51
|
Abstract
Descriptions of epileptic seizures and epilepsy date back to antiquity, and research into fundamental mechanisms of epilepsy in animal models, as well as patients, has been carried out for over a century. Studies of epileptogenesis, however, as distinct from ictogenesis, have been pursued for only a few decades, and antiepileptogenesis, the prevention of epilepsy or its progression, and the reversal of the epileptogenic process or cure, are relatively recent interests of the basic research community. The goal to develop antiepileptogenic interventions would be greatly facilitated by the identification of reliable biomarkers of epileptogenesis that could be used to create cost-effective, high-throughput screening models for potential antiepileptogenic compounds, as well as enrich patient populations and serve as surrogate endpoints for clinical trials. Without such biomarkers, the cost for clinical validation of antiepileptogenic interventions would be prohibitive. Epileptogenic mechanisms, antiepileptogenic interventions, and biomarkers are likely to be specific for the many different causes of epilepsy, which include genetic influences, cell loss and synaptic plasticity, malformations of cortical development, and autoimmune disorders, to name but a few. A high priority is currently being placed on investigations to elucidate fundamental mechanisms of epileptogenesis and identify biomarkers for specific models of human epilepsy, such as mesial temporal lobe epilepsy with hippocampal sclerosis, traumatic brain injury, and a variety of pediatric diseases, including tuberous sclerosis and West syndrome.
Collapse
Affiliation(s)
- Asla Pitkänen
- />Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- />Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Jerome Engel
- />Department of Neurology, Neurobiology, and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769 USA
| |
Collapse
|
52
|
Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014; 11:385-400. [PMID: 24671870 PMCID: PMC3996125 DOI: 10.1007/s13311-014-0266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Collapse
Affiliation(s)
| | - Michael A. Rogawski
- />Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | |
Collapse
|
53
|
|
54
|
White HS, Löscher W. Searching for the ideal antiepileptogenic agent in experimental models: single treatment versus combinatorial treatment strategies. Neurotherapeutics 2014; 11:373-84. [PMID: 24425186 PMCID: PMC3996126 DOI: 10.1007/s13311-013-0250-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A major unmet medical need is the lack of treatments to prevent (or modify) epilepsy in patients at risk, for example, after epileptogenic brain insults such as traumatic brain injury, stroke, or prolonged acute symptomatic seizures like complex febrile seizures or status epilepticus. Typically, following such brain insults there is a seizure-free interval ("latent period"), lasting months to years before the onset of spontaneous recurrent epileptic seizures. The latent period after a brain insult offers a window of opportunity in which an appropriate treatment may prevent or modify the epileptogenic process induced by a brain insult. A similar latent period occurs in patients with epileptogenic gene mutations. Studies using animal models of epilepsy have led to a greater understanding of the factors underlying epileptogenesis and have provided significant insight into potential targets by which the development of epilepsy may be prevented or modified. This review focuses largely on some of the most common animal models of epileptogenesis and their potential utility for evaluating proposed antiepileptogenic therapies and identifying useful biomarkers. The authors also describe some of the limitations of using animal models in the search for therapies that move beyond the symptomatic treatment of epilepsy. Promising results of previous studies designed to evaluate antiepileptogenesis and the role of monotherapy versus polytherapy approaches are also discussed. Recent data from both models of genetic and acquired epilepsies strongly indicate that it is possible to prevent or modify epileptogenesis, and, hopefully, such promising results can ultimately be translated into the clinic.
Collapse
Affiliation(s)
- H. Steve White
- />Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT USA
| | - Wolfgang Löscher
- />Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
- />Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
55
|
Cuomo O, Rispoli V, Leo A, Politi GB, Vinciguerra A, di Renzo G, Cataldi M. The antiepileptic drug levetiracetam suppresses non-convulsive seizure activity and reduces ischemic brain damage in rats subjected to permanent middle cerebral artery occlusion. PLoS One 2013; 8:e80852. [PMID: 24236205 PMCID: PMC3827478 DOI: 10.1371/journal.pone.0080852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023] Open
Abstract
The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Vincenzo Rispoli
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giovanni Bosco Politi
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Gianfranco di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
- * E-mail:
| |
Collapse
|
56
|
Siniscalchi A, Gallelli L, Russo E, De Sarro G. A review on antiepileptic drugs-dependent fatigue: pathophysiological mechanisms and incidence. Eur J Pharmacol 2013; 718:10-6. [PMID: 24051268 DOI: 10.1016/j.ejphar.2013.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 02/04/2023]
Abstract
Fatigue represents a common side effect of several drugs, however, the underlying mechanisms have not been well identified. A depression of the central nervous system (CNS) and/or changes in peripheral processes have been associated with the development of fatigue. Antiepileptic drugs (AEDs), generally decreasing CNS excitability, are used in the treatment of seizures as well as other neurological and psychiatric diseases. Fatigue is certainly a common AEDs' side effect, although a high degree of variability exists depending on both patients' characteristics and the drug used. Here, we delineate the pathophysiological central and peripheral mechanisms by which AEDs may cause fatigue also reviewing the available clinical data in order to assess a possible AEDs rank and highlight each AEDs related risk. It appears that drugs acting on the GABAergic system have the highest incidence (with tiagabine exception) of fatigue followed by Gabapentin and Levetiracetam whereas drugs mainly inhibiting sodium channels (Carbamazepine, Eslicarbazepine, Lamotrigine, Phenytoin and Valproate) have the lowest. However, the dose used, AEDs related side effects and patients' characteristics might influence the degree of fatigue observed.
Collapse
Affiliation(s)
- Antonio Siniscalchi
- Department of Neuroscience, Neurology Division, Annunziata Hospital, Cosenza, Italy
| | | | | | | |
Collapse
|
57
|
Brooks-Kayal AR, Bath KG, Berg AT, Galanopoulou AS, Holmes GL, Jensen FE, Kanner AM, O'Brien TJ, Whittemore VH, Winawer MR, Patel M, Scharfman HE. Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 2013; 54 Suppl 4:44-60. [PMID: 23909853 PMCID: PMC3924317 DOI: 10.1111/epi.12298] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many symptoms of neurologic or psychiatric illness--such as cognitive impairment, depression, anxiety, attention deficits, and migraine--occur more frequently in people with epilepsy than in the general population. These diverse comorbidities present an underappreciated problem for people with epilepsy and their caregivers because they decrease quality of life, complicate treatment, and increase mortality. In fact, it has been suggested that comorbidities can have a greater effect on quality of life in people with epilepsy than the seizures themselves. There is increasing recognition of the frequency and impact of cognitive and behavioral comorbidities of epilepsy, highlighted in the 2012 Institute of Medicine report on epilepsy. Comorbidities have also been acknowledged, as a National Institutes of Health (NIH) Benchmark area for research in epilepsy. However, relatively little progress has been made in developing new therapies directed specifically at comorbidities. On the other hand, there have been many advances in understanding underlying mechanisms. These advances have made it possible to identify novel targets for therapy and prevention. As part of the International League Against Epilepsy/American Epilepsy Society workshop on preclinical therapy development for epilepsy, our working group considered the current state of understanding related to terminology, models, and strategies for therapy development for the comorbidities of epilepsy. Herein we summarize our findings and suggest ways to accelerate development of new therapies. We also consider important issues to improve research including those related to methodology, nonpharmacologic therapies, biomarkers, and infrastructure.
Collapse
Affiliation(s)
- Amy R Brooks-Kayal
- Departments of Pediatrics, Neurology and Pharmaceutical Sciences, University of Colorado Schools of Medicine and Pharmacy, Children's Hospital Colorado, Aurora, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Russo E, Chimirri S, Aiello R, De Fazio S, Leo A, Rispoli V, Marra R, Labate A, De Fazio P, Citraro R, De Sarro G. Lamotrigine positively affects the development of psychiatric comorbidity in epileptic animals, while psychiatric comorbidity aggravates seizures. Epilepsy Behav 2013; 28:232-40. [PMID: 23773980 DOI: 10.1016/j.yebeh.2013.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 02/07/2023]
Abstract
Several clinical and preclinical studies have focused on the relationship between epilepsy and psychological disturbances. Although behavior in some experimental models of epilepsy has been studied, only few of them can be considered as models of epilepsy and mood disorder comorbidity. Since several models of epilepsy or psychiatric disorders are already available, we wondered whether a mixture of the two could experimentally represent a valid alternative to study such comorbidity. Here, we present a possible experimental protocol to study drug effects and physiopathogenesis of psychiatric comorbidity in epileptic animals. Pentylentetrazol-kindled animals were subjected to the chronic mild stress (CMS) procedure; furthermore, we tested the effects of chronic lamotrigine treatment on the development of comorbidity. We found that epileptic-depressed animals showed more pronounced behavioral alterations in comparison to other mice groups, indicating that kindled animals develop more pronounced CMS-induced behavioral alterations than nonepileptic mice; lamotrigine was able to prevent the development of comorbidities such as anxiety, depression-like behavior, and memory impairment.
Collapse
Affiliation(s)
- Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Citraro R, Russo E, Ngomba RT, Nicoletti F, Scicchitano F, Whalley BJ, Calignano A, De Sarro G. CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res 2013; 106:74-82. [PMID: 23860329 DOI: 10.1016/j.eplepsyres.2013.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 12/22/2022]
Abstract
Drugs that modulate the endocannabinoid system and endocannabinoids typically play an anticonvulsant role although some proconvulsant effects have been reported both in humans and animal models. Moreover, no evidence for a role of the cannabinoid system in human absence epilepsy has been found although limited evidence of efficacy in relevant experimental animal models has been documented. This study aims to characterize the role of cannabinoids in specific areas of the cortico-thalamic network involved in oscillations that underlie seizures in a genetic animal model of absence epilepsy, the WAG/Rij rat. We assessed the effects of focal injection of the endogenous cannabinoid, anandamide (AEA), a non-selective CB receptor agonist (WIN55,212) and a selective CB1 receptor antagonist/inverse agonist (SR141716A) into thalamic nuclei and primary somatosensory cortex (S1po) of the cortico-thalamic network. AEA and WIN both reduced absence seizures independently from the brain focal site of infusion while, conversely, rimonabant increased absence seizures but only when focally administered to the ventroposteromedial thalamic nucleus (VPM). These results, together with previous reports, support therapeutic potential for endocannabinoid system modulators in absence epilepsy and highlight that attenuated endocannabinergic function may contribute to the generation and maintenance of seizures. Furthermore, the entire cortico-thalamic network responds to cannabinoid treatment, indicating that in all areas considered, CB receptor activation inhibits the pathological synchronization that subserves absence seizures. In conclusion, our result might be useful for the identification of future drug therapies in absence epilepsy.
Collapse
Affiliation(s)
- Rita Citraro
- Chair of Pharmacology, Department of Health Science, School of Medicine and Surgery, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Russo E, Citraro R, Donato G, Camastra C, Iuliano R, Cuzzocrea S, Constanti A, De Sarro G. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology 2013; 69:25-36. [DOI: 10.1016/j.neuropharm.2012.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/07/2012] [Accepted: 09/29/2012] [Indexed: 12/27/2022]
|
61
|
Nemeth CL, Harrell CS, Beck KD, Neigh GN. Not all depression is created equal: sex interacts with disease to precipitate depression. Biol Sex Differ 2013; 4:8. [PMID: 23594674 PMCID: PMC3639119 DOI: 10.1186/2042-6410-4-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/22/2013] [Indexed: 12/28/2022] Open
Abstract
Depression is a common mental disorder that co-occurs in other neurological and somatic diseases. Further, sex differences exist in the prevalence rates of many of these diseases, as well as within non-disease associated depression. In this review, the case is made for needing a better recognition of the source of the symptoms of depression with respect to the sex of the individual; in that, some disease states, which includes the neuroendocrine and immune reactions to the underlying pathophysiology of the disease, may initiate depressive symptoms more often in one sex over the other. The diseases specifically addressed to make this argument are: epilepsy, Alzheimer’s disease, cancer, and cardiovascular disease. For each of these conditions, a review of the following are presented: prevalence rates of the conditions within each sex, prevalence rates of depressive symptoms within the conditions, identified relationships to gonadal hormones, and possible interactions between gonadal hormones, adrenal hormones, and immune signaling. Conclusions are drawn suggesting that an evaluation of the root causes for depressive symptoms in patients with these conditions is necessary, as the underlying mechanisms for eliciting the depressive symptoms may be qualitatively different across the four diseases discussed. This review attempts to identify and understand the mechanisms of depression associated with these diseases, in the context of the known sex differences in the disease prevalence and its age of onset. Hence, more extensive, sex-specific model systems are warranted that utilize these disease states to elicit depressive symptoms in order to create more focused, efficient, and sex-specific treatments for patients suffering from these diseases and concurrent depressive symptoms.
Collapse
|
62
|
Dezsi G, Ozturk E, Stanic D, Powell KL, Blumenfeld H, O'Brien TJ, Jones NC. Ethosuximide reduces epileptogenesis and behavioral comorbidity in the GAERS model of genetic generalized epilepsy. Epilepsia 2013; 54:635-43. [PMID: 23464801 DOI: 10.1111/epi.12118] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 12/23/2022]
Abstract
PURPOSE Ethosuximide (ESX) is a drug of choice for the symptomatic treatment of absence seizures. Chronic treatment with ESX has been reported to have disease-modifying antiepileptogenic activity in the WAG/Rij rat model of genetic generalized epilepsy (GGE) with absence seizures. Here we examined whether chronic treatment with ESX (1) possesses antiepileptogenic effects in the genetic absence epilepsy rats from Strasbourg (GAERS) model of GGE, (2) is associated with a mitigation of behavioral comorbidities, and (3) influences gene expression in the somatosensory cortex region where seizures are thought to originate. METHODS GAERS and nonepileptic control (NEC) rats were chronically treated with ESX (in drinking water) or control (tap water) from 3 to 22 weeks of age. Subsequently, all animals received tap water only for another 12 weeks to assess enduring effects of treatment. Seizure frequency and anxiety-like behaviors were serially assessed throughout the experimental paradigm. Treatment effects on the expression of key components of the epigenetic molecular machinery, the DNA methyltransferase enzymes, were assessed using quantitative polymerase chain reaction (qPCR). KEY FINDINGS ESX treatment significantly reduced seizures in GAERS during the treatment phase, and this effect was maintained during the 12-week posttreatment phase (p < 0.05). Furthermore, the anxiety-like behaviors present in GAERS were reduced by ESX treatment (p < 0.05). Molecular analysis revealed that ESX treatment was associated with increased expression of DNA methyltransferase enzyme messenger RNA (mRNA) in cortex. SIGNIFICANCE Chronic ESX treatment has disease-modifying effects in the GAERS model of GGE, with antiepileptogenic effects against absence seizures and mitigation of behavioral comorbidities. The cellular mechanism for these effects may involve epigenetic modifications.
Collapse
Affiliation(s)
- Gabi Dezsi
- Department of Medicine (Royal Melbourne Hospital), Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
63
|
Jones NC, O'Brien TJ. Stress, epilepsy, and psychiatric comorbidity: how can animal models inform the clinic? Epilepsy Behav 2013; 26:363-9. [PMID: 23099287 DOI: 10.1016/j.yebeh.2012.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022]
Abstract
Psychiatric complaints afflict many patients with epilepsy, and these contribute significantly to the impaired quality of life experienced by sufferers of this common group of neurological conditions. Psychiatric disorders in epilepsy patients are under-diagnosed and under-treated. Moreover, evidence suggests that the psychiatric disorders may act as risk factors for some types of epilepsy and exacerbate disease progression in established cases, promoting the case for a bidirectional relationship between epilepsy and psychopathology. While cause and effect relationships can be difficult to establish in human studies, appropriate animal models provide valuable tools with which to study the interactions between epilepsy and stress-related disorders. Indeed, many epilepsy models exhibit behavioral phenotypes which are reflective of psychiatric disorders, and, conversely, stressful environments appear to promote a vulnerability to developing epilepsy. This review summarizes this research area, exploring the behavioral phenotypes in animal models of epilepsy and then examining the influence of stressful environments on susceptibility to seizures and epilepsy. The ultimate goal of this line of research is to be able to translate these findings to humans. Understanding the relationships between epilepsy and associated psychiatric disorders will facilitate effective treatment of mood disorders in epilepsy, inform about the pathophysiology of each individually, and potentially open up novel therapeutic disease-modifying strategies for patients with epilepsy.
Collapse
Affiliation(s)
- Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.
| | | |
Collapse
|
64
|
Elander M. Drug-Induced Convulsions in Nonclinical Safety Studies: Implication for Clinical Development. Drug Dev Res 2013. [DOI: 10.1002/ddr.21061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mikael Elander
- Department of Regulatory Toxicology & Safety Assessment; H. Lundbeck A/S; Valby; Copenhagen; Denmark
| |
Collapse
|
65
|
Ameliorating effects of aripiprazole on cognitive functions and depressive-like behavior in a genetic rat model of absence epilepsy and mild-depression comorbidity. Neuropharmacology 2013; 64:371-9. [DOI: 10.1016/j.neuropharm.2012.06.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 01/01/2023]
|
66
|
Citraro R, Russo E, Scicchitano F, van Rijn CM, Cosco D, Avagliano C, Russo R, D'Agostino G, Petrosino S, Guida F, Gatta L, van Luijtelaar G, Maione S, Di Marzo V, Calignano A, De Sarro G. Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy. Neuropharmacology 2012. [PMID: 23206503 DOI: 10.1016/j.neuropharm.2012.11.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-palmitoylethanolamine (PEA), an endogenous fatty acid ethanolamide, plays a key role in the regulation of the inflammatory response and pain through, among others, activation of nuclear peroxisome proliferator-activated receptors (PPAR-α). Endogenous cannabinoids play a protective role in several central nervous system (CNS) disorders, particularly those associated with neuronal hyperexcitability. We investigated the effects of PEA and the role of PPAR-α in absence epilepsy using the WAG/Rij rat model. PEA, anandamide (AEA), a PPAR-α antagonist (GW6471) and a synthetic CB1 receptor antagonist/inverse agonist (SR141716) were administered to WAG/Rij rats in order to evaluate the effects on epileptic spike-wave discharges (SWDs) on EEG recordings. We studied also the effects of PEA co-administration with SR141716 and GW6471 and compared these effects with those of AEA to evaluate PEA mechanism of action and focusing on CB1 receptors and PPAR-α. Both PEA and AEA administration significantly decreased SWDs parameters (absence seizures). In contrast, GW6471 was devoid of effects while SR141716 had pro-absence effects. The co-administration of SR141716 with PEA or AEA completely blocked the anti-absence effects of these compounds. GW6471 antagonized PEA's effects whereas it did not modify AEA's effects. Furthermore, we have also measured PEA, AEA and 2-AG (2-arachidonoylglycerol) brain levels identifying significant differences between epileptic and control rats such as decreased PEA levels in both thalamus and cortex that might contribute to absence epilepsy. Our data demonstrate that PEA has anti-absence properties in the WAG/Rij rat model and that such properties depend on PPAR-α and indirect activation of CB1 receptors. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Rita Citraro
- Department of Health Science, School of Medicine and Surgery, University Magna Graecia of Catanzaro, Viale Europa - Germaneto, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Protective activity of α-lactoalbumin (ALAC), a whey protein rich in tryptophan, in rodent models of epileptogenesis. Neuroscience 2012; 226:282-8. [PMID: 23000629 DOI: 10.1016/j.neuroscience.2012.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 11/23/2022]
Abstract
The aim of the present work was to evaluate the potential activity of α-lactoalbumin (ALAC), a whey protein rich in tryptophan (TRP), in two rodent models of epileptogenesis and we explored a possible mechanism of action. The effects of ALAC (oral administration) were tested in two standard epileptogenesis protocols, namely the pilocarpine post-status epilepticus model in mice and the WAG/Rij rat model of absence epileptogenesis. The mechanism of action was investigated by assessing the effects of ALAC in two seizure models (N-methyl-d-aspartate (NMDA) and pentylenetetrazol (PTZ) -induced seizures) including d-serine co-administration. ALAC showed protecting properties in both models of epileptogenesis, reducing spontaneous seizures development. In acute seizure models, ALAC possessed antiseizure properties at some of the doses tested (PTZ-seizures: >50% seizure-reduction between 250 and 375 mg/kg; NMDA-seizures: >90% reduction at 250 and 500 mg/kg). When a dose of d-serine ineffective per se was co-administered with ALAC, ALAC effects were significantly reversed in both models. ALAC is active in experimental models of seizure and epileptogenesis. Its effects are likely mediated by the inhibition of NMDA receptors at the glycine binding site, possibly secondarily to the in vivo enzymatic conversion of ALAC-generated tryptophan to kynurenic acid. However, other mechanisms of action contributing to ALAC effects cannot be excluded.
Collapse
|
68
|
Stewart AM, Desmond D, Kyzar E, Gaikwad S, Roth A, Riehl R, Collins C, Monnig L, Green J, Kalueff AV. Perspectives of zebrafish models of epilepsy: What, how and where next? Brain Res Bull 2012; 87:135-43. [DOI: 10.1016/j.brainresbull.2011.11.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/20/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
|
69
|
Vigabatrin has antiepileptogenic and antidepressant effects in an animal model of epilepsy and depression comorbidity. Behav Brain Res 2011; 225:373-6. [DOI: 10.1016/j.bbr.2011.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/12/2011] [Accepted: 07/17/2011] [Indexed: 11/21/2022]
|