51
|
Gómez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs. Nat Rev Rheumatol 2014; 11:159-70. [PMID: 25512010 DOI: 10.1038/nrrheum.2014.209] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
52
|
Almonte-Becerril M, Costell M, Kouri JB. Changes in the integrins expression are related with the osteoarthritis severity in an experimental animal model in rats. J Orthop Res 2014; 32:1161-6. [PMID: 24839051 DOI: 10.1002/jor.22649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/24/2014] [Indexed: 02/04/2023]
Abstract
We identify changes in the expression and localization of α5, α4, and α2 integrins during osteoarthritis (OA) pathogenesis in a rat experimental model. The changes were concomitant with variations in the extracellular matrix (ECM) content and the increase of metalloproteinases (MMPs) activity during OA pathogenesis, which were analyzed by immunofluorescence and Western blot assays. Our results showed an increased expression of α5 and α2 integrins at OA late stages, which was co-related with changes in the ECM content, as a consequence of the MMPs activity. In addition, this is the first report that has shown the presence of α4 integrin since OA early stages, which was co-related with the loss of proteoglycans and clusters formation. However, at late OA stages, the increased expression of α4 integrin in the middle and deep zones of the cartilage was also co-related with the abnormal endochondral ossification of the cartilage through its interaction with osteopontin. Finally, we conclude that ECM-chondrocytes interaction through specific cell receptors is essential to maintain the cartilage homeostasis. However, due to integrins cell signaling is ligand-dependent; changes in the ECM contents could induce activation of either anabolic or catabolic processes, which limits the reparative capacity of chondrocytes, favoring OA severity.
Collapse
Affiliation(s)
- Maylin Almonte-Becerril
- Departamento de Infectómica y Patogénesis Molecular, Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, DF, México
| | | | | |
Collapse
|
53
|
Ruthard J, Kamper M, Renno JH, Kühn G, Hillebrand U, Höllriegl S, Johannis W, Zaucke F, Klatt AR. COMP does not directly modify the expression of genes involved in cartilage homeostasis in contrast to several other cartilage matrix proteins. Connect Tissue Res 2014; 55:348-56. [PMID: 25111190 DOI: 10.3109/03008207.2014.951440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated whether COMP may modify cartilage metabolism and play a role as an endogenous disease aggravating factor in OA. MATERIALS AND METHODS Full-length and momomeric COMP was recombinantly expressed in human embryonic kidney cells and purified it via affinity chromatography. Purified COMP was used to stimulate either primary human chondrocytes or cartilage explants. Changes in the expression profiles of inflammatory genes, differentiation markers and growth factors were examined by immunoassay and by quantitative real-time reverse-transcription polymerase chain reaction. RESULTS Incubation of primary human chondrocytes or cartilage explants in the presence of COMP did not induce statistically significant changes in the expression of IL-6, MMP1, MMP13, collagen I, collagen II, collagen X, TGF-β1 and BMP-2. CONCLUSIONS In contrast to collagen II and matrilin-3, COMP lacks the ability to trigger a proinflammatory response in chondrocytes, although it carries an RGD motif and can bind to integrins. COMP is a well-accepted biomarker for osteoarthritis but increased COMP levels do not necessarily correlate with inflammation.
Collapse
Affiliation(s)
- Johannes Ruthard
- Institute for Clinical Chemistry, University of Cologne , Cologne , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kelsh R, You R, Horzempa C, Zheng M, McKeown-Longo PJ. Regulation of the innate immune response by fibronectin: synergism between the III-1 and EDA domains. PLoS One 2014; 9:e102974. [PMID: 25051083 PMCID: PMC4106844 DOI: 10.1371/journal.pone.0102974] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/24/2014] [Indexed: 01/22/2023] Open
Abstract
Fibronectin is a critical component of the extracellular matrix and alterations to its structure will influence cellular behavior. Matrix fibronectin is subjected to both mechanical and biochemical regulation. The Type III domains of fibronectin can be unfolded in response to increased cellular contractility, included or excluded from the molecule by alternative splicing mechanisms, or released from the matrix by proteolysis. Using Inflammatory Cytokine microarrays we found that the alternatively spliced fibronectin Type III domain, FnEDA, and the partially unfolded III-1 domain, FnIII-1c, induced the expression of a multitude of pro-inflammatory cytokines in human dermal fibroblasts, most notably CXCL1-3, IL-8 and TNF-α. FnIII-1c, a peptide representing an unfolded intermediate structure of the first Type III domain has been shown to initiate the toll-like receptor-4 (TLR4)-NFκB-dependent release of cytokines from human dermal fibroblasts (You, et al., J. Biol. Chem., 2010). Here we demonstrate that FnIII-1c and the alternatively spliced FnEDA domain induce a TLR4 dependent activation of p38 MAP kinase and its downstream effector, MAPKAP Kinase-2 (MK-2), to regulate cytokine expression in fibroblasts. RT-qPCR analysis indicated that the p38-MK-2 pathway regulates IL-8 mRNA stability. Interestingly, addition of FnIII-1c and FnEDA synergistically enhanced TLR4-dependent IL-8 release. These data indicate that Fn contains two Type III domains which can activate TLR signaling to induce an inflammatory response in fibroblasts. Furthermore, our data identifies the NF-κB and p38/MK2 signaling pathways as transducers of signals initiated in response to structural changes in fibronectin.
Collapse
Affiliation(s)
- Rhiannon Kelsh
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Ran You
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Carol Horzempa
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Mingzhe Zheng
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Paula J. McKeown-Longo
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
55
|
Klawitter M, Hakozaki M, Kobayashi H, Krupkova O, Quero L, Ospelt C, Gay S, Hausmann O, Liebscher T, Meier U, Sekiguchi M, Konno SI, Boos N, Ferguson SJ, Wuertz K. Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:1878-91. [PMID: 24997157 DOI: 10.1007/s00586-014-3442-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 06/10/2014] [Accepted: 06/25/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE Although inflammatory processes play an essential role in painful intervertebral disc (IVD) degeneration, the underlying regulatory mechanisms are not well understood. This study was designed to investigate the expression, regulation and importance of specific toll-like receptors (TLRs)--which have been shown to play an essential role e.g. in osteoarthritis--during degenerative disc disease. METHODS The expression of TLRs in human IVDs was measured in isolated cells as well as in normal or degenerated IVD tissue. The role of IL-1β or TNF-α in regulating TLRs (expression/activation) as well as in regulating activity of down-stream pathways (NF-κB) and expression of inflammation-related genes (IL-6, IL-8, HSP60, HSP70, HMGB1) was analyzed. RESULTS Expression of TLR1/2/3/4/5/6/9/10 was detected in isolated human IVD cells, with TLR1/2/4/6 being dependent on the degree of IVD degeneration. Stimulation with IL-1β or TNF-α moderately increased TLR1/TLR4 mRNA expression (TNF-α only), and strongly increased TLR2 mRNA expression (IL-1β/TNF-α), with the latter being confirmed on the protein level. Stimulation with IL-1β, TNF-α or Pam3CSK4 (a TLR2-ligand) stimulated IL-6 and IL-8, which was inhibited by a TLR2 neutralizing antibody for Pam3CSK4; IL-1β and TNF-α caused NF-κB activation. HSP60, HSP70 and HMGB1 did not increase IL-6 or IL-8 and were not regulated by IL-1β/TNF-α. CONCLUSION We provide evidence that several TLRs are expressed in human IVD cells, with TLR2 possibly playing the most crucial role. As TLRs mediate catabolic and inflammatory processes, increased levels of TLRs may lead to aggravated disc degeneration, chronic inflammation and pain development. Especially with the identification of more endogenous TLR ligands, targeting these receptors may hold therapeutic promise.
Collapse
Affiliation(s)
- Marina Klawitter
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Absorption, distribution and mechanism of action of SYSADOAS. Pharmacol Ther 2014; 142:362-74. [PMID: 24457028 DOI: 10.1016/j.pharmthera.2014.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/08/2014] [Indexed: 02/07/2023]
|
57
|
Yang HY, Su SL, Peng YJ, Wang CC, Lee HS, Salter DM, Lee CH. An intron polymorphism of the fibronectin gene is associated with end-stage knee osteoarthritis in a Han Chinese population: two independent case-control studies. BMC Musculoskelet Disord 2014; 15:173. [PMID: 24886251 PMCID: PMC4050217 DOI: 10.1186/1471-2474-15-173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 05/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Knee osteoarthritis (OA) is a complex disease involving both biomechanical and metabolic factors that alter the tissue homeostasis of articular cartilage and subchondral bone. The catabolic activities of extracellular matrix degradation products, especially fibronectin (FN), have been implicated in mediating cartilage degradation. Chondrocytes express several members of the integrin family which can serve as receptors for FN including integrins α5β1, αvβ3, and αvβ5. The purpose of this study was to determine whether polymorphisms in the FN (FN-1) and integrin genes are markers of susceptibility to, or severity of, knee OA in a Han Chinese population. Methods Two independent case–control studies were conducted on 928 patients with knee OA and 693 healthy controls. Ten single nucleotide polymorphisms (SNPs) of FN-1 and the integrin αV gene (ITGAV) were detected using the ABI 7500 real-time PCR system. Results The AT heterozygote in FN-1 (rs940739A/T) was found to be significantly associated with knee OA (adjusted OR = 1.44; 95% CI = 1.16–1.80) in both stages of the study. FN-1 rs6725958C/A and ITGAV rs10174098A/G SNPs were only associated with knee OA when both study groups were combined. Stratifying the participants by Kellgren-Lawrence (KL) score identified significant differences in the FN-1 rs6725958C/A and rs940739 A/T genotypes between patients with grade 4 OA and controls. Haplotype analyses revealed that TGA and TAA were associated with a higher risk of OA, and that TAG conferred a lower risk of knee OA in the combined population. Conclusions Our study suggests that the FN-1 rs940739A/T polymorphism may be an important risk factor of genetic susceptibility to knee OA in the Han Chinese population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chian-Her Lee
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University and Hospital, No,250, Wuxing St,, Xinyi Dist, Taipei, Taiwan.
| |
Collapse
|
58
|
Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 2014; 15:375. [PMID: 24072604 DOI: 10.1007/s11926-013-0375-6] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a whole joint disease, in which thinning and disappearance of cartilage is a critical determinant in OA progression. The rupture of cartilage homeostasis whatever its cause (aging, genetic predisposition, trauma or metabolic disorder) induces profound phenotypic modifications of chondrocytes, which then promote the synthesis of a subset of factors that induce cartilage damage and target other joint tissues. Interestingly, among these factors are numerous components of the inflammatory pathways. Chondrocytes produce cytokines, chemokines, alarmins, prostanoids, and adipokines and express numerous cell surface receptors for cytokines and chemokines, as well as Toll-like receptors. These receptors activate intracellular signaling pathways involved in inflammatory and stress responses of chondrocytes in OA joints. This review focuses on mechanisms responsible for the maintenance of cartilage homeostasis and highlights the role of inflammatory processes in OA progression.
Collapse
|
59
|
Docheva D, Popov C, Alberton P, Aszodi A. Integrin signaling in skeletal development and function. ACTA ACUST UNITED AC 2014; 102:13-36. [DOI: 10.1002/bdrc.21059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/14/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| |
Collapse
|
60
|
Expression of ADAMTs-5 and TIMP-3 in the condylar cartilage of rats induced by experimentally created osteoarthritis. Arch Oral Biol 2014; 59:524-9. [PMID: 24632095 DOI: 10.1016/j.archoralbio.2014.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/22/2014] [Accepted: 02/26/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To study the expression of ADAMTs-5 and TIMP-3 in temporomandibular joint osteoarthritis (TMJOA) model rats, to explore and confer the possible effects of ADAMTs-5 and TIMP-3 involved in the degradation of the early stage of OA. DESIGN 32 SD rats were divided into four groups: 2-week control group (NC1), 2-week OA group (OA1), 4-week control group (NC2) and 4-week OA group (OA2). Each group had 8 rats. Injection of collagenase was used to build up the TMJOA model. HE staining was used to analyze the structural change of condyle cartilage. Western blot and RT-PCR were used to measure the expression of ADAMTs-5 and TIMP-3 in protein and mRNA levels respectively. RESULTS HE analysis revealed that no significant changes were observed in NC1, NC2 and OA1 groups, while mild damages appeared in OA2 group. No significant differences were achieved in the expression of ADAMTs-5 in protein levels between NC1 and OA1, but the expression of ADAMTs-5 in 4-week group increased significantly compared to that in the NC2 group. On mRNA level, the expression of ADAMTs-5 in 2-week and 4-week OA groups increased significantly compared to that in the matched control group. Meanwhile, the expression of TIMP-3 decreased significantly, showing a completely different trend. CONCLUSIONS The expression of ADAMTs-5 and TIMP-3 changed significantly in the early stage of TMJOA, which indicated that ADAMTs-5 and TIMP-3 may be play an important part in the initial stage of condylar cartilage degradation.
Collapse
|
61
|
YASUDA T. Type II collagen peptide stimulates Akt leading to nuclear factor-κB activation: Its inhibition by hyaluronan. Biomed Res 2014; 35:193-9. [DOI: 10.2220/biomedres.35.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Stoffels JMJ, Zhao C, Baron W. Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build. Cell Mol Life Sci 2013; 70:4243-53. [PMID: 23756580 PMCID: PMC11113129 DOI: 10.1007/s00018-013-1350-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 12/31/2022]
Abstract
Tissue injury initiates extracellular matrix molecule expression, including fibronectin production by local cells and fibronectin leakage from plasma. To benefit tissue regeneration, fibronectin promotes opsonization of tissue debris, migration, proliferation, and contraction of cells involved in the healing process, as well as angiogenesis. When regeneration proceeds, the fibronectin matrix is fully degraded. However, in a diseased environment, fibronectin clearance is often disturbed, allowing structural variants to persist and contribute to disease progression and failure of regeneration. Here, we discuss first how fibronectin helps tissue regeneration, with a focus on normal cutaneous wound healing as an example of complete tissue recovery. Then, we continue to argue that, although the fibronectin matrix generated following cartilage and central nervous system white matter (myelin) injury initially benefits regeneration, fibronectin clearance is incomplete in chronic wounds (skin), osteoarthritis (cartilage), and multiple sclerosis (myelin). Fibronectin fragments or aggregates persist, which impair tissue regeneration. The similarities in fibronectin-mediated mechanisms of frustrated regeneration indicate that complete fibronectin clearance is a prerequisite for recovery in any tissue. Also, they provide common targets for developing therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Josephine M. J. Stoffels
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chao Zhao
- Wellcome Trust—Medical Research Council Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
| | - Wia Baron
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
63
|
Stoffels JMJ, Zhao C, Baron W. Author's reply to: Comment on: Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build. Cell Mol Life Sci 2013; 70:4257. [PMID: 23974246 PMCID: PMC11113303 DOI: 10.1007/s00018-013-1454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Josephine M. J. Stoffels
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chao Zhao
- Wellcome Trust—Medical Research Council Stem Cell, Institute and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
| | - Wia Baron
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
64
|
Le LTT, Swingler TE, Clark IM. Review: the role of microRNAs in osteoarthritis and chondrogenesis. ACTA ACUST UNITED AC 2013; 65:1963-74. [PMID: 23666813 DOI: 10.1002/art.37990] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 04/23/2013] [Indexed: 12/21/2022]
|
65
|
Peffers MJ, Beynon RJ, Clegg PD. Absolute quantification of selected proteins in the human osteoarthritic secretome. Int J Mol Sci 2013; 14:20658-81. [PMID: 24132152 PMCID: PMC3821636 DOI: 10.3390/ijms141020658] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA.
Collapse
Affiliation(s)
- Mandy J. Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-151-795-6006; Fax: +44-151-795-6101
| | - Robert J. Beynon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK; E-Mail:
| | - Peter D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK; E-Mail:
| |
Collapse
|
66
|
Liu-Bryan R. Synovium and the innate inflammatory network in osteoarthritis progression. Curr Rheumatol Rep 2013; 15:323. [PMID: 23516014 DOI: 10.1007/s11926-013-0323-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review focuses on the recent advancements in the understanding of innate immunity in the pathogenesis of osteoarthritis, particularly with attention to the roles of damage-associated molecular patterns (DAMPs), pattern recognition receptors (PPRs), and complement in synovitis development and cartilage degradation. Endogenous molecular products derived from cellular stress and extracellular matrix disruption can function as DAMPs to induce inflammatory responses and pro-catabolic events in vitro and promote synovitis and cartilage degradation in vivo via PRRs. Some of the DAMPs and PRRs display various capacities in driving synovitis and/or cartilage degradation in different models of animal studies. New findings reveal that the inflammatory complement cascade plays a key in the pathogenesis of OA. Crosstalk between joint tissues such as synovium and cartilage communicated at the cellular level within the innate immune inflammatory network is implicated to play an important role in OA progression. Further studies on how the innate immune inflammatory network impacts the OA disease process at different stages of progression will lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ru Liu-Bryan
- Veterans Affairs Medical Center and University of California San Diego, 3350 La Jolla Village Drive, 111K, San Diego, CA 92161, USA.
| |
Collapse
|
67
|
On "Pain treatments for patients with osteoarthritis..." Lluch Girbes E, Nijs J, Torres-Cueco R, Lopez Cubas C. Phys ther. 2013;93:842-851. Phys Ther 2013; 93:1276-7. [PMID: 23995955 DOI: 10.2522/ptj.2013.93.9.1276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
68
|
Abstract
Osteoarthritis is one of the most frequent, disabling, and costly pathologies of modern society. Among the main aims of osteoarthritis management are pain control and functional ability improvement. The exact cause of osteoarthritis pain remains unclear. In addition to the pathological changes in articular structures, changes in central pain processing or central sensitization appear to be involved in osteoarthritis pain. The latter calls for a broader approach to the management of patients with osteoarthritis. Yet, the scientific literature offers scant information addressing the treatment of central sensitization, specifically in patients with osteoarthritis. Interventions such as cognitive-behavioral therapy and neuroscience education potentially target cognitive-emotional sensitization (and descending facilitation), and centrally acting drugs and exercise therapy can improve endogenous analgesia (descending inhibition) in patients with osteoarthritis. Future studies should assess these new treatment avenues.
Collapse
|
69
|
Cheng T, Zhang L, Fu X, Wang W, Xu H, Song H, Zhang Y. The potential protective effects of calcitonin involved in coordinating chondrocyte response, extracellular matrix, and subchondral trabecular bone in experimental osteoarthritis. Connect Tissue Res 2013; 54:139-46. [PMID: 23323719 DOI: 10.3109/03008207.2012.760549] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous reports indicate a potential role for calcitonin (CT) in the treatment of osteoarthritis (OA). To evaluate this potential therapeutic role, we investigated the effect of CT pretreatment on the activation of mitogen-activated protein kinase (MAPK) signaling and the expression of matrix metalloproteinase-13 (MMP-13) in interleukin-1β (IL-1β)-induced chondrocytes, and further assessed its protective effect in a rat model of anterior cruciate ligament transection (ACLT), using sham-operated and saline-treated controls. Using western blotting in vitro, we found that CT pretreatment inhibited the IL-1β-induced phosphorylation of 38,000-dalton protein (p38) and extracellular regulated protein 1/2 (ERK1/2) and reduced the expression of MMP-13 protein. For the in vivo experiment, 30 male rats were randomly divided into three groups of 10, subjected to bilateral ACLT or sham surgery, and then treated for 12 weeks with subcutaneous injections of CT or normal saline. Histological observations showed that CT treatment reduced the severity of the cartilage lesions stemming from the ACLT surgery and provided a lower Mankin score when compared with that determined for rats in the saline-treated ACLT group. Immunohistochemical staining revealed that CT treatment increased type II collagen expression and decreased MMP-3 and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) expression when compared with the saline-treated group. Subchondral bone analysis indicated that CT treatment inhibited the reduction in bone mineral density observed in the saline-treated ACLT group and reduced the ACLT-induced destruction to the subchondral trabecular microstructure. Our data demonstrate that CT induces its protective effects by reducing the chondrocyte response to inflammatory stimuli, cartilage extracellular matrix degradation, and subchondral trabecular microstructure damages brought on by OA.
Collapse
Affiliation(s)
- Tan Cheng
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | |
Collapse
|
70
|
Gambling on putative biomarkers of osteoarthritis and osteochondrosis by equine synovial fluid proteomics. J Proteomics 2012; 75:4478-93. [DOI: 10.1016/j.jprot.2012.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/03/2012] [Accepted: 02/05/2012] [Indexed: 12/18/2022]
|
71
|
Vincourt JB, Etienne S, Grossin L, Cottet J, Bantsimba-Malanda C, Netter P, Mainard D, Libante V, Gillet P, Magdalou J. Matrilin-3 switches from anti- to pro-anabolic upon integration to the extracellular matrix. Matrix Biol 2012; 31:290-8. [PMID: 22521401 DOI: 10.1016/j.matbio.2012.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/19/2012] [Accepted: 03/23/2012] [Indexed: 11/19/2022]
Abstract
The extracellular matrix (ECM) has long been viewed primarily as an organized network of solid-phase ligands for integrin receptors. During degenerative processes, such as osteoarthritis, the ECM undergoes deterioration, resulting in its remodeling and in the release of some of its components. Matrilin-3 (MATN3) is an almost cartilage specific, pericellular protein acting in the assembly of the ECM of chondrocytes. In the past, MATN3 was found required for cartilage homeostasis, but also involved in osteoarthritis-related pro-catabolic functions. Here, to better understand the pathological and physiological functions of MATN3, its concentration as a circulating protein in articular fluids of human osteoarthritic patients was determined and its functions as a recombinant protein produced in human cells were investigated with particular emphasis on the physical state under which it is presented to chondrocytes. MATN3 down-regulated cartilage extracellular matrix (ECM) synthesis and up-regulated catabolism when administered as a soluble protein. When artificially immobilized, however, MATN3 induced chondrocyte adhesion via a α5β1 integrin-dependent mechanism, AKT activation and favored survival and ECM synthesis. Furthermore, MATN3 bound directly to isolated α5β1 integrin in vitro. TGFβ1 stimulation of chondrocytes allowed integration of exogenous MATN3 into their ECM and ECM-integrated MATN3 induced AKT phosphorylation and improved ECM synthesis and accumulation. In conclusion, the integration of MATN3 to the pericellular matrix of chondrocytes critically determines the direction toward which MATN3 regulates cartilage metabolism. These data explain how MATN3 plays either beneficial or detrimental functions in cartilage and highlight the important role played by the physical state of ECM molecules.
Collapse
Affiliation(s)
- Jean-Baptiste Vincourt
- UMR 7561 CNRS-Université de Lorraine, Faculté de Médecine, 9, Avenue de la Forêt de Haye, BP 184, 54505 Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Catterall JB, Hsueh MF, Stabler TV, McCudden CR, Bolognesi M, Zura R, Jordan JM, Renner JB, Feng S, Kraus VB. Protein modification by deamidation indicates variations in joint extracellular matrix turnover. J Biol Chem 2012; 287:4640-51. [PMID: 22179616 PMCID: PMC3281605 DOI: 10.1074/jbc.m111.249649] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 11/25/2011] [Indexed: 11/06/2022] Open
Abstract
As extracellular proteins age, they undergo and accumulate nonenzymatic post-translational modifications that cannot be repaired. We hypothesized that these could be used to systemically monitor loss of extracellular matrix due to chronic arthritic diseases such as osteoarthritis (OA). To test this, we predicted sites of deamidation in cartilage oligomeric matrix protein (COMP) and confirmed, by mass spectroscopy, the presence of deamidated (Asp(64)) and native (Asn(64)) COMP epitopes (mean 0.95% deamidated COMP (D-COMP) relative to native COMP) in cartilage. An Asp(64), D-COMP-specific ELISA was developed using a newly created monoclonal antibody 6-1A12. In a joint replacement study, serum D-COMP (p = 0.017), but not total COMP (p = 0.5), declined significantly after replacement demonstrating a joint tissue source for D-COMP. In analyses of 450 participants from the Johnston County Osteoarthritis Project controlled for age, gender, and race, D-COMP was associated with radiographic hip (p < 0.0001) but not knee (p = 0.95) OA severity. In contrast, total COMP was associated with radiographic knee (p < 0.0001) but not hip (p = 0.47) OA severity. D-COMP was higher in soluble proteins extracted from hip cartilage proximal to OA lesions compared with remote from lesions (p = 0.007) or lesional and remote OA knee (p < 0.01) cartilage. Total COMP in cartilage did not vary by joint site or proximity to the lesion. This study demonstrates the presence of D-COMP in articular cartilage and the systemic circulation, and to our knowledge, it is the first biomarker to show specificity for a particular joint site. We believe that enrichment of deamidated epitope in hip OA cartilage indicates a lesser repair response of hip OA compared with knee OA cartilage.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Murine-Derived/chemistry
- Arthroplasty, Replacement, Hip
- Arthroplasty, Replacement, Knee
- Asparagine/metabolism
- Aspartic Acid/metabolism
- Cartilage/metabolism
- Cartilage/pathology
- Cartilage/surgery
- Cartilage Oligomeric Matrix Protein
- Cohort Studies
- Enzyme-Linked Immunosorbent Assay
- Extracellular Matrix Proteins/metabolism
- Female
- Glycoproteins/metabolism
- Humans
- Male
- Mass Spectrometry
- Matrilin Proteins
- Middle Aged
- Osteoarthritis, Hip/metabolism
- Osteoarthritis, Hip/pathology
- Osteoarthritis, Hip/surgery
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/surgery
- Protein Processing, Post-Translational
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joanne M. Jordan
- the Thurston Arthritis Research Center and
- Departments of Medicine
- Orthopaedics, and
| | - Jordan B. Renner
- the Thurston Arthritis Research Center and
- Radiology, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Sheng Feng
- Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710 and
| | | |
Collapse
|
73
|
Mateos J, Lourido L, Fernández-Puente P, Calamia V, Fernández-López C, Oreiro N, Ruiz-Romero C, Blanco FJ. Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC-MALDI TOF/TOF. J Proteomics 2012; 75:2869-78. [PMID: 22245418 DOI: 10.1016/j.jprot.2011.12.042] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to identify those proteins relatively more abundant in the synovial fluid (SF) of patients suffering from rheumatoid arthritis (RA) and osteoarthritis (OA) using high performance liquid chromatography coupled to mass spectrometry. 20 individual SF samples from each disease were pooled into two groups (RA and OA) to reduce the contribution of extreme individual values. Prior to the proteomic analysis, samples were immunodepleted from the top 20 most abundant plasma proteins, to enrich the lower-abundance protein fractions. Then, they were subjected to protein size fractioning and in-gel digestion, followed by reversed-phase peptide separation in a nano-LC system and subsequent peptide identification by MALDI-TOF/TOF. This strategy led to the identification of 136 different proteins in SF, which is the largest number of SF proteins described up to date by proteomics. A relative quantification of the proteins between RA and OA was carried out by spectral counting analysis. In RA, our results show a greater relative abundance of proteins related to complement activation, inflammation and the immune response, such as the major matrix metalloproteinases and several neutrophil-related proteins. In OA, we detected an increase in proteins involved in the formation and remodeling of the extracellular matrix (ECM), such as fibronectin, kininogen-1, cartilage acidic protein 1 and cartilage oligomeric matrix protein. The results obtained for MMP-1, BGH3, fibronectin and gelsolin were verified by immunoblotting analyses. Some of the novel proteins identified in this work might be relevant not only for increasing knowledge on the etiopathogenesis of RA and OA processes, but also as putative disease biomarkers, as their presence in SF is a prior step to their dilution in serum. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Jesús Mateos
- Rheumatology Division, ProteoRed/ISCIII Proteomics Group, INIBIC-Hospital, Universitario de A Coruña, 15006-A Coruña, Spain
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Sohn DH, Sokolove J, Sharpe O, Erhart JC, Chandra PE, Lahey LJ, Lindstrom TM, Hwang I, Boyer KA, Andriacchi TP, Robinson WH. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther 2012; 14:R7. [PMID: 22225630 PMCID: PMC3392793 DOI: 10.1186/ar3555] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/04/2011] [Accepted: 01/08/2012] [Indexed: 01/15/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a degenerative disease characterized by cartilage breakdown in the synovial joints. The presence of low-grade inflammation in OA joints is receiving increasing attention, with synovitis shown to be present even in the early stages of the disease. How the synovial inflammation arises is unclear, but proteins in the synovial fluid of affected joints could conceivably contribute. We therefore surveyed the proteins present in OA synovial fluid and assessed their immunostimulatory properties. Methods We used mass spectrometry to survey the proteins present in the synovial fluid of patients with knee OA. We used a multiplex bead-based immunoassay to measure levels of inflammatory cytokines in serum and synovial fluid from patients with knee OA and from patients with rheumatoid arthritis (RA), as well as in sera from healthy individuals. Significant differences in cytokine levels between groups were determined by significance analysis of microarrays, and relations were determined by unsupervised hierarchic clustering. To assess the immunostimulatory properties of a subset of the identified proteins, we tested the proteins' ability to induce the production of inflammatory cytokines by macrophages. For proteins found to be stimulatory, the macrophage stimulation assays were repeated by using Toll-like receptor 4 (TLR4)-deficient macrophages. Results We identified 108 proteins in OA synovial fluid, including plasma proteins, serine protease inhibitors, proteins indicative of cartilage turnover, and proteins involved in inflammation and immunity. Multiplex cytokine analysis revealed that levels of several inflammatory cytokines were significantly higher in OA sera than in normal sera, and levels of inflammatory cytokines in synovial fluid and serum were, as expected, higher in RA samples than in OA samples. As much as 36% of the proteins identified in OA synovial fluid were plasma proteins. Testing a subset of these plasma proteins in macrophage stimulation assays, we found that Gc-globulin, α1-microglobulin, and α2-macroglobulin can signal via TLR4 to induce macrophage production of inflammatory cytokines implicated in OA. Conclusions Our findings suggest that plasma proteins present in OA synovial fluid, whether through exudation from plasma or production by synovial tissues, could contribute to low-grade inflammation in OA by functioning as so-called damage-associated molecular patterns in the synovial joint.
Collapse
Affiliation(s)
- Dong Hyun Sohn
- GRECC, VA Palo Alto Health Care System, 3801 Miranda Ave,, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Andia I, Sánchez M, Maffulli N. Joint pathology and platelet-rich plasma therapies. Expert Opin Biol Ther 2011; 12:7-22. [DOI: 10.1517/14712598.2012.632765] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
76
|
Chao PZ, Hsieh MS, Cheng CW, Lin YF, Chen CH. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes. J Biomed Sci 2011; 18:86. [PMID: 22114952 PMCID: PMC3262051 DOI: 10.1186/1423-0127-18-86] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. METHODS We investigated the effects of the CC chemokine eotaxin-1 (CCL11) on the matrix metalloproteinase (MMP) expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. RESULTS Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK) and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs), a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA) inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC)-protein kinase C (PKC) cascade and c-Jun N-terminal kinase (JNK)/mitogen-activated protein (MAP) kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. CONCLUSIONS Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis.
Collapse
Affiliation(s)
- Pin-Zhir Chao
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
77
|
Wang Q, Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM, Crish JF, Bebek G, Ritter SY, Lindstrom TM, Hwang I, Wong HH, Punzi L, Encarnacion A, Shamloo M, Goodman SB, Wyss-Coray T, Goldring SR, Banda NK, Thurman JM, Gobezie R, Crow MK, Holers VM, Lee DM, Robinson WH. Identification of a central role for complement in osteoarthritis. Nat Med 2011; 17:1674-9. [PMID: 22057346 PMCID: PMC3257059 DOI: 10.1038/nm.2543] [Citation(s) in RCA: 416] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 10/03/2011] [Indexed: 12/12/2022]
Abstract
Osteoarthritis, characterized by the breakdown of articular cartilage in synovial joints, has long been viewed as the result of “wear and tear”1. Although low-grade inflammation is detected in osteoarthritis, its role is unclear2–4. Here we identify a central role for the inflammatory complement system in the pathogenesis of osteoarthritis. Through proteomic and transcriptomic analyses of synovial fluids and membranes from individuals with osteoarthritis, we find that expression and activation of complement is abnormally high in human osteoarthritic joints. Using mice genetically deficient in C5, C6, or CD59a, we show that complement, and specifically the membrane attack complex (MAC)-mediated arm of complement, is critical to the development of arthritis in three different mouse models of osteoarthritis. Pharmacological modulation of complement in wild-type mice confirmed the results obtained with genetically deficient mice. Expression of inflammatory and degradative molecules was lower in chondrocytes from destabilized joints of C5-deficient mice than C5-sufficient mice, and MAC induced production of these molecules in cultured chondrocytes. Furthermore, MAC co-localized with matrix metalloprotease (MMP)-13 and with activated extracellular signal-regulated kinase (ERK) around chondrocytes in human osteoarthritic cartilage. Our findings indicate that dysregulation of complement in synovial joints plays a critical role in the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Qian Wang
- Geriatric Research Education and Clinical Centers, Veteran's Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Sofat N, Robertson SD, Wait R. Fibronectin III 13-14 domains induce joint damage via Toll-like receptor 4 activation and synergize with interleukin-1 and tumour necrosis factor. J Innate Immun 2011; 4:69-79. [PMID: 21997473 PMCID: PMC3250657 DOI: 10.1159/000329632] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022] Open
Abstract
Cartilage loss is a feature of chronic arthritis. It results from degradation of the extracellular matrix which is composed predominantly of aggrecan and type II collagen. Extracellular matrix degradation is mediated by aggrecanases and matrix metalloproteinases (MMPs). Recently, a number of endogenous matrix molecules, including fibronectin (FN), have been implicated in mediating cartilage degradation. We were interested in studying the C-terminal heparin-binding region of FN since it mediates aggrecan and type II collagen breakdown in cartilage, but the specific FN domains responsible for proteolytic enzyme activity and their receptors in cartilage are unknown. In this study, the ability of recombinant FN domains to induce cartilage breakdown was tested. We found that the FN III 13-14 domains in the C-terminal heparin-binding region of FN are potent inducers of aggrecanase activity in articular cartilage. In murine studies, the FN III 13-14-induced aggrecanase activity was inhibited in Toll-like receptor 4 (TLR4) knockout mice but not wild-type mice. FN III 13-14 domains also synergized with the known catabolic cytokines interleukin-1α and tumour necrosis factor and induced secretion of MMP-1, MMP-3, gp38 and serum amyloid-like protein A in chondrocytes. Our studies provide a mechanistic link between the innate immune receptor TLR4 and sterile arthritis induced by the FN III 13-14 domains of the endogenous matrix molecule FN.
Collapse
Affiliation(s)
- Nidhi Sofat
- Department of Biomedical Sciences, St George's, University of London, London, UK.
| | | | | |
Collapse
|
79
|
Sofat N, Ejindu V, Kiely P. What makes osteoarthritis painful? The evidence for local and central pain processing. Rheumatology (Oxford) 2011; 50:2157-65. [DOI: 10.1093/rheumatology/ker283] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
80
|
Chang PC, Chen Y, Lai MT, Chang HY, Huang CM, Liu HP, Lin WY, Lai CH, Sheu JJC, Tsai FJ. Association analysis of polymorphisms in lumican gene and systemic lupus erythematosus in a Taiwan Chinese Han population. J Rheumatol 2011; 38:2376-81. [PMID: 21885486 DOI: 10.3899/jrheum.101310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Lumican (LUM) is predominantly localized in areas of pathological fibrosis. To determine whether polymorphisms in LUM gene are associated with development of systemic lupus erythematosus (SLE), we analyzed 2 single-nucleotide polymorphisms (SNP) of LUM in a Taiwan Chinese Han population. METHODS Participants included 168 patients with SLE and 192 age-matched controls in whom examinations had excluded SLE. Genotyping of -628 A/-(rs17018757) and c.1567 T/C polymorphisms in LUM were carried out in each patient and control using the polymerase chain reaction-restriction fragment-length polymorphism method, and validated by Taqman SNP genotyping assay. Data were correlated with the development of SLE and various clinical symptoms by chi-square analysis. RESULTS Frequencies of C/C genotype and the C allele at c.1567 T/C were significantly higher in patients than controls. Polymorphism at c.1567 C/T was found to be associated with arthritis and photosensitivity in patients with SLE, which are both connective tissue-related symptoms. CONCLUSION The c.1567 T/C polymorphism of LUM is related to the development and clinical symptoms of SLE.
Collapse
Affiliation(s)
- Pei-Chun Chang
- Department of Bioinformatics, and Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Sofat N, Robertson SD, Hermansson M, Jones J, Mitchell P, Wait R. Tenascin-C fragments are endogenous inducers of cartilage matrix degradation. Rheumatol Int 2011; 32:2809-17. [PMID: 21874326 PMCID: PMC3429773 DOI: 10.1007/s00296-011-2067-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 08/10/2011] [Indexed: 01/15/2023]
Abstract
Cartilage destruction is a hallmark of osteoarthritis (OA) and is characterized by increased protease activity resulting in the degradation of critical extracellular matrix (ECM) proteins essential for maintaining cartilage integrity. Tenascin-C (TN-C) is an ECM glycoprotein, and its expression is upregulated in OA cartilage. We aimed to investigate the presence of TN-C fragments in arthritic cartilage and establish whether they promote cartilage degradation. Expression of TN-C and its fragments was evaluated in cartilage from subjects undergoing joint replacement surgery for OA and RA compared with normal subjects by western blotting. The localization of TN-C in arthritic cartilage was also established by immunohistochemistry. Recombinant TN-C fragments were then tested to evaluate which regions of TN-C are responsible for cartilage-degrading activity in an ex vivo cartilage explant assay measuring glycosaminoglycan (GAG) release, aggrecanase and matrix metalloproteinase (MMP) activity. We found that specific TN-C fragments are highly upregulated in arthritic cartilage. Recombinant TN-C fragments containing the same regions as those identified from OA cartilage mediate cartilage degradation by the induction of aggrecanase activity. TN-C fragments mapping to the EGF-L and FN type III domains 3–8 of TN-C had the highest levels of aggrecan-degrading ability that was not observed either with full-length TN-C or with other domains of TN-C. TN-C fragments represent a novel mechanism for cartilage degradation in arthritis and may present new therapeutic targets for the inhibition of cartilage degradation.
Collapse
Affiliation(s)
- Nidhi Sofat
- Department of Biomedical Sciences, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK.
| | | | | | | | | | | |
Collapse
|
82
|
|
83
|
Tamaki Y, Takakubo Y, Hirayama T, Konttinen YT, Goodman SB, Yamakawa M, Takagi M. Expression of Toll-like receptors and their signaling pathways in rheumatoid synovitis. J Rheumatol 2011; 38:810-20. [PMID: 21324962 DOI: 10.3899/jrheum.100732] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Toll-like receptors (TLR) recognizing endogenous and exogenous danger signals could play a role in rheumatoid arthritis (RA). Our aim was to describe the presence, localization, and extent of expression of TLR and their adapters. METHODS TLR 1, 2, 3, 4, 5, 6, and 9 receptors, and myeloid differentiation primary response protein 88, Toll/interleukin receptor (TIR) domain-containing adapter protein MyD88 adapter-like, and TIR domain-containing adapter-inducing interferon/TIR-containing adapter molecule-1 adapters were analyzed in RA (n = 10) and osteoarthritis (OA; n = 5) samples using real-time polymerase chain reaction (PCR). Their colocalization with cellular markers CD68, CD15, CD3, CD4, CD8, CD20, dendritic cell lysosomal-associated membrane protein (DC-LAMP), CD123, and 5B5 was analyzed in double immunofluorescence staining. RESULTS In RA, ß-actin standardized messenger RNA of TLR 2, 3, and 9 (p < 0.001) were particularly high. TLR 5 and 6 were also elevated (p < 0.05), but TLR 1 and 4 and adapters did not differ between RA and OA. In double-staining, TLR and adapters were strongly labeled in myeloid and plasmacytoid dendritic cells (DC), moderately in CD68+ type A lining cells/macrophages, and weakly to moderately in 5B5+ type B lining cells/fibroblasts. CD3+/CD4+ and CD3+/CD8+ T cells and CD20+ B cells in perivenular areas and in lymphoid follicles were moderately TLR- and weakly adapter-positive. In OA, TLR and adapters were weakly immunolabeled in vascular, lining, and inflammatory cells. CONCLUSION RA synovium showed abundant expression of TLR. RA synovitis tissue seems to be responsive to TLR ligands. DC, type A cells/macrophages, and type B cells/fibroblasts are, in that order from highest to lowest, equipped with TLR, suggesting a hierarchical responsiveness. In RA, danger-associated molecular patterns to TLR interactions may particularly drive DC to autoinflammatory and autoimmune cascades/synovitis.
Collapse
Affiliation(s)
- Yasunobu Tamaki
- Department of Orthopaedic Surgery, Yamagata University School of Medicine, 2-2-2 Iida Nishi, Yamagata, Japan.
| | | | | | | | | | | | | |
Collapse
|
84
|
Receptor Activator for Nuclear Factor kappa B Ligand (RANKL) as an osteoimmune key regulator in bone physiology and pathology. Acta Histochem 2011; 113:73-81. [PMID: 19926120 DOI: 10.1016/j.acthis.2009.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 10/11/2009] [Accepted: 10/12/2009] [Indexed: 12/18/2022]
Abstract
The strength and integrity of the human skeleton depends on a delicate equilibrium between bone resorption and bone formation. Bone resorption is an elementary cellular activity in the modelling of the skeleton during growth and development. Later in life a most important physiological process in the skeleton is bone remodelling, which is locally initiated by resorption. During remodelling bone resorption is coupled to new bone formation that ensures renewal of bone with only minor local and temporary bone loss. Cells responsible for bone resorption and subsequent bone formation are the osteoclasts and osteoblasts, respectively. The osteoclast is derived from the pluripotent hematopoietic stem cell, which gives rise to a myeloid stem cell that can further differentiate into megakaryocytes, granulocytes, monocytes/macrophages and osteoclasts. The respective bone resorbing and forming actions of osteoclasts and osteoblasts are finely coupled, so that bone mass remains remarkably stable in a healthy adult. Imbalance between osteoclast and osteoblast activities can arise from a wide variety of hormonal changes or perturbations of inflammatory and growth factors resulting in postmenopausal osteoporosis, Paget's disease, lytic bone metastases, or rheumatoid arthritis, leading to increased bone resorption and crippling bone damage. In view of the critical role of osteoclasts in diverse pathology, there has been immense effort aimed at understanding the biology of this unique cell. The present review is focused on the current knowledge of the mechanisms that regulate the functional links between bone turnover and the immune system helping us to understand the main factors that lead to bone loss observed in osteoporosis, cancer and in rheumatoid arthritis. The aim of this review paper is to consider the key molecular interactions involved in the formation of osteoclast cells in normal and pathological conditions.
Collapse
|
85
|
Iannitti T, Lodi D, Palmieri B. Intra-articular injections for the treatment of osteoarthritis: focus on the clinical use of hyaluronic acid. Drugs R D 2011; 11:13-27. [PMID: 21142290 PMCID: PMC3586124 DOI: 10.2165/11539760-000000000-00000] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA), also called degenerative joint disease, is the most frequently occurring chronic musculoskeletal disease, particularly affecting the aging population. The use of viscosupplementation, i.e. intra-articular (IA) hyaluronic acid (HA) drug therapy, to treat OA, is growing worldwide, due to important results obtained from several clinical trials, which reported IA HA-related improvements in functional activity and pain management. This review is an update of the IA use of this compound in the treatment of OA, with clinical evidence from the last few years being discussed and used to delineate new trends for the future.
Collapse
Affiliation(s)
- Tommaso Iannitti
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.
| | | | | |
Collapse
|
86
|
Ding L, Heying E, Nicholson N, Stroud NJ, Homandberg GA, Guo D, Buckwalter JA, Martin JA. Mechanical impact induces cartilage degradation via mitogen activated protein kinases. Osteoarthritis Cartilage 2010; 18:1509-17. [PMID: 20813194 PMCID: PMC3013628 DOI: 10.1016/j.joca.2010.08.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the activation of Mitogen activated protein (MAP) kinases in and around cartilage subjected to mechanical damage and to determine the effects of their inhibitors on impaction-induced chondrocyte death and cartilage degeneration. DESIGN The phosphorylation of MAP kinases was examined with confocal microscopy and immunoblotting. The effects of MAP kinase inhibitors on impaction-induced chondrocyte death and proteoglycan (PG) loss were determined with fluorescent microscopy and 1, 9-Dimethyl-Methylene Blue (DMMB) assay. The expression of catabolic genes at mRNA levels was examined with quantitative real-time PCR. RESULTS Early p38 activation was detected at 20 min and 1h post-impaction. At 24h, enhanced phosphorylation of p38 and extracellular signal-regulated protein kinase (ERK)1/2 was visualized in chondrocytes from in and around impact sites. The phosphorylation of p38 was increased by 3.0-fold in impact sites and 3.3-fold in adjacent cartilage. The phosphorylation of ERK-1 was increased by 5.8-fold in impact zone and 5.4-fold in adjacent cartilage; the phosphorylation of ERK-2 increased by 4.0-fold in impacted zone and 3.6-fold in adjacent cartilage. Furthermore, the blocking of p38 pathway did not inhibit impaction-induced ERK activation. The inhibition of p38 or ERK pathway significantly reduced injury-related chondrocyte death and PG losses. Quantitative Real-time PCR analysis revealed that blunt impaction significantly up-regulated matrix metalloproteinase (MMP)-13, Tumor necrosis factor (TNF)-α, and ADAMTS-5 expression. CONCLUSION These findings implicate p38 and ERK mitogen activated protein kinases (MAPKs) in the post-injury spread of cartilage degeneration and suggest that the risk of post-traumatic osteoarthritis (PTOA) following joint trauma could be decreased by blocking their activities, which might be involved in up-regulating expressions of MMP-13, ADAMTS-5, and TNF-α.
Collapse
Affiliation(s)
- Lei Ding
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Emily Heying
- Department of Biology, Wartburg College, Waverly, Iowa, USA
| | - Nathan Nicholson
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Nicolas J. Stroud
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Gene A. Homandberg
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Danping Guo
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Joseph A. Buckwalter
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA, Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA,Corresponding author. 500 Newton Road, 1182 Medical Laboratories, Iowa City, Iowa 52242, USA
| |
Collapse
|