51
|
Ahmed Z, Wagdy M, Benjamin M, Mohamed S, Mohamed H, Ahmed S, Kanjilal B, Wieraszko A. Therapeutic effects of acrobatic exercise and magnetic field exposure on functional recovery after spinal cord injury in mice. Bioelectromagnetics 2010; 32:49-57. [DOI: 10.1002/bem.20610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
52
|
Salazar DL, Uchida N, Hamers FPT, Cummings BJ, Anderson AJ. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One 2010; 5:e12272. [PMID: 20806064 PMCID: PMC2923623 DOI: 10.1371/journal.pone.0012272] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/28/2010] [Indexed: 12/20/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133+ and CD24−/lo population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery. Methods and Findings hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein. Conclusions The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the “window of opportunity” for intervention.
Collapse
Affiliation(s)
- Desirée L. Salazar
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
| | - Nobuko Uchida
- StemCells, Inc., Palo Alto, California, United States of America
| | | | - Brian J. Cummings
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Irvine, Irvine, California United States of America
| | - Aileen J. Anderson
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Irvine, Irvine, California United States of America
- * E-mail:
| |
Collapse
|
53
|
Jakeman LB, Hoschouer EL, Basso DM. Injured mice at the gym: review, results and considerations for combining chondroitinase and locomotor exercise to enhance recovery after spinal cord injury. Brain Res Bull 2010; 84:317-26. [PMID: 20558254 DOI: 10.1016/j.brainresbull.2010.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/02/2010] [Accepted: 06/02/2010] [Indexed: 01/08/2023]
Abstract
Exercise provides a number of important benefits after spinal cord injury in clinical studies and animal models. However, the amount of functional improvement in overground locomotion obtained with exercise alone has been limited thus far, for reasons that are still poorly understood. One hypothesis is that the complex network of endogenous extracellular matrix components, including chondroitin sulfate proteoglycans (CSPGs), can inhibit exercise-induced remodeling and limit plasticity of spared circuitry in the adult central nervous system. Recent animal studies have shown that chondroitinase ABC (ChABC) can enhance plasticity in the adult nervous system by cleaving glycosaminoglycan sidechains from CSPGs. In this article we review the current literature on plasticity observed with locomotor training and following degradation of CSPGs with ChABC and then present a rationale for the use of exercise combined with ChABC to promote functional recovery after spinal cord injury. We also present results of a preliminary study that tested the simplest approach for combining these treatments; use of a single intraparenchymal injection of ChABC administered to the lumbar enlargement of mice with voluntary wheel running exercise after a mid-thoracic spinal contusion injury. The results are negative, yet serve to highlight limitations in our understanding of the most effective protocols for combining these approaches. Further work is directed to identify the timing, type, and quantity of exercise and pharmacological interventions that can be used to maximize functional improvements by strengthening appropriate synaptic connections.
Collapse
Affiliation(s)
- Lyn B Jakeman
- Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, USA.
| | | | | |
Collapse
|
54
|
Foret A, Quertainmont R, Botman O, Bouhy D, Amabili P, Brook G, Schoenen J, Franzen R. Stem cells in the adult rat spinal cord: plasticity after injury and treadmill training exercise. J Neurochem 2010; 112:762-72. [DOI: 10.1111/j.1471-4159.2009.06500.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
55
|
Boulenguez P, Vinay L. Strategies to restore motor functions after spinal cord injury. Curr Opin Neurobiol 2009; 19:587-600. [PMID: 19896827 DOI: 10.1016/j.conb.2009.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/23/2009] [Accepted: 10/12/2009] [Indexed: 12/20/2022]
Abstract
This review presents recent advances in the development of strategies to restore posture and locomotion after spinal cord injury (SCI). A set of strategies focusing on the lesion site includes prevention of secondary damages, promotion of axonal sprouting/regeneration, and replacement of lost cells. Other strategies focus on spinal central pattern generators (CPGs). Training promotes functional recovery by enhancing the plasticity of CPGs and these sublesional networks can be reactivated by means of pharmacological or electrical stimulation. It is now clear that substantial functional recovery will require a combination of strategies adapted to each phase following SCI. Finally, improvements in the understanding of the mechanisms underlying spasticity may lead to new treatments of this disabling complication affecting patients with SCI.
Collapse
Affiliation(s)
- Pascale Boulenguez
- Laboratoire Plasticité et Physio-Pathologie de Motricité (UMR6196), Centre National de Recherche Scientifique (CNRS) & Aix-Marseille Université, CNRS, 31 chemin Joseph Aiguier, F-13402 Marseille cx 20, France
| | | |
Collapse
|
56
|
Oh MJ, Seo TB, Kwon KB, Yoon SJ, Elzi DJ, Kim BG, Namgung U. Axonal Outgrowth and Erk1/2 Activation by Training after Spinal Cord Injury in Rats. J Neurotrauma 2009; 26:2071-82. [DOI: 10.1089/neu.2008.0800] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Myung-Jin Oh
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Tae Beom Seo
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Ku-Birm Kwon
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Sung-Jin Yoon
- Department of Physical Education, Korea University, Seoul, Korea
| | - David J. Elzi
- Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, Texas
| | - Byung G. Kim
- Brain Disease Research Center, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| |
Collapse
|
57
|
Edgerton VR, Roy RR. Activity-dependent plasticity of spinal locomotion: implications for sensory processing. Exerc Sport Sci Rev 2009; 37:171-8. [PMID: 19955866 PMCID: PMC2790155 DOI: 10.1097/jes.0b013e3181b7b932] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lumbosacral spinal cord of mammals contains the neural circuitry capable of generating full weight-bearing locomotion of the hind limbs without any supraspinal input. One or more interventions, for example, pharmacological, epidural stimulation, and/or locomotor training, however, are necessary to gain access to and modulate the properties of this circuitry and to facilitate recovery of full weight-bearing locomotion after spinal cord injury.
Collapse
Affiliation(s)
- V Reggie Edgerton
- Department of Physiological Science, Brain Research Institute, University of California, Los Angeles, 90095, USA.
| | | |
Collapse
|
58
|
Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009; 12:1333-42. [PMID: 19767747 DOI: 10.1038/nn.2401] [Citation(s) in RCA: 506] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 08/20/2009] [Indexed: 12/15/2022]
Abstract
After complete spinal cord transections that removed all supraspinal inputs in adult rats, combinations of serotonergic agonists and epidural electrical stimulation were able to acutely transform spinal networks from nonfunctional to highly functional and adaptive states as early as 1 week after injury. Using kinematics, physiological and anatomical analyses, we found that these interventions could recruit specific populations of spinal circuits, refine their control via sensory input and functionally remodel these locomotor pathways when combined with training. The emergence of these new functional states enabled full weight-bearing treadmill locomotion in paralyzed rats that was almost indistinguishable from voluntary stepping. We propose that, in the absence of supraspinal input, spinal locomotion can emerge from a combination of central pattern-generating capability and the ability of these spinal circuits to use sensory afferent input to control stepping. These findings provide a strategy by which individuals with spinal cord injuries could regain substantial levels of motor control.
Collapse
|
59
|
Smith RR, Brown EH, Shum-Siu A, Whelan A, Burke DA, Benton RL, Magnuson DS. Swim Training Initiated Acutely after Spinal Cord Injury Is Ineffective and Induces Extravasation In and Around the Epicenter. J Neurotrauma 2009. [DOI: 10.1089/neu.2008.0829] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Rebecca R. Smith
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Edward H. Brown
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Ashley Whelan
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Darlene A. Burke
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Richard L. Benton
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - David S.K. Magnuson
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
60
|
Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson AJ, Cummings BJ. Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS One 2009; 4:e5871. [PMID: 19517014 PMCID: PMC2690693 DOI: 10.1371/journal.pone.0005871] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 04/22/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human central nervous system-stem cells grown as neurospheres (hCNS-SCns) self-renew, are multipotent, and have potential therapeutic applications following trauma to the spinal cord. We have previously shown locomotor recovery in immunodeficient mice that received a moderate contusion spinal cord injury (SCI) and hCNS-SCns transplantation 9 days post-injury (dpi). Engrafted hCNS-SCns exhibited terminal differentiation to myelinating oligodendrocytes and synapse-forming neurons. Further, selective ablation of human cells using Diphtheria toxin (DT) abolished locomotor recovery in this paradigm, suggesting integration of human cells within the mouse host as a possible mechanism for the locomotor improvement. However, the hypothesis that hCNS-SCns could alter the host microenvironment as an additional or alternative mechanism of recovery remained unexplored; we tested that hypothesis in the present study. METHODS AND FINDINGS Stereological quantification of human cells using a human-specific cytoplasmic marker demonstrated successful cell engraftment, survival, migration and limited proliferation in all hCNS-SCns transplanted animals. DT administration at 16 weeks post-transplant ablated 80.5% of hCNS-SCns. Stereological quantification for lesion volume, tissue sparing, descending serotonergic host fiber sprouting, chondroitin sulfate proteoglycan deposition, glial scarring, and angiogenesis demonstrated no evidence of host modification within the mouse spinal cord as a result of hCNS-SCns transplantation. Biochemical analyses supplemented stereological data supporting the absence of neural stem-cell mediated host repair. However, linear regression analysis of the number of engrafted hCNS-SCns vs. the number of errors on a horizontal ladder beam task revealed a strong correlation between these variables (r = -0.78, p<0.05), suggesting that survival and engraftment were directly related to a quantitative measure of recovery. CONCLUSIONS Altogether, the data suggest that the locomotor improvements associated with hCNS-SCns transplantation were not due to modifications within the host microenvironment, supporting the hypothesis that human cell integration within the host circuitry mediates functional recovery following a 9 day delayed transplant.
Collapse
Affiliation(s)
- Mitra J. Hooshmand
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Christopher J. Sontag
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Nobuko Uchida
- StemCells, Inc., Palo Alto, California, United States of America
| | - Stan Tamaki
- StemCells, Inc., Palo Alto, California, United States of America
| | - Aileen J. Anderson
- Department of Physical Medicine and Rehabilitation, Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
| | - Brian J. Cummings
- Department of Physical Medicine and Rehabilitation, Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
61
|
Plastic responses to spinal cord injury. Behav Brain Res 2008; 192:114-23. [DOI: 10.1016/j.bbr.2008.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 12/26/2022]
|
62
|
Dunlop SA. Activity-dependent plasticity: implications for recovery after spinal cord injury. Trends Neurosci 2008; 31:410-8. [DOI: 10.1016/j.tins.2008.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 12/29/2022]
|
63
|
Ying Z, Roy RR, Zhong H, Zdunowski S, Edgerton VR, Gomez-Pinilla F. BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats. Neuroscience 2008; 155:1070-8. [PMID: 18672032 DOI: 10.1016/j.neuroscience.2008.06.057] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/07/2008] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
Abstract
Clinical evidence indicates that motor training facilitates functional recovery after a spinal cord injury (SCI). Brain-derived neurotrophic factor (BDNF) is a powerful synaptic facilitator and likely plays a key role in motor and sensory functions. Spinal cord hemisection decreases the levels of BDNF below the injury site, and exercise can counteract this decrease [Ying Z, Roy RR, Edgerton VR, Gomez-Pinilla F (2005) Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Exp Neurol 193:411-419]. It is not clear, however, whether the exercise-induced increases in BDNF play a role in mediating the recovery of locomotion after a SCI. We performed a lateral cervical ( approximately C4) hemisection in adult rats. Seven days after hemisection, the BDNF inhibitor trkB IgG was injected into the cervical spinal cord below the lesion ( approximately C5-C6). Half of the rats were exposed to voluntary running wheels for 14 days. Locomotor ability was assessed by determining the symmetry between the contralateral (unaffected) vs. the ipsilateral (affected) forelimb at the most optimum treadmill speed for each rat. Sedentary and exercised rats with BDNF inhibition showed a higher level of asymmetry during the treadmill locomotion test than rats not treated with the BDNF inhibitor. In hemisected rats, exercise normalized the levels of molecules important for synaptic function, such as cyclic AMP response element binding protein (CREB) and synapsin I, in the ipsilateral cervical enlargement, whereas the BDNF blocker lessened these exercise-associated effects. The results indicate that BDNF levels play an important role in shaping the synaptic plasticity and in defining the level of recovery of locomotor performance after a SCI.
Collapse
Affiliation(s)
- Z Ying
- Department of Physiological Science, University of California, Los Angeles, CA 90095-1527, USA
| | | | | | | | | | | |
Collapse
|
64
|
Marcuzzo S, Ferreira Dutra M, Stigger F, Severo do Nascimento P, Ilha J, Kalil-Gaspar PI, Achaval M. Beneficial effects of treadmill training in a cerebral palsy-like rodent model: Walking pattern and soleus quantitative histology. Brain Res 2008; 1222:129-40. [DOI: 10.1016/j.brainres.2008.05.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
|
65
|
Christie BR, Eadie BD, Kannangara TS, Robillard JM, Shin J, Titterness AK. Exercising our brains: how physical activity impacts synaptic plasticity in the dentate gyrus. Neuromolecular Med 2008; 10:47-58. [PMID: 18535925 DOI: 10.1007/s12017-008-8033-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/16/2008] [Indexed: 01/09/2023]
Abstract
Exercise that engages the cardiovascular system has a myriad of effects on the body; however, we usually do not give much consideration to the benefits it may have for our minds. An increasing body of evidence suggests that exercise can have some remarkable effects on the brain. In this article, we will introduce how exercise can impact the capacity for neurons in the brain to communicate with one another. To properly convey this information, we will first briefly introduce the field of synaptic plasticity and then examine how the introduction of exercise to the experimental setting can actually alter the basic properties of synaptic plasticity in the brain. Next, we will examine some of the candidate physiological processes that might underlay these alterations. Finally, we will close by noting that, taken together, this data points toward our brains being dynamic systems that are in a continual state of flux and that physical exercise may help us to maximize the performance of both our body and our minds.
Collapse
Affiliation(s)
- Brian R Christie
- Division of Medical Sciences and Department of Biology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC, Canada, V8W 2Y2.
| | | | | | | | | | | |
Collapse
|
66
|
Pietropaolo S, Sun Y, Li R, Brana C, Feldon J, Yee BK. The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective. Behav Brain Res 2008; 192:42-60. [PMID: 18468702 DOI: 10.1016/j.bbr.2008.03.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/06/2008] [Accepted: 03/13/2008] [Indexed: 12/22/2022]
Abstract
There is growing interest in the effects of voluntary wheel running activity on brain and behaviour in laboratory rodents and their implications to humans. Here, the major findings to date on the impact of exercise on mental health and diseases as well as the possible underlying neurobiological mechanisms are summarised. Several critical modulating factors on the neurobehavioural effects of wheel running exercise are emphasized and discussed--including the amount of wheel running, sex and strain/species differences. We also reported the outcome of an empirical investigation of the impact of wheel running exercise on the expression of both cognitive and non-cognitive phenotypes in a triple (3 x Tg-AD) transgenic mouse model for Alzheimer's disease (AD). Clear sex- and paradigm-specific effects of exercise on the genetically determined phenotypes are illustrated, including the efficacy of wheel running activity in attenuating the sex-specific cognitive deficits. It is concluded that the wheel running paradigm represents a unique environmental manipulation for the investigation of neurobehavioural plasticity in terms of gene-environment interactions relevant to the pathogenesis and therapies of certain neuropsychiatric conditions.
Collapse
Affiliation(s)
- Susanna Pietropaolo
- Laboratory of Behavioural Neurobiology, ETH Zurich, Schorenstrasse 16, Schwerzenbach, Switzerland
| | | | | | | | | | | |
Collapse
|
67
|
Physical Activity and Neuroprotection in Amyotrophic Lateral Sclerosis. Neuromolecular Med 2008; 10:108-17. [DOI: 10.1007/s12017-008-8030-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/16/2008] [Indexed: 12/20/2022]
|
68
|
Šedý J, Urdzíková L, Jendelová P, Syková E. Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev 2008; 32:550-80. [DOI: 10.1016/j.neubiorev.2007.10.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 08/09/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
|
69
|
Siegenthaler MM, Berchtold NC, Cotman CW, Keirstead HS. Voluntary running attenuates age-related deficits following SCI. Exp Neurol 2007; 210:207-16. [PMID: 18164294 DOI: 10.1016/j.expneurol.2007.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/26/2007] [Accepted: 10/27/2007] [Indexed: 11/26/2022]
Abstract
Over the past few decades, the average age at time of spinal cord injury (SCI) has increased. Here we examined locomotor recovery and myelin pathology in both young and aged adult rats following contusion SCI. Our assessment indicates that the rate of locomotor recovery following SCI is significantly delayed in aged rats as compared to young rats, and is associated with a greater degree of pathology and demyelination. Additionally, we examined the effect of voluntary exercise, pre- and post-injury, on locomotor recovery and myelin pathology following contusion SCI. Our data indicate that exercise improves the locomotor recovery of injured aged rats such that it is comparable to the recovery rate of injured young rats, and is associated with a decreased area of pathology and amount of demyelination. Interestingly, the rate of locomotor recovery and myelin pathology in the aged exercised rats was similar to that of the young sedentary rats after injury, indicating that exercise attenuates the delayed recovery of function and associated histopathology in aged rats. These data indicate that there is an age-related delay in locomotor recovery following SCI, and an age-related increase in histopathology following SCI. Importantly, our data indicate that exercise attenuates these age-related deficits following SCI.
Collapse
Affiliation(s)
- Monica M Siegenthaler
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, CA 92697-4292, USA
| | | | | | | |
Collapse
|