Phillips RJ, Walter GC, Ringer BE, Higgs KM, Powley TL. Alpha-synuclein immunopositive aggregates in the myenteric plexus of the aging Fischer 344 rat.
Exp Neurol 2009;
220:109-19. [PMID:
19664623 DOI:
10.1016/j.expneurol.2009.07.025]
[Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/12/2009] [Accepted: 07/26/2009] [Indexed: 12/12/2022]
Abstract
Dystrophic axons and terminals are common in the myenteric plexus and smooth muscle of the gastrointestinal (GI) tract of aged rats. In young adult rats, alpha-synuclein in its normal state is abundant throughout the myenteric plexus, making this protein-which is prone to fibrillization-a candidate marker for axonopathies in the aged rat. To determine if aggregation of alpha-synuclein is involved in the formation of age-related enteric neuropathies, we sampled the stomach, small intestine and large intestine of adult, middle-aged, and aged virgin male Fischer 344 rats stained for alpha-synuclein in both its normal and pathological states. Alpha-synuclein-positive dystrophic axons and terminals were present throughout the GI tract of middle-aged and aged rats, with immunohistochemical double labeling demonstrating co-localization within nitric oxide synthase-, calretinin-, calbindin-, or tyrosine hydroxylase-positive markedly swollen neurites. However, other dystrophic neurites positive for each of these four markers were not co-reactive for alpha-synuclein. Similarly, a subpopulation of alpha-synuclein inclusions contained deposits immunostained with an anti-tau phospho-specific Ser(262) antibody, but not all of these hyperphosphorylated tau-positive aggregates were co-localized with alpha-synuclein. The presence of heteroplastic and potentially degenerating neural elements and protein aggregates both positive and negative for alpha-synuclein suggests a complex chronological relationship between the onset of degenerative changes and the accumulation of misfolded proteins. Additionally, proteins other than alpha-synuclein appear to be involved in age-related axonopathies. Finally, this study establishes the utility of the aging Fischer 344 rat for the study of synucleopathies and tauopathies in the GI tract.
Collapse