51
|
Dodson JJ, Aubin-Horth N, Thériault V, Páez DJ. The evolutionary ecology of alternative migratory tactics in salmonid fishes. Biol Rev Camb Philos Soc 2013; 88:602-25. [DOI: 10.1111/brv.12019] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Julian J. Dodson
- Département de biologie; Université Laval; Pavillon Vachon, 1045, Avenue de la Médecine; Québec (Québec); G1V 0A6; Canada
| | - Nadia Aubin-Horth
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine; Québec (Québec); G1V 0A6; Canada
| | - Véronique Thériault
- Hatfield Marine Science Center; Marine Fisheries Genetics Program, Oregon State University; 2030 SE Marine Science Drive; Newport; OR 97365; U.S.A
| | - David J. Páez
- Département de biologie; Université Laval; Pavillon Vachon, 1045, Avenue de la Médecine; Québec (Québec); G1V 0A6; Canada
| |
Collapse
|
52
|
Mank JE, Wedell N, Hosken DJ. Polyandry and sex-specific gene expression. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120047. [PMID: 23339238 DOI: 10.1098/rstb.2012.0047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype-phenotype chain, and although in its early stages, understanding the sexual selection-transcription relationship will provide significant insights into this critical association.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, The Darwin Building, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
53
|
Lavine LC, Hahn LL, Warren IA, Garczynski SF, Dworkin I, Emlen DJ. Cloning and characterization of an mRNA encoding an insulin receptor from the horned scarab beetle Onthophagus nigriventris (Coleoptera: Scarabaeidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:43-57. [PMID: 23136112 DOI: 10.1002/arch.21072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The insulin signaling pathway is the primary signaling pathway coupling growth with nutritional condition in all animals. Sensitivity to circulating levels of insulin has been shown to regulate the growth of specific traits in a dose-dependent manner in response to environmental conditions in a diversity of insect species. Alternative phenotypes in insects manifest in a variety of morphologies such as the sexually dimorphic and male dimorphic horned beetles. Large males of the sexually dimorphic dung beetle Onthophagus nigriventris develop a thoracic horn up to twice the length of the body whereas small males and females never develop this horn. The regulation of this dimorphism is known to be nutrition dependent for males. We focused on the insulin signaling pathway as a potential regulator of this dimorphism. We sequenced a full-length gene transcript encoding the O. nigriventris insulin receptor (OnInR), which is the receptor for circulating insulin and insulin-like peptides in animals. We show that the predicted OnInR protein is similar in overall amino acid identity to other insulin receptors (InRs) and is most closely related phylogenetically to insect InRs. Expression of the OnInR transcript was found during development of imaginal tissues in both males and females. However, expression of OnInR in the region where a horn would grow of small males and female was significantly higher than in the horn tissues of large males at the end of growth. This variation in OnInR expression between sexes and morphs indicates a role for the InR in polymorphic horn development.
Collapse
Affiliation(s)
- Laura Corley Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | | | |
Collapse
|
54
|
Morehouse NI, Mandon N, Christides JP, Body M, Bimbard G, Casas J. Seasonal selection and resource dynamics in a seasonally polyphenic butterfly. J Evol Biol 2012. [DOI: 10.1111/jeb.12051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N. I. Morehouse
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh PA USA
| | - N. Mandon
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
| | - J.-P. Christides
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
| | - M. Body
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
| | - G. Bimbard
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
| | - J. Casas
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
| |
Collapse
|
55
|
Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. Proc Natl Acad Sci U S A 2012. [PMID: 23184999 DOI: 10.1073/pnas.1118589109] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sex-specific trait expression is frequently associated with highly variable, condition-dependent expression within sexes and rapid divergence among closely related species. Horned beetles are an excellent example for studying the molecular basis of these phenomena because horn morphology varies markedly among species, between sexes, and among alternative, nutritionally-cued morphs within sexes. In addition, horns lack obvious homology to other insect traits and provide a good opportunity to explore the molecular basis of the rapid diversification of a novel trait within and between species. Here we show that the sex-determination gene doublesex (dsx) underlies important aspects of horn development, including differences between sexes, morphs, and species. In male Onthophagus taurus, dsx transcripts were preferentially expressed in the horns of the large, horned morph, and RNAi-mediated knockdown of dsx dramatically altered male horn allometry by massively reducing horn development in large males, but not in smaller males. Conversely, dsx RNAi induced ectopic, nutrition-sensitive horn development in otherwise hornless females. Finally, in a closely related species (Onthophagus sagittarius) that has recently evolved a rare reversed sexual dimorphism, dsx RNAi revealed reversed as well as novel dsx functions despite an overall conservation of dsx expression. This suggests that rapid evolution of dsx functions has facilitated the transition from a regular sexual dimorphism to a reversed sexual dimorphism in this species. Our findings add beetle horns to existing examples of a close relationship between dsx and sexual trait development, and suggest that dsx function has been coopted to facilitate both the evolution of environmentally-cued intrasexual dimorphisms and rapid species divergences in a novel trait.
Collapse
|
56
|
Zakas C, Wares JP. Consequences of a poecilogonous life history for genetic structure in coastal populations of the polychaete Streblospio benedicti. Mol Ecol 2012; 21:5447-60. [PMID: 23057973 PMCID: PMC4643657 DOI: 10.1111/mec.12040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022]
Abstract
In many species, alternative developmental pathways lead to the production of two distinct phenotypes, promoting the evolution of morphological novelty and diversification. Offspring type in marine invertebrates influences transport time by ocean currents, which dictate dispersal potential and gene flow, and thus has sweeping evolutionary effects on the potential for local adaptation and on rates of speciation, extinction and molecular evolution. Here, we use the polychaete Streblospio benedicti to investigate the effects of dimorphic offspring type on gene flow and genetic structure in coastal populations. We use 84 single nucleotide polymorphism (SNP) markers for this species to assay populations on the East and West Coasts of the United States. Using these markers, we found that in their native East Coast distribution, populations of S. benedicti have high-population genetic structure, but this structure is associated primarily with geographic separation rather than developmental differences. Interestingly, very little genetic differentiation is recovered between individuals of different development types when they occur in the same or nearby populations, further supporting that this is a true case of poecilogony. In addition, we were able to demonstrate that the recently introduced (~100 ya) West Coast populations probably originated from a lecithotrophic population near Delaware.
Collapse
Affiliation(s)
- Christina Zakas
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
57
|
Ekblom R, Farrell LL, Lank DB, Burke T. Gene expression divergence and nucleotide differentiation between males of different color morphs and mating strategies in the ruff. Ecol Evol 2012; 2:2485-505. [PMID: 23145334 PMCID: PMC3492775 DOI: 10.1002/ece3.370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 12/16/2022] Open
Abstract
By next generation transcriptome sequencing, it is possible to obtain data on both nucleotide sequence variation and gene expression. We have used this approach (RNA-Seq) to investigate the genetic basis for differences in plumage coloration and mating strategies in a non-model bird species, the ruff (Philomachus pugnax). Ruff males show enormous variation in the coloration of ornamental feathers, used for individual recognition. This polymorphism is linked to reproductive strategies, with dark males (Independents) defending territories on leks against other Independents, whereas white morphs (Satellites) co-occupy Independent's courts without agonistic interactions. Previous work found a strong genetic component for mating strategy, but the genes involved were not identified. We present feather transcriptome data of more than 6,000 de-novo sequenced ruff genes (although with limited coverage for many of them). None of the identified genes showed significant expression divergence between males, but many genetic markers showed nucleotide differentiation between different color morphs and mating strategies. These include several feather keratin genes, splicing factors, and the Xg blood-group gene. Many of the genes with significant genetic structure between mating strategies have not yet been annotated and their functions remain to be elucidated. We also conducted in-depth investigations of 28 pre-identified coloration candidate genes. Two of these (EDNRB and TYR) were specifically expressed in black- and rust-colored males, respectively. We have demonstrated the utility of next generation transcriptome sequencing for identifying and genotyping large number of genetic markers in a non-model species without previous genomic resources, and highlight the potential of this approach for addressing the genetic basis of ecologically important variation.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University Norbyvägen 18 D, SE-75236, Uppsala, Sweden ; Department of Animal and Plant Sciences, University of Sheffield Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
58
|
Kijimoto T, Pespeni M, Beckers O, Moczek AP. Beetle horns and horned beetles: emerging models in developmental evolution and ecology. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:405-18. [PMID: 23799584 DOI: 10.1002/wdev.81] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many important questions in developmental biology increasingly interface with related questions in other biological disciplines such as evolutionary biology and ecology. In this article, we review and summarize recent progress in the development of horned beetles and beetle horns as study systems amenable to the integration of a wide range of approaches, from gene function analysis in the laboratory to population ecological and behavioral studies in the field. Specifically, we focus on three key questions at the current interface of developmental biology, evolutionary biology and ecology: (1) the developmental mechanisms underlying the origin and diversification of novel, complex traits, (2) the relationship between phenotypic diversification and the diversification of genes and transcriptomes, and (3) the role of behavior as a leader or follower in developmental evolution. For each question we discuss how work on horned beetles is contributing to our current understanding of key issues, as well as highlight challenges and opportunities for future studies.
Collapse
Affiliation(s)
- Teiya Kijimoto
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | | | |
Collapse
|
59
|
|
60
|
Leichty AR, Pfennig DW, Jones CD, Pfennig KS. Relaxed genetic constraint is ancestral to the evolution of phenotypic plasticity. Integr Comp Biol 2012; 52:16-30. [PMID: 22526866 DOI: 10.1093/icb/ics049] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Phenotypic plasticity--the capacity of a single genotype to produce different phenotypes in response to varying environmental conditions--is widespread. Yet, whether, and how, plasticity impacts evolutionary diversification is unclear. According to a widely discussed hypothesis, plasticity promotes rapid evolution because genes expressed differentially across different environments (i.e., genes with "biased" expression) experience relaxed genetic constraint and thereby accumulate variation faster than do genes with unbiased expression. Indeed, empirical studies confirm that biased genes evolve faster than unbiased genes in the same genome. An alternative hypothesis holds, however, that the relaxed constraint and faster evolutionary rates of biased genes may be a precondition for, rather than a consequence of, plasticity's evolution. Here, we evaluated these alternative hypotheses by characterizing evolutionary rates of biased and unbiased genes in two species of frogs that exhibit a striking form of phenotypic plasticity. We also characterized orthologs of these genes in four species of frogs that had diverged from the two plastic species before the plasticity evolved. We found that the faster evolutionary rates of biased genes predated the evolution of the plasticity. Furthermore, biased genes showed greater expression variance than did unbiased genes, suggesting that they may be more dispensable. Phenotypic plasticity may therefore evolve when dispensable genes are co-opted for novel function in environmentally induced phenotypes. Thus, relaxed genetic constraint may be a cause--not a consequence--of the evolution of phenotypic plasticity, and thereby contribute to the evolution of novel traits.
Collapse
Affiliation(s)
- Aaron R Leichty
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | | | |
Collapse
|
61
|
Snell-Rood EC, Moczek AP. Insulin signaling as a mechanism underlying developmental plasticity: the role of FOXO in a nutritional polyphenism. PLoS One 2012; 7:e34857. [PMID: 22514679 PMCID: PMC3325941 DOI: 10.1371/journal.pone.0034857] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/08/2012] [Indexed: 12/19/2022] Open
Abstract
We investigated whether insulin signaling, known to mediate physiological plasticity in response to changes in nutrition, also facilitates discrete phenotypic responses such as polyphenisms. We test the hypothesis that the gene FOXO--which regulates growth arrest under nutrient stress--mediates a nutritional polyphenism in the horned beetle, Onthophagus nigriventris. Male beetles in the genus Onthophagus vary their mating strategy with body size: large males express horns and fight for access to females while small males invest heavily in genitalia and sneak copulations with females. Given that body size and larval nutrition are linked, we predicted that 1) FOXO expression would differentially scale with body size (nutritional status) between males and females, and 2) manipulation of FOXO expression would affect the nutritional polyphenism in horns and genitalia. First, we found that FOXO expression varied with body size in a tissue- and sex-specific manner, being more highly expressed in the abdominal tissue of large (horned) males, in particular in regions associated with genitalia development. Second, we found that knockdown of FOXO through RNA-interference resulted in the growth of relatively larger copulatory organs compared to control-injected individuals and significant, albeit modest, increases in relative horn length. Our results support the hypothesis that FOXO expression in the abdominal tissue limits genitalia growth, and provides limited support for the hypothesis that FOXO regulates relative horn length through direct suppression of horn growth. Both results support the idea that tissue-specific FOXO expression may play a general role in regulating scaling relationships in nutritional polyphenisms by signaling traits to be relatively smaller.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America.
| | | |
Collapse
|
62
|
Valena S, Moczek AP. Epigenetic mechanisms underlying developmental plasticity in horned beetles. GENETICS RESEARCH INTERNATIONAL 2012; 2012:576303. [PMID: 22567393 PMCID: PMC3335661 DOI: 10.1155/2012/576303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022]
Abstract
All developmental plasticity arises through epigenetic mechanisms. In this paper we focus on the nature, origins, and consequences of these mechanisms with a focus on horned beetles, an emerging model system in evolutionary developmental genetics. Specifically, we introduce the biological significance of developmental plasticity and summarize the most important facets of horned beetle biology. We then compare and contrast the epigenetic regulation of plasticity in horned beetles to that of other organisms and discuss how epigenetic mechanisms have facilitated innovation and diversification within and among taxa. We close by highlighting opportunities for future studies on the epigenetic regulation of plastic development in these and other organisms.
Collapse
Affiliation(s)
- Sophie Valena
- Department of Biology, Indiana University, 915 E Third Street, Myers Hall 150, Bloomington, IN 47405-7107, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University, 915 E Third Street, Myers Hall 150, Bloomington, IN 47405-7107, USA
| |
Collapse
|
63
|
Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW. The role of developmental plasticity in evolutionary innovation. Proc Biol Sci 2011; 278:2705-13. [PMID: 21676977 PMCID: PMC3145196 DOI: 10.1098/rspb.2011.0971] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/24/2011] [Indexed: 11/12/2022] Open
Abstract
Explaining the origins of novel traits is central to evolutionary biology. Longstanding theory suggests that developmental plasticity, the ability of an individual to modify its development in response to environmental conditions, might facilitate the evolution of novel traits. Yet whether and how such developmental flexibility promotes innovations that persist over evolutionary time remains unclear. Here, we examine three distinct ways by which developmental plasticity can promote evolutionary innovation. First, we show how the process of genetic accommodation provides a feasible and possibly common avenue by which environmentally induced phenotypes can become subject to heritable modification. Second, we posit that the developmental underpinnings of plasticity increase the degrees of freedom by which environmental and genetic factors influence ontogeny, thereby diversifying targets for evolutionary processes to act on and increasing opportunities for the construction of novel, functional and potentially adaptive phenotypes. Finally, we examine the developmental genetic architectures of environment-dependent trait expression, and highlight their specific implications for the evolutionary origin of novel traits. We critically review the empirical evidence supporting each of these processes, and propose future experiments and tests that would further illuminate the interplay between environmental factors, condition-dependent development, and the initiation and elaboration of novel phenotypes.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proc Natl Acad Sci U S A 2011; 108:15936-41. [PMID: 21911372 DOI: 10.1073/pnas.1104825108] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on protein-coding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity.
Collapse
|
65
|
|
66
|
Affiliation(s)
- Alison M Bell
- Department of Animal Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | |
Collapse
|
67
|
Choi JH, Kijimoto T, Snell-Rood E, Tae H, Yang Y, Moczek AP, Andrews J. Gene discovery in the horned beetle Onthophagus taurus. BMC Genomics 2010; 11:703. [PMID: 21156066 PMCID: PMC3019233 DOI: 10.1186/1471-2164-11-703] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 12/14/2010] [Indexed: 01/03/2023] Open
Abstract
Background Horned beetles, in particular in the genus Onthophagus, are important models for studies on sexual selection, biological radiations, the origin of novel traits, developmental plasticity, biocontrol, conservation, and forensic biology. Despite their growing prominence as models for studying both basic and applied questions in biology, little genomic or transcriptomic data are available for this genus. We used massively parallel pyrosequencing (Roche 454-FLX platform) to produce a comprehensive EST dataset for the horned beetle Onthophagus taurus. To maximize sequence diversity, we pooled RNA extracted from a normalized library encompassing diverse developmental stages and both sexes. Results We used 454 pyrosequencing to sequence ESTs from all post-embryonic stages of O. taurus. Approximately 1.36 million reads assembled into 50,080 non-redundant sequences encompassing a total of 26.5 Mbp. The non-redundant sequences match over half of the genes in Tribolium castaneum, the most closely related species with a sequenced genome. Analyses of Gene Ontology annotations and biochemical pathways indicate that the O. taurus sequences reflect a wide and representative sampling of biological functions and biochemical processes. An analysis of sequence polymorphisms revealed that SNP frequency was negatively related to overall expression level and the number of tissue types in which a given gene is expressed. The most variable genes were enriched for a limited number of GO annotations whereas the least variable genes were enriched for a wide range of GO terms directly related to fitness. Conclusions This study provides the first large-scale EST database for horned beetles, a much-needed resource for advancing the study of these organisms. Furthermore, we identified instances of gene duplications and alternative splicing, useful for future study of gene regulation, and a large number of SNP markers that could be used in population-genetic studies of O. taurus and possibly other horned beetles.
Collapse
Affiliation(s)
- Jeong-Hyeon Choi
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol Evol 2010; 25:459-67. [PMID: 20557976 DOI: 10.1016/j.tree.2010.05.006] [Citation(s) in RCA: 700] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 11/21/2022]
Abstract
Phenotypic plasticity (the ability of a single genotype to produce multiple phenotypes in response to variation in the environment) is commonplace. Yet its evolutionary significance remains controversial, especially in regard to whether and how it impacts diversification and speciation. Here, we review recent theory on how plasticity promotes: (i) the origin of novel phenotypes, (ii) divergence among populations and species, (iii) the formation of new species and (iv) adaptive radiation. We also discuss the latest empirical support for each of these evolutionary pathways to diversification and identify potentially profitable areas for future research. Generally, phenotypic plasticity can play a largely underappreciated role in driving diversification and speciation.
Collapse
|