vachette P, De Biase D. On the effect of alkaline pH and cofactor availability in the conformational and oligomeric state of Escherichia coli glutamate decarboxylase. Protein Eng Des Sel 2017; 30:235-244. [PMID: 28062647 DOI: 10.1093/protein/gzw076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/15/2016] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli glutamate decarboxylase (EcGad) is a homohexameric pyridoxal 5'-phosphate (PLP)-dependent enzyme. It is the structural component of the major acid resistance system that protects E. coli from strong acid stress (pH < 3), typically encountered in the mammalian gastrointestinal tract. In fact EcGad consumes one proton/catalytic cycle while yielding γ-aminobutyrate and carbon dioxide from the decarboxylation of l-glutamate. Two isoforms of Gad occur in E. coli (GadA and GadB) that are 99% identical in sequence. GadB is the most intensively investigated. Prompted by the observation that some transcriptomic and proteomic studies show EcGad to be expressed in conditions far from acidic, we investigated the structural organization of EcGadB in solution in the pH range 7.5-8.6. Small angle X-ray scattering, combined with size exclusion chromatography, and analytical ultracentrifugation analysis show that the compact and entangled EcGadB hexameric structure undergoes dissociation into dimers as pH alkalinizes. When PLP is not present, the dimeric species is the most abundant in solution, though evidence for the occurrence of a likely tetrameric species was also obtained. Trp fluorescence emission spectra as well as limited proteolysis studies suggest that PLP plays a key role in the acquisition of a folding necessary for the canonical catalytic activity.
Collapse
Affiliation(s)
- F Giovannercole
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, I-04100 Latina, Italy
| | - C Mérigoux
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - C Zamparelli
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, I-00185 Roma, Italy
| | - D Verzili
- CNR Istituto di Biologia e Patologia Molecolari, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, I-00185 Roma, Italy
| | - G Grassini
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, I-04100 Latina, Italy.,Present address at: Laboratoire de Chimie Bactérien (ACB), Aix-Marseille University
| | - M Buckle
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, F-94235, Cachan, France
| | - P Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - D De Biase
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, I-04100 Latina, Italy
| |
Collapse
|
70
|
Nutrients in Energy and One-Carbon Metabolism: Learning from Metformin Users. Nutrients 2017; 9:nu9020121. [PMID: 28208582 PMCID: PMC5331552 DOI: 10.3390/nu9020121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Metabolic vulnerability is associated with age-related diseases and concomitant co-morbidities, which include obesity, diabetes, atherosclerosis and cancer. Most of the health problems we face today come from excessive intake of nutrients and drugs mimicking dietary effects and dietary restriction are the most successful manipulations targeting age-related pathways. Phenotypic heterogeneity and individual response to metabolic stressors are closely related food intake. Understanding the complexity of the relationship between dietary provision and metabolic consequences in the long term might provide clinical strategies to improve healthspan. New aspects of metformin activity provide a link to many of the overlapping factors, especially the way in which organismal bioenergetics remodel one-carbon metabolism. Metformin not only inhibits mitochondrial complex 1, modulating the metabolic response to nutrient intake, but also alters one-carbon metabolic pathways. Here, we discuss findings on the mechanism(s) of action of metformin with the potential for therapeutic interpretations.
Collapse
|
71
|
Paiardini A, Tramonti A, Schirch D, Guiducci G, di Salvo ML, Fiascarelli A, Giorgi A, Maras B, Cutruzzolà F, Contestabile R. Differential 3-bromopyruvate inhibition of cytosolic and mitochondrial human serine hydroxymethyltransferase isoforms, key enzymes in cancer metabolic reprogramming. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1506-17. [DOI: 10.1016/j.bbapap.2016.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
|
72
|
Mukherjee N, Podder S, Banerjee S, Majumdar S, Nandi D, Chakravarty AR. Targeted photocytotoxicity by copper(II) complexes having vitamin B 6 and photoactive acridine moieties. Eur J Med Chem 2016; 122:497-509. [DOI: 10.1016/j.ejmech.2016.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/03/2016] [Indexed: 11/25/2022]
|