51
|
Jing M, Shingo T, Yasuhara T, Kondo A, Morimoto T, Wang F, Baba T, Yuan WJ, Tajiri N, Uozumi T, Murakami M, Tanabe M, Miyoshi Y, Zhao S, Date I. The combined therapy of intrahippocampal transplantation of adult neural stem cells and intraventricular erythropoietin-infusion ameliorates spontaneous recurrent seizures by suppression of abnormal mossy fiber sprouting. Brain Res 2009; 1295:203-17. [PMID: 19646969 DOI: 10.1016/j.brainres.2009.07.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 11/27/2022]
Abstract
Adult neural stem cells (NSCs) possess the potentials to self-renew and exert neuroprotection. In this study, we examined whether adult NSCs had anti-epileptic effects in rats with status epilepticus (SE) induced by kainic acid (KA) and whether co-administration of erythropoietin (EPO) enhanced anti-epileptic effects or cell survival. Adult NSCs were transplanted into KA-lesioned hippocampus with or without intracerebroventricular EPO infusion. Electronic encephalography (EEG) was recorded for 3 weeks after transplantation. The frequency of abnormal spikes in rats with NSC transplantation decreased significantly compared to those of rats without NSC transplantation. Most of the transplanted NSCs differentiated into GFAP-positive astrocytes. EPO infusion significantly enhanced the survival of NSCs, but not neuronal differentiation or migration. NSC transplantation increased the number of neuropeptide Y (NPY) and glutamic acid decarboxylase 67 (GAD67)-positive interneurons. NSC transplantation also suppressed mossy fiber sprouting into the inner molecular layer with subsequent reduction of hippocampal excitability, which finally prevented the development of spontaneous recurrent seizures in adult rats after KA-induced SE. This study might shed light on the cytoarchitectural mechanisms of temporal lobe epilepsy as well as clarify the effect of adult NSC transplantation with intracerebroventricular EPO infusion for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Meng Jing
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Bolliet C, Bohn MC, Spector M. Non-viral delivery of the gene for glial cell line-derived neurotrophic factor to mesenchymal stem cells in vitro via a collagen scaffold. Tissue Eng Part C Methods 2009; 14:207-19. [PMID: 18721070 DOI: 10.1089/ten.tec.2008.0168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent advances in tissue engineering that combine an extracellular matrix-like scaffold with therapeutic molecules, cells, DNA encoding therapeutic proteins, or a combination of the three hold promise for treating defects in the brain resulting from a penetrating injury or tumor resection. The purpose of this study was to investigate a porous sponge-like collagen scaffold for non-viral delivery of a plasmid encoding for glial cell line-derived neurotrophic factor (pGDNF) to rat marrow stromal stem cells (also referred to as mesenchymal stem cells, MSCs). The effects of the following parameters on GDNF synthesis in the three-dimensional (3D) constructs were evaluated and compared with results in monolayer culture: initial plasmid load (2-50 microg pGDNF), ratio of a lipid transfection reagent to plasmid (5:10), culture environment during the transfection (static and dynamic), and cell density. The level of gene expression in the collagen scaffolds achieved therapeutic levels that had previously been found to support survival of dopaminergic and trigeminal neurons in vitro. For the highest loading of plasmid (50 microg), the level of GDNF protein remained six to seven times above the control level after 2 weeks, a significant difference. Cell density in the scaffold was of importance for an early increase in GDNF production, with accumulated GDNF being approximately 60% greater after 9 days of culture when scaffolds were initially seeded with 2 million rat MSCs compared to 500,000 cells. Application of orbital shaking during the 4 h of transfection had a positive effect on the production of GDNF on 3D constructs but not of the same magnitude as reported in monolayer studies. Overall, these results demonstrate that the combination of tissue engineering and non-viral transfection of MSCs for the over-expression of GDNF is a promising approach for the long-term production of GDNF and probably for neurotrophic factors in general.
Collapse
Affiliation(s)
- Catherine Bolliet
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
53
|
van Velthoven CTJ, Kavelaars A, van Bel F, Heijnen CJ. Regeneration of the ischemic brain by engineered stem cells: fuelling endogenous repair processes. ACTA ACUST UNITED AC 2009; 61:1-13. [PMID: 19348860 DOI: 10.1016/j.brainresrev.2009.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/24/2009] [Accepted: 03/27/2009] [Indexed: 01/27/2023]
Abstract
After ischemic brain injury various cell types including neurons, glia and endothelial cells are damaged and lose their function. Effective regeneration of brain tissue requires that all these cell types have to be replenished and combined to form a new functional network. Recent advances in regenerative medicine show the ability of stem cells to differentiate into various cell lineages. Several types of stem cells have been used to treat ischemic brain injury in rodent models including neuronal stem cells, mesenchymal stem cells and hematopoietic stem cells. Although these studies show promising results, it remains to be determined whether the beneficial effect of cell-based therapies in ischemic brain injury results from direct replacement of damaged cells by the transplanted cells. On the basis of the current literature we propose that neuroprotection by activation of anti-apoptotic mechanisms as well as improvement of the trophic milieu necessary for endogenous repair processes may be more important mechanisms underlying the improved functional outcome after stem cell treatment. Transplantation of native unmodified stem cells as such may not be sufficient to boost repair mechanisms provided by the endogenous stem cell population. An important aim of this review is to discuss the literature on the possible enhancement of regenerative function by combining stem cell transplantation with gene transduction into stem cells to enhance their regenerative and neuroprotective therapeutic potential. Finally, we briefly discuss the possibility of translation of this therapy to the clinic.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Laboratory of Psychoneuroimmunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
54
|
Date I, Yasuhara T. Neurological disorders and neural regeneration, with special reference to Parkinson’s disease and cerebral ischemia. J Artif Organs 2009; 12:11-6. [DOI: 10.1007/s10047-008-0441-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Indexed: 11/29/2022]
|
55
|
Yasuhara T, Date I. Gene therapy for Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:301-309. [PMID: 20411788 DOI: 10.1007/978-3-211-92660-4_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Parkinson's disease is characterized by the degeneration of the nigrostriatal dopaminergic neurons with the manifestation of tremor, rigidity, akinesia, and disturbances of postural reflexes. Medication using L-DOPA and surgeries including deep brain stimulation are the established therapies for Parkinson's disease. Cell therapies are also effective and have rapidly developed with the recent advancement in molecular biological technology including gene transfer. In this review, ex vivo gene therapy using genetically engineered cell transplantation for Parkinson's disease model of animals is described, including catecholamine/neurotrophic factor-secreting cell transplantation with or without encapsulation, as well as in vivo gene therapy using direct injection of viral vector to increase dopamine-production, ameliorate the survival of dopaminergic neurons, correct the deteriorated microenvironment, or normalize genetic abnormality. Furthermore, the future directions for clinical application are described together with recent clinical trials of gene therapy.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama, 700-8558, Japan.
| | | |
Collapse
|
56
|
Kadota T, Shingo T, Yasuhara T, Tajiri N, Kondo A, Morimoto T, Yuan WJ, Wang F, Baba T, Tokunaga K, Miyoshi Y, Date I. Continuous intraventricular infusion of erythropoietin exerts neuroprotective/rescue effects upon Parkinson's disease model of rats with enhanced neurogenesis. Brain Res 2008; 1254:120-7. [PMID: 19101524 DOI: 10.1016/j.brainres.2008.11.094] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 11/23/2008] [Accepted: 11/26/2008] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is characterized by degeneration of nigrostriatal dopaminergic neuronal systems. Several therapeutic tools for PD include medication using L-DOPA and surgeries such as deep brain stimulation are established. However, the therapies are considered as symptomatic therapy, but not basic remedy for PD and a new regenerative therapy would be desired to explore. In this study, the neuroprotective/rescue effects of erythropoietin (EPO), a well known hematopoietic hormone, on dopaminergic neurons were explored with neurogeneic potencies of EPO. EPO (100 IU/day) was continuously administered with micro-osmotic pump for a week to PD model of rats induced by intrastriatal 6-hydroxydopamine (6-OHDA) injection with subsequent behavioral and immunohistochemical investigations. The number of amphetamine-induced rotations of EPO-treated rats significantly decreased, compared to the control rats. The preservation of dopaminergic neurons of EPO-treated rats were confirmed by tyrosine hydroxylase staining and Fluoro-Gold staining. The number of bromodeoxyuridine (BrdU)/polysialic acid-neural cell adhesion molecule (PSA-NCAM) double positive cells in the subventricular zone of EPO treated rats significantly increased with migratory potencies to the damaged striatum,compared to the control rats. Furthermore, TUNEL staining and phosphorylated Akt staining revealed that the neuroprotective/rescue effects of EPO might be mediated by anti-apoptotic effects through the increase of phosphorylated Akt. These results suggest that continuous low dose infusion of EPO exerts neuroprotective/rescue effects with neurogeneic potentials. EPO might be a strong tool for PD therapy, although the further experiments should be added.
Collapse
Affiliation(s)
- Tomohito Kadota
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abe K. [Neuroprotective therapy for ischemic stroke with free radical scavenger and gene-stem cell therapy]. Rinsho Shinkeigaku 2008; 48:896-898. [PMID: 19198109 DOI: 10.5692/clinicalneurol.48.896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A free radical scavenger Edaravone is the first clinical drug for neuroprotection in the world which has been used from 2001 in most ischemic stroke patients in Japan, and is especially useful in thrombolytic therapy with tissue plasminogen activator (tPA). Of great importance for regenerative therapy and gene therapy are the neural stem cells which are intrinsically activated or exogenously transplanted. Addition of NTFs greatly enhanced an intrinsic migration or invasion of stem cells into the scaffold, which could provide a future regenerative potential against ischemic brain damage at chronic stage.
Collapse
Affiliation(s)
- Koji Abe
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University
| |
Collapse
|
58
|
Andres RH, Choi R, Steinberg GK, Guzman R. Potential of adult neural stem cells in stroke therapy. Regen Med 2008; 3:893-905. [DOI: 10.2217/17460751.3.6.893] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite state-of-the-art therapy, clinical outcome after stroke remains poor, with many patients left permanently disabled and dependent on care. Stem cell therapy has evolved as a promising new therapeutic avenue for the treatment of stroke in experimental studies, and recent clinical trials have proven its feasibility and safety in patients. Replacement of damaged cells and restoration of function can be accomplished by transplantation of different cell types, such as embryonic, fetal or adult stem cells, human fetal tissue and genetically engineered cell lines. Adult neural stem cells offer the advantage of avoiding the ethical problems associated with embryonic or fetal stem cells and can be harvested as autologous grafts from the individual patients. Furthermore, stimulation of endogenous adult stem cell-mediated repair mechanisms in the brain might offer new avenues for stroke therapy without the necessity of transplantation. However, important scientific issues need to be addressed to advance our understanding of the molecular mechanisms underlying the critical steps in cell-based repair to allow the introduction of these experimental techniques into clinical practice. This review describes up-to-date experimental concepts using adult neural stem cells for the treatment of stroke.
Collapse
Affiliation(s)
- Robert H Andres
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| | - Raymond Choi
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| | - Raphael Guzman
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| |
Collapse
|
59
|
Takahashi K, Yasuhara T, Shingo T, Muraoka K, Kameda M, Takeuchi A, Yano A, Kurozumi K, Agari T, Miyoshi Y, Kinugasa K, Date I. Embryonic neural stem cells transplanted in middle cerebral artery occlusion model of rats demonstrated potent therapeutic effects, compared to adult neural stem cells. Brain Res 2008; 1234:172-82. [DOI: 10.1016/j.brainres.2008.07.086] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/20/2008] [Accepted: 07/22/2008] [Indexed: 01/17/2023]
|