51
|
Deo AK, Theil FP, Nicolas JM. Confounding Parameters in Preclinical Assessment of Blood–Brain Barrier Permeation: An Overview With Emphasis on Species Differences and Effect of Disease States. Mol Pharm 2013; 10:1581-95. [DOI: 10.1021/mp300570z] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anand K. Deo
- UCB Pharma S.A., Chemin du Foriest, B-1420 Braine-l’Alleud,
Belgium
| | | | | |
Collapse
|
52
|
Kah JCY, Chen J, Zubieta A, Hamad-Schifferli K. Exploiting the Protein Corona around Gold Nanorods for Loading and Triggered Release. ACS NANO 2012; 6:6730-40. [PMID: 22804333 DOI: 10.1021/nn301389c] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
| | | | - Angel Zubieta
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | | |
Collapse
|
53
|
Aronica E, Sisodiya SM, Gorter JA. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev 2012; 64:919-29. [PMID: 22138133 DOI: 10.1016/j.addr.2011.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 10/03/2011] [Accepted: 11/20/2011] [Indexed: 12/26/2022]
Abstract
Over-expression of drug efflux transporters at the level of the blood-brain barrier (BBB) has been proposed as a mechanism responsible for multidrug resistance. Drug transporters in epileptogenic tissue are not only expressed in endothelial cells at the BBB, but also in other brain parenchymal cells, such as astrocytes, microglia and neurons, suggesting a complex cell type-specific regulation under pathological conditions associated with epilepsy. This review focuses on the cerebral expression patterns of several classes of well-known membrane drug transporters such as P-glycoprotein (Pgp), and multidrug resistance-associated proteins (MRPs) in the epileptogenic brain. Both experimental and clinical evidence of epilepsy-associated cerebral drug transporter regulation and the possible mechanisms underlying drug transporter regulation are discussed. Knowledge of the cerebral expression patterns of drug transporters in normal and epileptogenic brain will provide relevant information to guide strategies attempting to overcome drug resistance by targeting specific transporters.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
54
|
Potschka H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev 2012; 64:943-52. [PMID: 22210135 DOI: 10.1016/j.addr.2011.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 01/16/2023]
Abstract
Experimental support for the transporter hypothesis of drug resistance in epilepsies has triggered efforts developing and validating approaches to overcome enhanced blood-brain barrier efflux transport. Testing in rodent models has rendered proof-of-concept for an add-on therapy with antiepileptic drugs. However, further development of the approach would require tolerability considerations as efflux transporters serve an important protective function throughout the body limiting distribution of harmful xenobiotics. Relevant progress has been made in the elucidation of mechanisms driving up-regulation of the multidrug transporter P-glycoprotein in response to seizure activity. Based on this knowledge, novel strategies have been evaluated targeting the signaling cascade that regulates P-glycoprotein in the epileptic brain. Further concepts might include by-passing blood-brain barrier transporters by intracerebral administration or by encapsulation of antiepileptic drugs in nano-sized carrier systems. It is important to note that the future perspectives of respective approaches are still questionable based on the limited evidence for a clinical relevance of transporter expression. Thus, techniques are urgently needed for non-invasive assessment of blood-brain barrier transporter function. Respective techniques would allow testing for a clinical correlation between pharmacosensitivity and transporter function, validating therapeutic strategies targeting efflux transporters and selecting patients with transporter over-expression for respective clinical trials. Provided that further clinical data render support for the transporter hypothesis, the main question remains whether patients exist in which transporter over-expression is the predominant mechanism of drug resistance and in which overcoming drug efflux is equivalent with overcoming drug resistance. Imaging techniques might provide a tool to address these questions in clinical epileptology. However, the complex pharmacological interactions between antiepileptic drugs, radiotracers, and transporter modulators used in these approaches as well as interindividual differences in the brain pathology might hamper clear-cut conclusions and limit the diagnostic significance.
Collapse
|
55
|
Hen N, Bialer M, Yagen B. Syntheses and Evaluation of Anticonvulsant Activity of Novel Branched Alkyl Carbamates. J Med Chem 2012; 55:2835-45. [DOI: 10.1021/jm201751x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naama Hen
- Institute
for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120,
Israel
| | - Meir Bialer
- Institute
for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120,
Israel
- David R. Bloom Center
for Pharmacy, The Hebrew University of Jerusalem, Israel
| | - Boris Yagen
- Institute
for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120,
Israel
- David R. Bloom Center
for Pharmacy, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
56
|
Potschka H, Baltes S, Fedrowitz M, Löscher W. Impact of seizure activity on free extracellular phenytoin concentrations in amygdala-kindled rats. Neuropharmacology 2011; 61:909-17. [DOI: 10.1016/j.neuropharm.2011.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 01/17/2023]
|
57
|
Potschka H. Transporter hypothesis of drug-resistant epilepsy: challenges for pharmacogenetic approaches. Pharmacogenomics 2011; 11:1427-38. [PMID: 21047204 DOI: 10.2217/pgs.10.126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drug resistance in epilepsy is considered a complex and multifactorial problem. Overexpression of efflux transporters at the blood-brain barrier is discussed as one factor that might limit brain penetration and efficacy of antiepileptic drugs. Whereas experimental data render support for this hypothesis, there is still a lack of sufficient clinical evidence indicating a functional role of efflux transporters. Pharmacogenetic analysis has been considered as one approach in the evaluation of a putative link between transporters and drug-resistant epilepsy. However, the likelihood of a multifactorial nature of drug resistance and the complexity of the events regulating transporters pose a major challenge to any attempt at linking selected genetic polymorphisms to the outcome of drug therapy. In this article, the evidence for an impact of efflux transporters on the response to antiepileptic drugs is discussed, focusing in particular on the different issues presenting a challenge for pharmacogenetic approaches in this field.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University, Koeniginstr. 16, D-80539 Munich, Germany.
| |
Collapse
|
58
|
Tenofovir and emtricitabine cerebrospinal fluid-to-plasma ratios correlate to the extent of blood-brainbarrier damage. AIDS 2011; 25:1437-9. [PMID: 21712657 DOI: 10.1097/qad.0b013e3283489cb1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
59
|
Potschka H. Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies? Epilepsia 2010; 51:1333-47. [PMID: 20477844 DOI: 10.1111/j.1528-1167.2010.02585.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enhanced brain efflux of antiepileptic drugs by the blood-brain barrier transporter P-glycoprotein is discussed as one mechanism contributing to pharmacoresistance of epilepsies. P-glycoprotein overexpression has been proven to occur as a consequence of seizure activity. Therefore, blocking respective signaling events should help to improve brain penetration and efficacy of P-glycoprotein substrates. A series of recent studies revealed key signaling factors involved in seizure-associated transcriptional activation of P-glycoprotein. These data suggested several interesting targets, including the N-methyl-d-aspartate (NMDA) receptor, the inflammatory enzyme cyclooxygenase-2, and the prostaglandin E2 EP1 receptor. These targets have been further evaluated in rodent models, demonstrating that targeting these factors can control P-glycoprotein expression, improve antiepileptic drug brain penetration, and help to overcome pharmacoresistance. In general, the approach offers particular advantages over transporter inhibition as it preserves basal transporter function. In this review the different strategies for blocking P-glycoprotein upregulation, including their therapeutic promise and drawbacks are discussed. Moreover, pros and cons of the approach are compared to those of alternative strategies to overcome transporter-associated resistance. Regarding future perspectives of the novel approach, there is an obvious need to more clearly define the clinical relevance of transporter overexpression. In this context current efforts are discussed, including the development of imaging tools that allow an evaluation of P-glycoprotein function in individual patients.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
60
|
Marchi N, Teng Q, Nguyen MT, Franic L, Desai NK, Masaryk T, Rasmussen P, Trasciatti S, Janigro D. Multimodal investigations of trans-endothelial cell trafficking under condition of disrupted blood-brain barrier integrity. BMC Neurosci 2010; 11:34. [PMID: 20214812 PMCID: PMC2842276 DOI: 10.1186/1471-2202-11-34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/09/2010] [Indexed: 01/05/2023] Open
Abstract
Background Stem cells or immune cells targeting the central nervous system (CNS) bear significant promises for patients affected by CNS disorders. Brain or spinal cord delivery of therapeutic cells is limited by the blood-brain barrier (BBB) which remains one of the recognized rate-limiting steps. Osmotic BBB disruption (BBBD) has been shown to improve small molecule chemotherapy for brain tumors, but successful delivery of cells in conjunction with BBBD has never been reported. We have used a clinically relevant model (pig) of BBBD to attempt brain delivery of TALL-104, a human leukemic T cell line. TALL-104 cells are potent tumor killers and have demonstrated potential for systemic tumor therapy. The pig model used is analogous to the clinical BBBD procedure. Cells were injected in the carotid artery after labeling with the MRI T1 contrast agent GdHPDO3A. Contrast CT scans were used to quantify BBBD and MRI was used to detect Gd++-loaded cells in the brain. Transcranial Doppler was used to monitor cerebral blood flow. EEG recordings were used to detect seizures. Immunocytochemical detection (Cresyl Violet, anti-human CD8 for TALL-104, Evans Blue for BBB damage, GFAP and NEUN) was performed. Results At the concentration used TALL-104 cells were tolerated. Incomplete BBBD did not allow cell entry into the brain. MRI scans at 24 and 48 hours post-injection allowed visualization of topographically segregated cells in the hemisphere that underwent successful BBBD. Perivascular location of TALL-104 was confirmed in the BBBD hemisphere by Cresyl violet and CD8 immunocytochemistry. No significant alteration in CBF or EEG activity was recorded during cell injections. Conclusions Our data show that targeted CNS cell therapy requires blood-brain barrier disruption. MRI-detectable cytotoxic anti-neoplastic cells can be forced to transverse the BBB and accumulate in the perivascular space. The virtual absence of toxicity, the high anti-tumor activity of TALL-104, and the clinical feasibility of human osmotic BBBD suggest that this approach may be adopted to treat brain or spinal cord tumors. In addition, BBBD may favor CNS entry of other cells that normally lack CNS tropism.
Collapse
Affiliation(s)
- Nicola Marchi
- Department of Cerebrovascular Research Cell Biology, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Ave, Cleveland, 44106 Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Elkin BS, Shaik MA, Morrison B. Fixed negative charge and the Donnan effect: a description of the driving forces associated with brain tissue swelling and oedema. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:585-603. [PMID: 20047940 PMCID: PMC2944388 DOI: 10.1098/rsta.2009.0223] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cerebral oedema or brain tissue swelling is a significant complication following traumatic brain injury or stroke that can increase the intracranial pressure (ICP) and impair blood flow. Here, we have identified a potential driver of oedema: the negatively charged molecules fixed within cells. This fixed charge density (FCD), once exposed, could increase ICP through the Donnan effect. We have shown that metabolic processes and membrane integrity are required for concealing this FCD as slices of rat cortex swelled immediately (within 30 min) following dissection if treated with 2 deoxyglucose + cyanide (2DG+CN) or Triton X-100. Slices given ample oxygen and glucose, however, did not swell significantly. We also found that dead brain tissue swells and shrinks in response to changes in ionic strength of the bathing medium, which suggests that the Donnan effect is capable of pressurizing and swelling brain tissue. As predicted, a non-ionic osmolyte, 1,2 propanediol, elicited no volume change at 2000 x 10(-3) osmoles l(-1) (Osm). Swelling data were well described by triphasic mixture theory with the calculated reference state FCD similar to that measured with a 1,9 dimethylmethylene blue assay. Taken together, these data suggest that intracellular fixed charges may contribute to the driving forces responsible for brain swelling.
Collapse
|
62
|
Marchi N, Gonzalez-Martinez J, Nguyen MT, Granata T, Janigro D. Transporters in drug-refractory epilepsy: clinical significance. Clin Pharmacol Ther 2010; 87:13-5. [PMID: 20019694 DOI: 10.1038/clpt.2009.225] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug resistance remains an unmet challenge in a variety of neurological disorders, but epilepsy is probably the refractory disease that has received most experimental, preclinical, and therapeutic attention. Although resective surgery continues to improve our ability to provide seizure relief, new discoveries have potential as alternative therapeutic approaches to multiple drug resistance. As discussed here, the field is replete with controversies and false starts, in particular as it concerns the existence of genetic predisposition to inadequate pharmacological seizure control.
Collapse
Affiliation(s)
- N Marchi
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
63
|
Granata T, Marchi N, Carlton E, Ghosh C, Gonzalez-Martinez J, Alexopoulos AV, Janigro D. Management of the patient with medically refractory epilepsy. Expert Rev Neurother 2009; 9:1791-802. [PMID: 19951138 PMCID: PMC3761964 DOI: 10.1586/ern.09.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epilepsy imposes a significant clinical, epidemiologic and economic burden on societies throughout the world. Despite the development of more than ten new antiepileptic drugs over the past 15 years, approximately a third of patients with epilepsy remain resistant to pharmacotherapy. Individuals who fail to respond, or respond only partially, continue to have incapacitating seizures. Managing patients with medically refractory epilepsy is challenging and requires a structured multidisciplinary approach in specialized clinics. If the problems related to drug resistance could be resolved, even in part, by improving the pharmacokinetic profile of existing drugs, the economic savings would be remarkable and the time required to design drugs that achieve seizure control would be shorter than the discovery of new targets and molecules was required. A promising approach is the use of corticosteroids that may have a dual beneficial effect. Resective brain surgery remains the ultimate and highly successful approach to multiple drug resistance in epileptic patients.
Collapse
Affiliation(s)
- Tiziana Granata
- Department of Neurology, Cleveland, OH, USA, Department of Child Neurology, Carlo Besta Neurological Institute, Milan, Italy, Tel.: +39 022 394 302, Fax: +39 027 063 8217
| | - Nicola Marchi
- Department of Cell Biology and Cerebrovascular Research Cleveland Clinic Foundation, Cleveland, OH, USA, Tel.: +1 216 445 0561, Fax: +1 216 445 1466
| | - Erin Carlton
- Cerebrovascular Research Cleveland Clinic Foundation, Cleveland, OH, USA, Tel.: +1 216 445 0561, Fax: +1 216 445 1466
| | - Chaitali Ghosh
- Department of Cell Biology and Cerebrovascular Research Cleveland Clinic Foundation, Cleveland, OH, USA, Tel.: +1 216 445 0561, Fax: +1 216 445 1466
| | - Jorge Gonzalez-Martinez
- Department of Neurological Surgery, Cleveland, OH, USA, Tel.: +1 216 445 0561, Fax: +1 216 445 1466
| | - Andreas V Alexopoulos
- Cleveland Clinic Epilepsy Center, 9500 Euclid Ave, S-51, Cleveland, OH 44195, USA, Tel.: +1 216 444 3629, Fax: +1 216 445 4378
| | - Damir Janigro
- Departments of Neurological Surgery, Molecular Medicine and Cell Biology and the Cerebrovascular Research Cleveland Clinic Foundation, Cleveland, OH, USA, Tel.: +1 216 445 0561, Fax: +1 216 445 1466
| |
Collapse
|
64
|
Mazzone PJ, Marchi N, Fazio V, Taylor JM, Masaryk T, Bury L, Mekhail T, Janigro D. Small vessel ischemic disease of the brain and brain metastases in lung cancer patients. PLoS One 2009; 4:e7242. [PMID: 19789633 PMCID: PMC2747277 DOI: 10.1371/journal.pone.0007242] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/07/2009] [Indexed: 11/18/2022] Open
Abstract
Background Brain metastases occur commonly in patients with lung cancer. Small vessel ischemic disease is frequently found when imaging the brain to detect metastases. We aimed to determine if the presence of small vessel ischemic disease (SVID) of the brain is protective against the development of brain metastases in lung cancer patients. Methodology/Principal Findings A retrospective cohort of 523 patients with biopsy confirmed lung cancer who had received magnetic resonance imaging of the brain as part of their standard initial staging evaluation was reviewed. Information collected included demographics, comorbidities, details of the lung cancer, and the presence of SVID of the brain. A portion of the cohort had the degree of SVID graded. The primary outcome measure was the portion of study subjects with and without SVID of the brain who had evidence of brain metastases at the time of initial staging of their lung cancer.109 patients (20.8%) had evidence of brain metastases at presentation and 345 (66.0%) had evidence of SVID. 13.9% of those with SVID and 34.3% of those without SVID presented with brain metastases (p<0.0001). In a model including age, diabetes mellitus, hypertension, hyperlipidemia, and tobacco use, SVID of the brain was found to be the only protective factor against the development of brain metastases, with an OR of 0.31 (0.20, 0.48; p<0.001). The grade of SVID was higher in those without brain metastases. Conclusions/Significance These findings suggest that vascular changes in the brain are protective against the development of brain metastases in lung cancer patients.
Collapse
Affiliation(s)
- Peter J Mazzone
- Respiratory Institute, The Cleveland Clinic, Cleveland, Ohio, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|