51
|
Van Den Heuvel RL, Lambrechts N, Verstraelen S, Nelissen IC, Schoeters GER. Chemical sensitization and allergotoxicology. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:289-314. [PMID: 22945573 DOI: 10.1007/978-3-7643-8340-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Chemical sensitization remains an important environmental and occupational health issue. A wide range of substances have been shown to possess the ability to induce skin sensitization or respiratory sensitization. As a consequence, there is a need to have appropriate methods to identify sensitizing agents. Although a considerable investment has been made in exploring opportunities to develop methods for hazard identification and characterization, there are, as yet, no validated nonanimal methods available. A state of the art of the different in vitro approaches to identify contact and respiratory capacity of chemicals is covered in this chapter.
Collapse
Affiliation(s)
- Rosette L Van Den Heuvel
- Environmental Risk and Health Unit-Toxicology, Flemish Institute for Technological Research (VITO N.V.), Centre for Advanced R&D on Alternative Methods (CARDAM), Boeretang 200, 2400, Mol, Belgium,
| | | | | | | | | |
Collapse
|
52
|
Peiser M, Tralau T, Heidler J, Api AM, Arts JHE, Basketter DA, English J, Diepgen TL, Fuhlbrigge RC, Gaspari AA, Johansen JD, Karlberg AT, Kimber I, Lepoittevin JP, Liebsch M, Maibach HI, Martin SF, Merk HF, Platzek T, Rustemeyer T, Schnuch A, Vandebriel RJ, White IR, Luch A. Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cell Mol Life Sci 2011; 69:763-81. [PMID: 21997384 PMCID: PMC3276771 DOI: 10.1007/s00018-011-0846-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 09/20/2011] [Indexed: 12/13/2022]
Abstract
Contact allergies are complex diseases, and one of the important challenges for public health and immunology. The German ‘Federal Institute for Risk Assessment’ hosted an ‘International Workshop on Contact Dermatitis’. The scope of the workshop was to discuss new discoveries and developments in the field of contact dermatitis. This included the epidemiology and molecular biology of contact allergy, as well as the development of new in vitro methods. Furthermore, it considered regulatory aspects aiming to reduce exposure to contact sensitisers. An estimated 15–20% of the general population suffers from contact allergy. Workplace exposure, age, sex, use of consumer products and genetic predispositions were identified as the most important risk factors. Research highlights included: advances in understanding of immune responses to contact sensitisers, the importance of autoxidation or enzyme-mediated oxidation for the activation of chemicals, the mechanisms through which hapten-protein conjugates are formed and the development of novel in vitro strategies for the identification of skin-sensitising chemicals. Dendritic cell cultures and structure-activity relationships are being developed to identify potential contact allergens. However, the local lymph node assay (LLNA) presently remains the validated method of choice for hazard identification and characterisation. At the workshop the use of the LLNA for regulatory purposes and for quantitative risk assessment was also discussed.
Collapse
Affiliation(s)
- M. Peiser
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - T. Tralau
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - J. Heidler
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - A. M. Api
- Research Institute for Fragrance Materials, Hackensack, NJ USA
| | | | | | - J. English
- Nottingham University Hospitals, Nottingham, UK
| | - T. L. Diepgen
- Department of Social Medicine, Occupational and Environmental Dermatology, University of Heidelberg, Heidelberg, Germany
| | | | - A. A. Gaspari
- School of Medicine, University of Maryland, Baltimore, MD USA
| | - J. D. Johansen
- Department of Derma-allergology, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - A. T. Karlberg
- Department of Chemistry, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | - I. Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - M. Liebsch
- Department of Experimental Toxicology and ZEBET, Center for Alternatives to Animal Testing, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - H. I. Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA USA
| | - S. F. Martin
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - H. F. Merk
- Department of Dermatology and Allergology, University Hospitals Aachen, Aachen, Germany
| | - T. Platzek
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - T. Rustemeyer
- VU University Medical Center, Amsterdam, The Netherlands
| | - A. Schnuch
- Department of Dermatology, University of Göttingen, Göttingen, Germany
| | - R. J. Vandebriel
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - I. R. White
- St. John’s Institute of Dermatology, St. Thomas’ Hospital, London, UK
| | - A. Luch
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
- Department of Experimental Toxicology and ZEBET, Center for Alternatives to Animal Testing, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
53
|
Hennen J, Aeby P, Goebel C, Schettgen T, Oberli A, Kalmes M, Blömeke B. Cross talk between keratinocytes and dendritic cells: impact on the prediction of sensitization. Toxicol Sci 2011; 123:501-10. [PMID: 21742781 DOI: 10.1093/toxsci/kfr174] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the mechanistic aspects involved in sensitization by chemicals will help to develop relevant preventive strategies. Many potential sensitizers are not directly immunogenic but require activation outside or inside the skin by nonenzymatic oxidation (prehaptens) or metabolic transformation (prohaptens) prior to being able to induce an immune response. This necessary activation step has not yet been actively integrated into a cell line-based prediction approach. We cocultured HaCaT keratinocytes with THP-1 as dendritic cell-like cells allowing intercellular interactions. The sensitizing potential was determined by analyzing differences in the expression of CD86, CD40, and CD54 on cocultured THP-1 cells. This new assay setup allowed (1) to distinguish irritants from allergens without influencing cell viability and (2) to discriminate pre/prohaptens from haptens. Under coculture conditions, the prohaptens eugenol, 2-methoxy-4-methylphenol, and benzo[a]pyrene induced a significantly higher upregulation of CD86 expression on THP-1. In agreement with the hapten concept, responses to 2,4-dinitrochlorobenzene, Bandrowski's base, and the prehapten isoeugenol were not significantly modified. Inhibition of cytochrome P450 or NAD(P)H:quinone oxidoreductase (NQO1) activity reduced the prohapten-mediated upregulation of CD86 on cocultured THP-1 cells. This coculture assay allowing cross talk between HaCaT and THP-1 cells appears to be suitable for the detection of prohaptens, is reproducible, easy to perform, and avoids donor variations. In addition, this assay is a promising approach to understand the impact of cross talk on the prediction of sensitization and once established may be integrated in a future in vitro toolbox to detect potential skin sensitizers and may thus contribute to reduce animal testing.
Collapse
Affiliation(s)
- Jenny Hennen
- Department of Environmental Toxicology, University Trier, 54286 Trier, Germany
| | | | | | | | | | | | | |
Collapse
|
54
|
Haptenation: chemical reactivity and protein binding. J Allergy (Cairo) 2011; 2011:839682. [PMID: 21785613 PMCID: PMC3138048 DOI: 10.1155/2011/839682] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/27/2011] [Indexed: 11/23/2022] Open
Abstract
Low molecular weight chemical (LMW) allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed.
Collapse
|
55
|
Intralaboratory validation of four in vitro assays for the prediction of the skin sensitizing potential of chemicals. Toxicol In Vitro 2011; 25:1162-8. [PMID: 21669280 DOI: 10.1016/j.tiv.2011.05.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 05/23/2011] [Accepted: 05/30/2011] [Indexed: 11/21/2022]
Abstract
Allergic contact dermatitis is induced by repeated skin contact with an allergen. Assessment of the skin sensitizing potential of chemicals, agrochemicals, and especially cosmetic ingredients is currently performed with the use of animals. Animal welfare and EU legislation demand animal-free alternatives reflected in a testing and marketing ban for cosmetic ingredients beginning in 2013. The underlying mechanisms of induction and elicitation of skin sensitization are complex and a chemical needs to comply several properties being skin sensitizing. To account for the multitude of events in the induction of skin sensitization an in vitro test system will consist of a battery of various tests. Currently, we performed intralaboratory validations of four assays addressing three different events during induction of skin sensitization. (1) The Direct Peptide Reactivity Assay (DPRA) according to Gerberick and co-workers (Gerberick et al., 2004) using synthetic peptides and HPLC analysis. (2) Two dendritic cell activation assays based on the dendritic cell like cell lines U-937 and THP-1 and flow cytometric detection of the maturation markers CD54 and/or CD86 (Ashikaga et al., 2006; Python et al., 2007; Sakaguchi et al., 2006). (3) Antioxidant response element (ARE)-dependent gene activity in a HaCaT reporter gene cell line (Emter et al., 2010). We present the results of our intralaboratory validation of these assays with 23 substances of known sensitizing potential. The sensitivity, specificity, and accuracy of the individual tests were obtained by comparison to human epidemiological data as well as to data from animal tests such as the local lymph node assay.
Collapse
|
56
|
Troutman JA, Foertsch LM, Kern PS, Dai HJ, Quijano M, Dobson RL, Lalko JF, Lepoittevin JP, Gerberick GF. The Incorporation of Lysine into the Peroxidase Peptide Reactivity Assay for Skin Sensitization Assessments. Toxicol Sci 2011; 122:422-36. [DOI: 10.1093/toxsci/kfr101] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
57
|
Clinical and experimental aspects of allergic contact dermatitis to para-phenylenediamine. Clin Dermatol 2011; 29:316-24. [DOI: 10.1016/j.clindermatol.2010.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
58
|
Lepoittevin JP. Les bases chimiques de l’allergie de contact. REVUE FRANCAISE D ALLERGOLOGIE 2011. [DOI: 10.1016/j.reval.2011.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
59
|
Bajot F, Cronin MTD, Roberts DW, Schultz TW. Reactivity and aquatic toxicity of aromatic compounds transformable to quinone-type Michael acceptors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:51-65. [PMID: 21391141 DOI: 10.1080/1062936x.2010.528449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Reactive toxicity encompasses important endpoints such as skin and respiratory sensitization, hepatotoxicity and elevated acute aquatic toxicity. These adverse effects are initiated by, among others, electrophilic chemicals and those transformed into electrophiles; i.e. non-reactive chemicals activated into reactive electrophilic species by either a biotransformation (pro-electrophiles) or abiotic mechanism (pre-electrophiles). The presence of pro- and pre-electrophiles is important when developing quantitative structure-activity relationships (QSARs). In this study, the reactivity of potential pre-electrophile polyphenolics was investigated using an in chemico assay based on glutathione (GSH) depletion; in addition, the toxicity to Tetrahymena pyriformis was determined. For pre-electrophiles, no direct relationship between toxic potency and reactivity to GSH was obtained. The structural determinants for the pre-electrophile domain were characterized qualitatively by assessing structure-activity relationships (SARs). From this analysis, structural alerts for the pre-Michael acceptor domain (i.e. non-reactive chemicals activated into Michael acceptors) were extracted from the in chemico GSH data. A series of 10 structural alerts corresponding to 1,2- and 1,4-hydroxy and amino-substituted aromatics was developed. The relevance of the alerts was assessed by investigating the aquatic toxicity of these compounds. The structural alerts should help to identify and group pre-Michael acceptors and thus potent reactive toxicants.
Collapse
Affiliation(s)
- F Bajot
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, UK
| | | | | | | |
Collapse
|
60
|
|
61
|
Uter W, Schmidt E, Geier J, Lessmann H, Schnuch A, Frosch P. Contact allergy to essential oils: current patch test results (2000-2008) from the Information Network of Departments of Dermatology (IVDK)*. Contact Dermatitis 2010; 63:277-83. [DOI: 10.1111/j.1600-0536.2010.01768.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
62
|
Vocanson M, Hennino A, Rozières A, Poyet G, Nicolas JF. Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 2009; 64:1699-714. [PMID: 19839974 DOI: 10.1111/j.1398-9995.2009.02082.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Allergic contact dermatitis (ACD), one of the commonest occupational diseases, is a T-cell-mediated skin inflammation caused by repeated skin exposure to contact allergens, i.e. nonprotein chemicals called haptens. Allergic contact dermatitis, also referred to as contact hypersensitivity, is mediated by CD8+ T cells, which are primed in lymphoid organs during the sensitization phase and are recruited in the skin upon re-exposure to the hapten. Subsets of CD4+ T cells endowed with suppressive activity are responsible for both the down-regulation of eczema in allergic patients and the prevention of priming to haptens in nonallergic individuals. Therefore, ACD should be considered as a breakdown of the skin immune tolerance to haptens. Recent advances in the pathophysiology of ACD have demonstrated the important role of skin innate immunity in the sensitization process and have revisited the dogma that Langerhans cells are mandatory for CD8+ T-cell priming. They have also introduced mast cells as a pivotal actor in the magnitude of the inflammatory reaction. Finally, the most recent studies address the nature, the mode and the site of action of the regulatory T cells that control the skin inflammation with the aim of developing new strategies of tolerance induction in allergic patients.
Collapse
Affiliation(s)
- M Vocanson
- Faculté de Médecine Lyon Sud, Université Lyon1, Lyon, France
| | | | | | | | | |
Collapse
|
63
|
Characterization of p-phenylenediamine-albumin binding sites and T-cell responses to hapten-modified protein. J Invest Dermatol 2009; 130:732-42. [PMID: 19710686 DOI: 10.1038/jid.2009.271] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exposure to p-phenylenediamine (PPD) is associated with the development of T-cell-mediated allergic contact dermatitis. The purpose of this study was to define the nature of the interaction of PPD with the protein and the antigenic determinant that stimulates T cells. Mass spectrometry was employed to show that PPD oxidation products bind irreversibly to cysteine (Cys, position 34) in human serum albumin (HSA). A modified tryptic peptide was characterized with an increase in mass of 106 Da, corresponding to the addition of PPD and not to the secondary products of self conjugation. Lymphocytes from 10 PPD-allergic patients, but not tolerant/naive individuals, were stimulated with PPD and PPD-modified HSA. A total of 70 PPD-specific and 10 PPD-HSA-specific CD4+, CD8+, and CD4+CD8+, Th2-secreting T-cell clones were generated from three allergic patients. In total, 40 clones were stimulated with both PPD and PPD-modified HSA. PPD-modified HSA triggered T-cell responses through a classical hapten mechanism involving processing. Presentation of PPD to several clones was dependent on protein complex formation (42 out of 48) and processing (32 out of 68); however, 12% of clones were triggered with PPD directly. These data identify Cys as the single target for PPD-HSA binding, and show that PPD protein adducts are antigenic determinants in patients with contact dermatitis.
Collapse
|
64
|
Aptula AO, Enoch SJ, Roberts DW. Chemical Mechanisms for Skin Sensitization by Aromatic Compounds with Hydroxy and Amino Groups. Chem Res Toxicol 2009; 22:1541-7. [DOI: 10.1021/tx9000336] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aynur O. Aptula
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth, Sharnbrook, Bedford, MK44 1LQ, England, and School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Steven J. Enoch
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth, Sharnbrook, Bedford, MK44 1LQ, England, and School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - David W. Roberts
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth, Sharnbrook, Bedford, MK44 1LQ, England, and School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| |
Collapse
|
65
|
Casati S, Aeby P, Kimber I, Maxwell G, Ovigne JM, Roggen E, Rovida C, Tosti L, Basketter D. Selection of Chemicals for the Development and Evaluation of In Vitro Methods for Skin Sensitisation Testing. Altern Lab Anim 2009; 37:305-12. [DOI: 10.1177/026119290903700313] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Silvia Casati
- In Vitro Methods Unit/ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Pierre Aeby
- Procter & Gamble Company (Wella-Cosmital), Marly, Switzerland
| | - Ian Kimber
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | - Costanza Rovida
- In Vitro Methods Unit/ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Luca Tosti
- In Vitro Methods Unit/ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | | |
Collapse
|
66
|
Blömeke B, Brans R, Coenraads PJ, Dickel H, Bruckner T, Hein DW, Heesen M, Merk HF, Kawakubo Y. Para-phenylenediamine and allergic sensitization: risk modification by N-acetyltransferase 1 and 2 genotypes. Br J Dermatol 2009; 161:1130-5. [PMID: 19663877 DOI: 10.1111/j.1365-2133.2009.09352.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Para-phenylenediamine (PPD) is a common contact sensitizer causing allergic contact dermatitis, a major skin problem. As PPD may need activation to become immunogenic, the balance between activation and/or detoxification processes may influence an individual's susceptibility. PPD is acetylated and the metabolites do not activate dendritic-like cells and T cells of PPD-sensitized individuals. OBJECTIVES To investigate whether PPD can be acetylated in vitro by the two N-acetyltransferases 1 (NAT1) and 2 (NAT2). Based on the assumption that N-acetylation by NAT1 or NAT2 is a detoxification reaction with respect to sensitization, we examined whether NAT1 and NAT2 genotypes are different between PPD-sensitized individuals and matched controls. METHODS Genotyping for NAT1 and NAT2 polymorphisms was performed in 147 PPD-sensitized individuals and 200 age- and gender-matched controls. Results Both PPD and monoacetyl-PPD were N-acetylated in vitro by recombinant human NAT1 and to a lesser extent by NAT2. Genotyping for NAT1*3, NAT1*4, NAT1*10, NAT1*11 and NAT1*14 showed that genotypes containing the rapid acetylator NAT1*10 allele were under-represented in PPD-sensitized cases (adjusted odds ratio 0.72, 95% confidence interval 0.45-1.16). For NAT2, NAT2*4, NAT2*5AB, NAT2*5C, NAT2*6A and NAT2*7B alleles were genotyped. Individuals homozygous for the rapid acetylator allele NAT2*4 were under-represented in cases compared with controls (4.3% vs. 9.4%), but this trend was not significant. CONCLUSIONS With respect to data indicating that NAT1 but not NAT2 is present in human skin, we conclude that NAT1 genotypes containing the rapid acetylator NAT1*10 allele are potentially associated with reduced susceptibility to PPD sensitization.
Collapse
Affiliation(s)
- B Blömeke
- Department of Environmental Toxicology, University Trier, 54296 Trier, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Aleksic M, Thain E, Roger D, Saib O, Davies M, Li J, Aptula A, Zazzeroni R. Reactivity profiling: covalent modification of single nucleophile peptides for skin sensitization risk assessment. Toxicol Sci 2009; 108:401-11. [PMID: 19221146 DOI: 10.1093/toxsci/kfp030] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular basis of chemical allergy is rooted in the ability of an allergen (hapten) to modify endogenous proteins. This mechanistic understanding aided development of screening assays which generate reproducible quantitative and qualitative reactivity data. Such assays use model peptides with a limited number and type of protein nucleophiles, and the data does not reflect the specificity, variety, and complexity of hapten interactions with multiple nucleophiles. Building on these developments, we extended the standardized approach to maximize the type and the amount of information that can be derived from an in chemico assay. We used a panel of six single nucleophile peptides and individually optimized the incubation conditions to favor chemical modification. Employing liquid chromatography tandem mass spectrometry (LC-MS/MS) technique, we simultaneously obtained multiple quantitative and qualitative measurements (% peptide depletion, adducts formation, and peptide dimerization for Cys-containing peptide). Using these methods, we obtained reactivity data for 36 chemicals of known skin sensitizing potency. By optimizing incubation conditions, we ensured detection of all reactive chemicals. We explored the LC-MS/MS approach to generate kinetic data for 10 chemicals allowing further characterization of reactivity and a potentially more robust quantitative reactivity descriptor. Our ultimate aim is to integrate this dataset with available physicochemical data and outputs from other predictive assays, all addressing different key steps in the induction of sensitization, to help us make decisions about the safe use of chemicals without using animal tests. The epidermal protein target sites, modification of which may be immunogenic and lead to induction of skin sensitization, are currently unknown. Increasing the understanding of this process may help further refine in chemico reactivity assays as well as aid the interpretation of the reactivity data.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Skazik C, Grannemann S, Wilbers L, Merk HF, Coenraads PJ, Breuer S, Blömeke B. Reactivity of in vitro activated human T lymphocytes to p-phenylenediamine and related substances. Contact Dermatitis 2009; 59:203-11. [PMID: 18844695 DOI: 10.1111/j.1600-0536.2008.01416.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patch tests to p-phenylenediamine (PPD) and related substances often show concurrent reactions that can be attributed to separate sensitization or cross-reactivity. OBJECTIVES In order to understand the health risks associated with cross-reactivity, we studied cross-reactivity of eight chemicals in vitro by measurement of T-cell proliferation of peripheral blood mononuclear cells (PBMC), T-cell lines (TCL), and T-cell clones (TCC) of subjects with a positive patch test result to PPD. PATIENTS/METHODS We studied PBMC from 13 patients and were able to generate TCL from seven and TCC from four patients. Their proliferative responses to the chemicals were estimated. RESULTS Concurrent reactions to these compounds on the polyclonal and monoclonal level were found. A restricted T-cell receptor (TCR) Vbeta16-usage was observed (5/8 clones). A detailed analysis of 34 TCL showed broad cross-reactivity (64.7%) between PPD, p-toluenediamine, Bandrowski's Base, and p-aminoazobenzene. More restricted patterns were found in 8.8%, which responded only to compounds with two or three benzene rings, whereas 26.5% of the clones reacted specifically only to one compound. CONCLUSION More than 60% of the clones showed a broad cross-reactivity pattern. Hence, clinically observed cross-reactivity between different para-amino compounds can be based on a TCR recognizing similar epitopes of these compounds with low specificity.
Collapse
Affiliation(s)
- Claudia Skazik
- Department of Dermatology and Allergology, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
69
|
Christensson JB, Johansson S, Hagvall L, Jonsson C, Börje A, Karlberg AT. Limonene hydroperoxide analogues differ in allergenic activity. Contact Dermatitis 2008; 59:344-52. [DOI: 10.1111/j.1600-0536.2008.01442.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
70
|
Aeby P, Sieber T, Beck H, Gerberick GF, Goebel C. Skin sensitization to p-phenylenediamine: the diverging roles of oxidation and N-acetylation for dendritic cell activation and the immune response. J Invest Dermatol 2008; 129:99-109. [PMID: 18704111 DOI: 10.1038/jid.2008.209] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skin is a target of allergic reactions to aromatic amine hair dye precursors, such as p-phenylenediamine (PPD). As conversion of PPD on or in the skin is expected to be required for the induction of allergic contact dermatitis, we analyzed the role of oxidation and N-acetylation as major transformation steps. PPD and its oxidative and N-acetylated derivatives were tested for their sensitizing potential in vitro using a dendritic cell (DC) activation assay and in vivo using the local lymph node assay (LLNA). PPD did not induce relevant DC activation but induced a positive LLNA response. In contrast, DC activation was obtained when PPD was chemically pre-oxidized or after air oxygen exposure. Under both conditions, the potent sensitizing PPD oxidation product Bandrowski's base was identified along with other di- and trimeric species, indicating that PPD oxidation products provide an effective immune stimulation (danger signal). In contrast mono- and diacetylated PPD did not induce DC activation or a positive LLNA response. We conclude that dermal N-acetylation of PPD competes with the formation of oxidized PPD whereas skin exposure conditions allowing auto-oxidation, as in the LLNA, provide an effective danger signal necessary to induce skin sensitization to PPD.
Collapse
Affiliation(s)
- Pierre Aeby
- Procter and Gamble Co., Wella-Cosmital, Marly, Switzerland
| | | | | | | | | |
Collapse
|
71
|
Gerberick F, Aleksic M, Basketter D, Casati S, Karlberg AT, Kern P, Kimber I, Lepoittevin JP, Natsch A, Ovigne JM, Rovida C, Sakaguchi H, Schultz T. Chemical reactivity measurement and the predicitve identification of skin sensitisers. The report and recommendations of ECVAM Workshop 64. Altern Lab Anim 2008; 36:215-42. [PMID: 18522487 DOI: 10.1177/026119290803600210] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Frank Gerberick
- Procter & Gamble Company, Miami Valley Innovation Center, Cincinnati, OH 45253, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Blömeke B, Pietzsch T, Merk HF. Elicitation response characteristics to mono- and to N,N'-diacetyl-para-phenylenediamine. Contact Dermatitis 2008; 58:355-8. [DOI: 10.1111/j.1600-0536.2008.01347.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
73
|
Alenius H, Roberts DW, Tokura Y, Lauerma A, Patlewicz G, Roberts MS. Skin, drug and chemical reactions. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.ddmec.2008.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
74
|
|
75
|
Aptula AO, Roberts DW, Pease CK. Haptens, prohaptens and prehaptens, or electrophiles and proelectrophiles. Contact Dermatitis 2007; 56:54-6. [PMID: 17177719 DOI: 10.1111/j.1600-0536.2007.00944.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is argued that the term 'hapten', and derived terms such as 'pro-hapten' and 'pre-hapten' are ambiguous and unnecessary. It is proposed that their use be abandoned. Instead, when considering the chemical basis of skin sensitization, it is preferable to classify compounds according to the chemical reaction mechanisms by which they can modify proteins.
Collapse
Affiliation(s)
- Aynur O Aptula
- Safety and Environmental Assurance Centre, Unilever Research, Sharnbrook, Bedford MK44 1LQ, UK
| | | | | |
Collapse
|